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EXTENSION OF FUNCTORS

TO FIBREWISE POINTED SPACES

Petar Pavešić

Abstract. We describe a new general method for the fibrewise extension

of a given endofunctor on the category of pointed topological spaces to the

category of fibrewise pointed spaces. We derive some properties of the con-
struction and show how it can be profitably used to build the Whitehead–

Ganea framework for the fibrewise Lusternik–Schnirelmann category and

the topological complexity.

1. Introduction

This paper has two objectives. The first is to introduce a new method for the

fibrewise extension of a functor defined on the category of pointed topological

spaces to a functor on the category of fibrewise pointed spaces. More precisely,

given a fibrewise space p : X → B with a prescribed section s : B → X (so that for

every b ∈ B we consider s(b) as the base-point of Xb = p−1(b)), and a continuous

endofunctor Φ: Top∗ → Top∗ on the category of pointed topological spaces

we construct a fibrewise pointed space X[Φ] → B whose fibres are precisely

the spaces Φ(Xb, s(b)). The construction is very general, it has many pleasant

properties and lot of applications. In the second part we present one of the

applications, namely the construction of the Whitehead-Ganea framework for the

fibrewise Lusternik-Schnirelmann category, and in particular for the topological
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complexity. The precise definitions and some historical perspective are given in

the respective sections.

2. Extension of functors

We will use freely the standard terminology and notation of the theory of

fibrewise spaces as in [9], [11] and [12]. In particular, given a topological space

B a fibrewise space over the base B consists of a total space X together with

a continuous projection map p : X → B. For each b ∈ B the preimage Xb :=

p−1(b) is called the fibre over b. A morphism between fibrewise spaces X and Y

over B is a map f : X → Y that commute with the projections.

A fibrewise space X is pointed if there exists a continuous section map

s : B → X, such that p ◦ s = IB . A morphism between fibrewise pointed spaces

X and Y is a map f : X → Y that commute with the projections and sections.

Intuitively, a fibrewise space X is a continuous family of spaces Xb (para-

metrized by the elements of B), while a fibrewise pointed space is a continuous

B-parametrized family of pointed spaces (Xb, s(b)).

When dealing with fibre spaces (vector bundles, fibre bundles, fibrations, . . . )

it is often necessary to construct a fibrewise extension of an operation which is

defined on a certain class of spaces to an operation on the fibre spaces whose

fibres are elements of that class. Classical examples are the constructions of

tensor bundles and the bundles of differential forms as in [6, Section 5.6], which

rely on the local triviality structure of vector bundles. For general fibrewise

spacea James describes a very simple construction that extends a continuous

endofunctor on the category of topological spaces to the fibres of any fibrewise

space. Since it inspired our construction we provide a few details. Let p : X → B

be a fibrewise space and let Φ: Top→ Top be a continuous functor (to be defined

later). Then, following [9, p. 76] one defines ΦB(X) to be the set
∐
b∈B

Φ(Xb) with

the initial topology determined by the function∐
b∈B

Φ(Xb)→
∐
b∈B

Φ(X) ≡ B × Φ(X)

whose restriction on each Φ(Xb) is the map Φ(Xb ↪→ X). Unfortunately, when Φ

is a functor on the category of pointed spaces then the above construction does

not work as it does not take into account the effect of the choice of the base-

point on the values of of the functor. This is why the subsequent developments

of the fibrewise homotopy theory prefer to work with explicit constructions.

For example Crabb amd James [2] describe explicitly fibrewise wedges, smash-

products and other pointed constructions. This is further generalized by May

and Sigurdsson [11] who prove that every limit or colimit construction on the

level of pointed spaces can be naturally extended to fibrewise pointed spaces.

While this approach is sufficient for most applications it still lacks generality and
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complicates many arguments and proofs. On the other side Iwase and Sakai [7]

consider an arbitrary continuous functor Φ but require that X is locally trivial

as a fibrewise pointed space. Apart from being relatively complicated, the main

drawback of their construction is that many fibrewise pointed spaces that appear

in practice are not locally trivial. Let us illustrate this important point with an

example.

Example 2.1. The fibrewise product of fibrewise pointed spaces

B
s−→ X

p−→ B and B
r−→ Y

q−→ B

is given by the space X ×B Y := {(x, y) ∈ X × Y | p(x) = q(y)} with obvious

projection and section (cf. [2]). Moreover the fibrewise wedge is the following

subspace of X ×B Y :

X ∨B Y := {(x, y) ∈ X × Y | x = sp(x) or y = rq(y)}

(intuitively, X∨B Y is obtained by gluing together X and Y along the respective

sections).

Let X := [0, 1] × [0, 1] be the fibrewise pointed space with respect to the

projection to the first component pr1 : X → [0, 1] and with the diagonal section

∆: [0, 1] → X. Then X is trivial as a fibrewise pointed space but is not even

locally trivial as a fibrewise pointed space. This is best seen by observing that the

fibres of X∨[0,1]X over the points 0 and 1/2 are not homeomorphic as it should be

the case for a wedge of locally trivial spaces. The same problems arises with other

constructions that are used in the fibrewise Lusternik-Schnirelmann category and

topological complexity, which explains why the local triviality assumption should

be avoided.

In order to describe our construction we need only a mild topological re-

striction and require the fibrewise pointed space X to be a Tikhonov space (i.e.

completely regular and Hausdorff). It is conceivable that this assumption may

be somehow avoided but we have not be able to do so. It is well-known that

every Tikhonov space can be embedded into a topological product of copies of

the real line indexed over some basis of the topology of X. Let E denote such

a product and let i : X ↪→ E be the corresponding embedding. Moreover, as E

is a linear space we denote by + its continuous addition operation and by 0 ∈ E
its origin.

Let B
s−→ X

p−→ B be a fibrewise pointed space over B and assume that

X is a Tikhonov space so that we may choose an embedding i : X ↪→ E and

consider the family of maps

ib : (Xb, s(b))→ (E, 0), ib(x) := i(x)− i(s(b)), b ∈ B.
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For any functor Φ: Top∗ → Top∗ we define the space X[Φ] as the set∐
b∈B

Φ(Xb, s(b)),

endowed with the initial topology determined by the function∐
b∈B

Φ(ib) :
∐
b∈B

Φ(Xb, s(b))→
∐
b∈B

Φ(E, 0) ≡ B × Φ(E, 0).

The projection pΦ : X[Φ] → B is given by mapping Φ(Xb, s(b)) to b and it is

continuous because pΦ = prB ◦
∐

Φ(ib), a composition of two continuous maps.

The section sΦ : B → X sends b ∈ B to the base point of Φ(Xb, s(b)), and

its continuity follows from the universal property of the initial topologies. We

conclude that

B
sΦ−→ X[Φ]

pΦ−→ B

is a fibrewise pointed space over B.

By definition, the fibre of X[Φ] over b ∈ B has the initial topology with

respect to the map Φ(ib), and that topology may be in general stronger than the

topology of Φ(Xb, s(b)). We will say that a functor Φ: Top∗ → Top∗ preserves

real subspaces if for every A embedded as a subspace i : A ↪→ E of some product

of real lines E, and for every a ∈ A the space Φ(A, a) has the initial topology

with respect to the map Φ(i). When the functor Φ preserves injective maps than

the above condition simply means that Φ(A, a) is a subspace of Φ(E, a).

One can easily verify that standard endofunctors on Top∗, like products,

(fat) wedges, based path spaces, based loop spaces and many others preserve

real subspaces. There are also functors that do not preserve subspaces, e.g. the

one-point compactification (observe that the one-point compactification of the

rationals is not a subspace of the one-point compactification of the reals). In

some cases, in particular when the description of Φ involves some identifications,

it is necessary to assume that A is a closed subset of E. Then it is sufficient

to assume that Φ preserves closed real subspaces and that condition holds for

functors like smash-products and joins.

Proposition 2.2. Assume that Φ: Top∗ → Top∗ preserves (closed) real sub-

spaces and that X is a fibrewise pointed space over B that admits a (closed) em-

bedding into some product of real lines. Then X[Φ] is a fibrewise pointed space

over B whose fibres are precisely the values of Φ on the respective fibres of X.

A fundamental problem is to understand how the topology of X[Φ] depends

on the choice of the embedding i : X ↪→ E. It is clear that in order to preserve

various topological properties the functor Φ must be in some sense continuous.

A functor Φ: Top∗ → Top∗ is said to be topologically continuous if it preserves

continuous families of pointed maps. In detail, we require that for every space A,

every pair (X,x), (Y, y) ∈ Top∗ and every map f : (A × X,A × {x}) → (Y, y)
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the induced map f̂ : A × Φ(X,x) → Φ(Y, y), given by f̂(a, u) := Φ(f(a,−))(u)

is also continuous. The attribute ’topologically’ is used as a disambiguation, to

avoid potential confusion with another common notion of continuity in category

theory related to functors that preserve categorical limits. Again it is not difficult

to check that the usual endofunctors on Top∗ like products, wedges, path and

loop spaces, smash-products and joins, are topologically continuous in the above

sense.

Theorem 2.3. Let B
s−→ X

p−→ B be a fibrewise pointed space such that X

admits a closed embedding i : X ↪→ E into a countable product of real lines, and

let Φ be an endofunctor on Top∗ that is topologically continuous and preserves

closed real subspaces. Then the topology of X[Φ] does not depend on the choice

of the embedding i.

Proof. We first consider a special case. If j : (E, 0) ↪→ (E′, 0) is a closed

embedding of products of real lines, then the assumption that Φ preserves closed

real subspaces implies that the topology on X[Φ] determined by the embedding

j ◦ i : E′ coincides with the topology determined by i.

Toward the general case, let i′ : X → E′ be another closed embedding of X

into a countable product of real lines E′. The products E and E′ are metrizable

and therefore normal (which is not the case for uncountable products, cf. [13,

Theorem 3]), and are at the same time absolute extensors for normal spaces, so

there exist maps f : E → E′ and g : E′ → E such that the following diagram

commutes

E

f

��

X

i

77

i′
''
E′

g

OO

Furthermore, the map h : E×E′ → E×E′, h(x, y) := (x−g(y+f(x)), y+f(x))

is a homeomorphism (with inverse h−1(x, y) = (x+ g(y), y− f(x+ g(y)), cf. [3])

that makes commutative the following diagram

E
j : x7→(x,0)

// E × E′

≈ h

��

X

i

88

i′
&&
E′

j′ : y 7→(0,y)

// E × E′
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and this implies that the embeddings ji, j′i′ : X → E × E′ are ambient-homeo-

morphic.

Next we define a continuous family of maps hb : (E×E′, 0)→ (E×E′, 0) for

b ∈ B given by

hb(u) := h(u+ jis(b))− j′i′s(b)

and check that hb ◦ j ◦ ib = j′ ◦ i′b. By the continuity of Φ we get the following

diagram

B × Φ(E × E′, 0)

≈
∐

Φ(hb)

��

∐
b∈B

Φ(Xb, s(b))

∐
Φ(jib)

33

∐
Φ(j′i′b)

++

B × Φ(E × E′, 0)

We conclude that the embeddings ji and j′i′ induce the same topology on X[Φ],

which in view of our initial remark implies that the same is true for the embed-

dings i and i′. �

The correspondence X 7→ X[Φ] is functorial in the following sense. Let

f : X → Y be a morphism of fibrewise pointed spaces A
s−→ X

p−→ A and

B
r−→ Y

q−→ B, and let Φ be an endofunctor on Top∗. Then the family of maps

Φ(f |Xa
) : Φ(Xa, s(a))→ Φ(Yqfs(a), fs(a)), a ∈ A

determines the function

f [Φ] :=
∐
a∈A

Φ(f |Xa
) :
∐
a∈A

Φ(Xa, s(a)) −→
∐
b∈B

Φ(Yb, r(b)).

To prove the continuity f [Φ] we need some assumptions.

Theorem 2.4. Assume that there are closed embeddings i : X → E and

i′ : Y → E′ into countable products of real lines, and that Φ is a topologically

continuous functor that preserves closed real subspaces. Then f [Φ] : X[Φ] →
Y [Φ] is continuous.

Proof. By Tietze extension theorem there is a map u that makes commu-

tative the following diagram:

X �
� i

//

f

��

E

u

��

Y �
�

i′
// E′
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Then the following diagram of embeddings

X �
� i

//
� u

(i,i′f) ''

E� _

(1E ,u)

��

E × E′

together with Theorem 2.3 imply that the topology of X[Φ] is determined by

the embedding (i, i′f) : X → E × E′.
For every a ∈ A we have the commutative diagram

Xa

fa

��

(i,i′f)a
// E × E′

prE′

��

Yqfs(a)
i′qfs(a)

// E′

because for x ∈ Xa

prE′(i, i′f)a(x) = prE′(i(x)− i(s(a)), i′f(x)− i′fs(a)

= i′f(x)− i′fs(a) = i′qfs(a)(f(x)).

Thus we obtain the commutative diagram∐
a∈A Φ(Xa, s(a))

∐
Φ((i,i′f)a)

//

f [Φ]

��

A× Φ(E × E′, (0, 0))

(qfs)×Φ(prE′ )

��∐
b∈B Φ(Yb, r(b)) ∐

Φ(i′b)

// B × Φ(E′, 0)

which by the universal property of initial topologies implies that f [Φ] is conti-

nuous. �

It is much easier to show that a natural transformation µ : Φ → Ψ induces

a map from X[Φ] to X[Ψ].

Proposition 2.5. Given a fibrewise pointed space B
s−→ X

p−→ B with X

a Tikhonov space and endofunctors Φ,Ψ of Top∗, then every natural transfor-

mation µ : Φ→ Ψ induces a fibrewise pointed map X[µ] : X[Φ]→ X[Ψ].

Proof. The continuity of X[µ] follows from the universal property of initial

topologies and the commutativity of the following diagram∐
b∈B Φ(Xb, s(b))

∐
Φ(ib)

//

X[µ]=
∐
µ(Xb,s(b))

��

B × Φ(E, 0)

1B×µ(E,0)

��∐
b∈B Ψ(Xb, s(b)) ∐

Ψ(ib)
// B ×Ψ(E, 0) �
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Given a fibrewise pointed space If B
s−→ X

p−→ B and a map f : A→ B let

A uX denote the pullback of X along f , i.e. A uX = {(a, x) ∈ A×X | f(a) =

p(x)}. A u X is a fibrewise pointed space over A with respect to the section

s : A → A uX given by s(a) := (a, sf(a)). The projection prX : A uX → X is

a morphism of fibrewise pointed spaces, so if X and Φ satisfy the assumptions of

Theorem 2.4, we obtain a map of fibrewise pointed spaces prX [Φ] : (AuX)[Φ]→
X[Φ]. By the universal property of pullbacks, prX [Φ] factors through a map

(A uX)[Φ]→ A uX[Φ], which is clearly a homeomorphism.

Proposition 2.6. Let X be a fibrewise pointed space over B and f : A→ B

be any map. If X and Φ satisfy the assumptions of Theorem 2.4 then there is

a natural isomorphism of fibrewise pointed spaces (AuX)[Φ] ∼= AuX[Φ] over A.

If we assume that Φ preserves real subspaces and extend its action to the

trivial fibrewise pointed space

B
1×cx0

// B × (F, x0)
pr
// B

then the maps ib used in the definition are all equal, so that (B × (F, x0))[Φ]

and B × Φ(F, x0) coincide as fibrewise pointed spaces over B. Thus we get the

following result.

Proposition 2.7. If Φ: Top∗ → Top∗ preserves real subspaces and if X is

(locally) trivial as a fibrewise pointed space over B then X[Φ] is also (locally)

trivial as a fibrewise pointed space over B.

We conclude the section by considering thet case when B
s−→ X

p−→ B is

a fibrewise pointed fibration in the sense of [11, Definition 8.1.1]. This is to say

that the projection p : X → B is a (Hurewicz) fibration and the corresponding

lifting function Γ: BI uX → XI (cf. [12, Theorem 1.1]) may be chosen so that

Γ
(
α, sα(0)

)
(t) = sα(t) for every α : I → B. In other words, for every α : I → B

and every t ∈ I the map

fα,t : Xα(0) → Xα(t), fα,t(x) := Γ(α, x)(t)

is base-point preserving.

Theorem 2.8. Let B
s−→ X

p−→ B be a fibrewise pointed fibration and

let Φ be a topologically continuous endofunctor of Top∗. If X admits a closed

embedding into a countable product of real lines and if Φ preserves closed real

subspaces, then B
sΦ−→ X[Φ]

pΦ−→ B is also a fibrewise pointed fibration.

Proof. Let us define ΓΦ : BI uX[Φ]→ X[Φ]I as ΓΦ(α, u)(t) := Φ(fα,t)(u).

It is easy to verify that ΓΦ is a lifting function in a fibrewise pointed sense,
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so it only remains to prove its continuity. In fact, it is sufficient to prove the

continuity of the adjoint map Γ̂Φ : (BI × I) uX[Φ]→ X[Φ], given by

Γ̂Φ(α, t, u) := Φ(fα,t)(u).

The commutativity of the following diagram

(BI × I) uX Γ̂
//

pr

��

X

p

��

BI × I
(α,t)7→α(0)

//

s

OO

B

s

OO

(where s(α, t) = (α, t, sα(0))) shows that Γ̂ is a morphism of fibrewise pointed

spaces. Clearly, Γ̂Φ = Γ̂[Φ], which by Theorem 2.4 implies that Γ̂Φ is continuous.

3. Fibrewise pointed LS category

In this section we use the extension of functors to perform a straightfor-

ward construction of the Whitehead–Ganea diagram for the fibrewise Lusternik–

Schnirelmann category. Let us first recall the relevant facts about the classical

theory (see [1] for more details and historical notes). A subset A is categorical

in X if it can be contracted in X to a point (in other words, if the inclusion

A ↪→ X is nul-homotopic). The Lusternik–Schnirelmann (LS) category of X,

denoted cat(X), is the minimal n such that X can be covered by n open cate-

gorical subsets. The LS category is a homotopy invariant of X but the above

definition is not practical for homotopy theoretical considerations. G.W. White-

head proved that under mild assumptions on X (normal, path-connected and

with a non-degenerate base-point x0 ∈ X) one can determine cat(X) by consid-

ering only subsets A ⊆ X that are strongly categorical in the sense that there

is a base-point preserving deformation H : X × I → X such that H0 = 1X and

H1(A) = x0. Then one immediately obtains the following characterization of

cat(X): let Wn(X,x0) be the n-th ’fat wedge’ of X,

Wn(X,x0) := {(x1, . . . , xn) ∈ Xn | xi = x0 for some i}

(observe that the quotient Xn/Wn(X,x0) is precisely the n-fold smash product

∧n(X,x0)); then cat(X) is the minimal n such that there is a homotopy lifting

of the n-fold diagonal ∆n : X → Xn to Wn(X,x0) as in the diagram

Wn(X,x0)� _

in

��

X
∆n

//

::

Xn
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There is also a companion characterization of the LS category introduced

by T. Ganea: he associates to X a series of fibrations pn : Gn(X,x0) → X

where G1(X,x0) is the space of based paths from (I, 0) to (X,x0) with p1

the usual path-fibration, and pn+1 is obtained from pn by turning the induced

map Gn(X,x0)/p−1(x0) → X into a fibration. Then the following is the (n-th)

Whitehead–Ganea diagram associated to X:

Gn(X,x0)

pn

��

∆̂n
// Wn(X,x0)� _

in

��

(X,x0)
∆n
//

q[n]

��

Πn(X,x0)

qn

��

G[n](X,x0)
∆n

// ∧n(X,x0)

In this diagram we find all functors and natural transformations that will be

used later: the n-fold product Πn, the n-fold fat wedge Wn, the n-fold smash

product ∧n, the n-th Ganea space functor Gn, and the n-th Ganea cofibre func-

tor G[n] (the cofibre of the projection pn). The maps qn and q[n] are respectively

the cofibre maps of in and pn, while ∆̂n and ∆n are induced by the n-fold di-

agonal ∆n. Observe that all of the above are endofunctors on Top∗, so we keep

track of the base-points in the notation as that will be of crucial importance

later on. Moreover, all maps that appear in the diagram are in fact natural

transformations. It also turns out that the upper square is a homotopy pull-

back (see [1, Theorem 1.63]), which immediately implies that cat(X) is precisely

the minimal n for which the n-th Ganea fibration admits a section. From the

Whitehead–Ganea we may derive a series of estimates and approximations of

cat(X) (cf. [1, Chapter 2]) so it is justly considered to be a cornerstone of the

homotopy theoretic approach to LS category.

The fibrewise LS category was introduced by I. James and J. Morris [10]:

given a fibrewise pointed space B
s−→ X

p−→ B, a subset A ⊆ X is (fibrewise

pointed) categorical if the inclusion A ⊆ X is nul-homotopic in the sense of fi-

brewise pointed spaces, i.e. if there is a homotopy H : A× I → X that vertically

deforms A to a subset of s(B). The minimal number of fibrewise pointed cat-

egorical subsets that cover X is the fibrewise pointed category of X, denoted

cat∗B(X). James and Morris proved (see [10, Propositions 6.1 and 6.2]) that

when X is path-connected, fully normal and with a non-degenerate section, then

its fibrewise pointed category may be computed by considering only strongly cat-

egorical subsets, i.e. such that s(B) ⊆ A and that there is a vertical deformation

of X that fixes s(B) and contracts A to s(B). Thus they obtain a Whitehead-

type characterization of the fibrewise pointed category of X as the minimal n
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for which the fibrewise pointed diagonal into the n-fold fibrewise pointed prod-

uct of X can be vertically deformed into the n-fold fibrewise pointed fat wedge

of X. In [10] both the fibrewise pointed product and the fibrewise pointed fat

wedge are constructed directly. In fact, one may proceed in a similar vein to

construct directly the fibrewise pointed Ganea space and other spaces (and mor-

phisms) that fit in a fibrewise pointed version of the Whitehead–Ganea diagram

for a given fibrewise pointed space.

The otherwise standard procedure that we have sketched seems to be unnec-

essarily long and repetitive, so it would be preferable to have a more efficient

and conceptual approach. The tool of choice is the extension of functors that we

developed in the previous section. As a base we take the endofunctors of Top∗
and their natural transformations that appear in the classical Whitehead–Ganea

diagram, namely: the functors Id, Πn, Wn, ∧n, Gn and G[n] and their natural

transformations that are summarized in the following diagram

Gn

pn

��

∆̂n
// Wn

in
��

Id
∆n
//

q[n]

��

Πn

qn

��

G[n]
∆n

// ∧n

Given a fibrewise pointed Tikhonov space X over B we simply apply the

extension of functors procedure together with Proposition 2.5 to obtain a dia-

gram of fibrewise pointed spaces that is the Whitehead–Ganea diagram for the

fibrewise pointed LS category of X:

X[Gn]

X[pn]

��

X[∆̂n]
// X[Wn]

X[in]

��

X[Id]
X[∆n]

//

X[q[n]]

��

X[Πn]

X[qn]

��

X[G[n]]
X[∆n]

// X[∧n]

It is now easy to show (directly or by invoking the results of James and Morris)

that cat∗B(X) is the minimal integer n for which X[∆n] admits a homotopy

lifting along X[in] or equivalently, the minimal integer for which X[pn] admits

a section. Furthermore, one may exploit the relations between the various spaces

and maps in the above diagram to develop various estimates for the topological
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complexity as in [4] and [5], see also the discussion on the weak fibrewise category

in [2, Section 19].
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