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REGULAR SETS OF SAMPLING AND
INTERPOLATION IN BERGMAN SPACES

ARTUR KUKURYKA, MARIA NOWAK AND PAWE�L SOBOLEWSKI

ABSTRACT. Let ρ denote the pseudohyperbolic metric
in the unit disk D in the complex plane. We give exam-
ples of analytic functions g satisfying the condition |g(z)| �
ρ(z, Γ)(1 − |z|)−α, z ∈ D, in the case when Γ are Ap zero
sets considered by Horowitz and Luecking. This helps to
solve directly interpolating and sampling problems for these
sequences.

1. Introduction. For 0 < p <∞, the Bergman space Ap is the set
of functions analytic in the unit disk D with

‖f‖p =
(∫

D

|f(z)|pdA(z)
)1/p

<∞,

where dA denotes the normalized Lebesgue area measure on D.

A sequence {zk} of distinct points in D is an interpolation sequence
for Ap, if the interpolation problem

f(zk) = wk, k = 1, 2, . . . ,

has a solution f ∈ Ap provided

∞∑
k=1

(1 − |zk|2)2 |wk|p <∞.

A sequence {zk} of distinct points in D is a sampling sequence for Ap

if there exist positive constants K1,K2 such that

K1‖f‖p
p ≤

∞∑
k=1

(1 − |zk|2)2 |f(zk)|p ≤ K2‖f‖p
p.

2000 AMS Mathematics Subject Classification. Primary 30H05, 32A36.
Received by the editors on October 1, 2004, and in revised form on April 1, 2005.

Copyright c©2007 Rocky Mountain Mathematics Consortium

865



866 A. KUKURYKA, M. NOWAK AND P. SOBOLEWSKI

Sufficient and necessary conditions for a sequence to be interpolation
or sampling for Ap are given in terms of pseudohyperbolic densities.
These characterizations are due to Seip for the case p = 2. Extensions
for general values of p can be found in [3, 7, 8] and in the book [1].
Let ρ denote the pseudohyperbolic metric in D, that is,

ρ(z, ζ) =
∣∣∣∣ ζ − z

1 − ζ̄z

∣∣∣∣ , z, ζ ∈ D.

We say that a sequence of points Γ = {zn} in D is uniformly discrete
if

δ(Γ) = inf
j �=k

ρ(zj , zk) > 0.

For the uniformly discrete set Γ, the lower uniform density of Γ is

D−(Γ) = lim inf
r→1

infζ∈D

∫ r

0
n(Γ, ζ, s) ds

log(1/(1 − r))

and the upper uniform density of Γ is

D+(Γ) = lim sup
r→1

supζ∈D

∫ r

0
n(Γ, ζ, s) ds

log(1/(1 − r))
,

where n(Γ, ζ, s) denotes the number of points of Γ that lie in the
pseudohyperbolic disk {z : ρ(ζ, z) < s}. The following theorems are
due to Seip (for the case p = 2).

Theorem S1. For 0 < p < ∞, a sequence Γ of distinct points in
the unit disk is an interpolation sequence for Ap if and only if it is
uniformly discrete and D+(Γ) < 1/p.

Theorem S2. For 0 < p < ∞, a sequence Γ of distinct points in
the unit disk is a sampling sequence for Ap if and only if it is a finite
union of uniformly discrete subsequences and it has a uniformly discrete
subsequence Γ′ for which D−(Γ′) > 1/p.

Unfortunately, lower and upper uniform densities can be quite diffi-
cult to compute. Duren, Schuster and Seip [2] calculated directly lower
and upper uniform densities of the sequence Γ defined as follows. Let

dμ(z) =
adA(z)

(1 − |z|2)2 , a > 0,
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and divide the unit disk into disjoint annuli

Rn = {z : tn−1 ≤ |z| < tn}, n = 1, 2, . . . ,

such that μ(Rn) = 2n−1. Next divide each annulus into 2n−1 cells Qnj

by placing radial segments at angles j2−n+2π, j = 1, 2, . . . , 2n−1, set
ζnj =

∫
Qnj

z dμ(z) and let Γ be an enumeration of ζnj . Duren, Schuster
and Seip [2] proved that

D−(Γ) = D+(Γ) =
a

2
.

Next using some additional lemmas they have been able to find the
uniform densities of Ap zero sequences considered by Horowitz and
Luecking. Horowitz [4, 5] considered the sequence consisting of 2n

equally spaced points on the circle |z| = (1/μ)2
−n

, μ > 1. Luecking
[6] considered the set consisting of �βn� equally spaced points on each
circle of radius rn = 1 − γ β−n, β > 1, γ > 0.

If f(z) and g(z) are nonnegative functions in D, then we write
f(z) � g(z) if there are positive constants C1 and C2 such that

C1f(z) ≤ g(z) ≤ C2f(z) for all z ∈ D.

However, if a uniformly discrete sequence Γ admits an analytic function
g with the property

(1) |g(z)| � ρ(z,Γ)(1 − |z|2)−α, z ∈ D

for some α > 0, then a sequence Γ is an interpolation sequence for Ap

if and only if α < 1/p, and Γ is a sampling sequence for Ap if and only
if α > 1/p. Then also

D+(Γ) = D−(Γ) = α.

Moreover, in the case when (1) holds with α < 1/p, using the function
g, one can construct directly the function f solving the interpolation
problem for Ap. In the case when (1) holds with α > 1/p, any f ∈ Ap

can be represented in terms of g (see, e.g., [1] for details).
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One example of family of sequences and the corresponding function g
satisfying (1) was obtained by Seip in 1993 [10]. For a > 1 and b > 0,
Seip considered the set of points in the upper half-plane of the form

Λ(a, b) = {am(bn+ i) : m ∈ Z, n ∈ Z}
and

Γ(a, b) = ψ(Λ(a, b)) ⊂ D,

where ψ(ζ) = (ζ − i)/(ζ + i), and constructed a function g such that

|g(z)| � (1 − |z|2)−β ρ(z,Γ(a, b)),

where β = (2π)/(b log a).

Here, we prove that in the case when Γ is the Horowitz sequence,
the function g defined by Horowitz in [5, p. 330] satisfies (1). We also
construct a function that has property (1) for the Luecking sets. Our
proofs are independent of results obtained in [2].

2. Main results. Let Γ be the Horowitz set of points equally spaced
on the circles |z| = (1/μ)2

−n

, n = 1, 2, . . . , such that z2n

= 1/μ, μ > 1.
Set

(2) H(z) =
∞∏

n=1

1 − z2n

μ

1 − (1/μ)z2n , z ∈ D.

The function H was defined by Horowitz in his paper [5]. Horowitz
also showed that there is a constant C such that

|H(z)| ≤ C

(1 − |z|2)α
, z ∈ D,

where α = log μ/log 2.

We will prove the following

Theorem 1. If H is the function defined by (2), then

|H(z)| � ρ(z,Γ)(1 − |z|)−α

with α = logμ/log 2.
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Proof. We first show that there is a positive constant C such that

(3) |H(z)| ≤ Cρ(z,Γ)
1

(1 − |z|)α
, z ∈ D.

To this end, put β = 1/μ and for a positive integer n define

Hn(z) =
β − z2n

1 − z2nβ
, z ∈ D.

Then
H(z)
Hn(z)

= μn
n−1∏
k=1

β − z2k

1 − z2kβ

∞∏
k=n+1

1 − (z2k

/β)
1 − z2kβ

.

Note first that if z is in the annulus An = {z : β2−n+(1/2) ≤ |z| ≤
β2−n−(1/2)}, then the modulus of the last product is bounded above by
a constant independent of n. Thus

∣∣∣∣ H(z)
Hn(z)

∣∣∣∣ ≤ Cμn.

Since z ∈ An if and only if

logμ√
2

· 2−n ≤ log
1
|z| ≤ (

√
2 logμ) · 2−n,

we see that
(1 − |z|) ≤ log

1
|z| ≤ (logμ)

√
2 · 2−n,

and consequently, 2n ≤ (
√

2 logμ)/(1 − |z|). This implies that if
z ∈ An, then

∣∣∣∣ H(z)
Hn(z)

∣∣∣∣ ≤ Cμn = C2n(log μ/log 2) ≤ C

(
logμ

1 − |z|
)log μ/log 2

with a constant C independent of n.

Let z ∈ D be arbitrarily chosen. Then there is an n such that z ∈ An

and there is a zk ∈ Γ such that ρ(z,Γ) = |(z − zk)/(1 − z̄kz)| = ρ(z, zk).
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If zk is in An, then zk is one of the roots of the equation z2n

= β. Let
β1, β2, . . . , β2n denote the distinct roots of this equation. Then

|Hn(z)| =
∣∣∣∣ (z − β1) · · · (z − β2n)
(1 − β̄1z) · · · (1 − β̄2nz)

∣∣∣∣ ≤
∣∣∣∣ z − βi

1 − β̄iz

∣∣∣∣ , i = 1, 2, . . . , 2n,

and (3) follows from the last two inequalities. Now note that each
annulus An contains the pseudohyperbolic disks with centers at βi and
a positive radius δ. (One can show that δ > β/7). So, if z ∈ An and
zk is not equal to any βi, then ρ(z,Γ) = ρ(z, zk) > δ and consequently

|H(z)| ≤ C
1

(1 − |z|)α
≤ C

δ
δ

1
(1 − |z|)α

≤ C

δ
ρ(z,Γ)

1
(1 − |z|)α

.

Our aim is now to prove the other inequality

(4) |H(z)| ≥ Cρ(Γ, z)
1

(1 − |z|)α
, z ∈ D.

We first show that for z ∈ An,

(5)
∣∣∣∣ H(z)
Hn(z)

∣∣∣∣ ≥ C

(1 − |z|)α

with a constant C independent of n. As above we write

H(z)
Hn(z)

= μn
n−1∏
k=1

β − z2k

1 − z2kβ

∞∏
k=n+1

1 − (z2k

/β)
1 − z2kβ

and claim that for z ∈ An the modulus of each of the last two products
is bounded below. Indeed, for |z| ≤ β2−n−(1/2)

,∣∣∣∣∣
∞∏

k=n+1

1 − (z2k

/β)
1 − z2kβ

∣∣∣∣∣ ≥
∞∏

k=1

1 − β2k−1/2−1

1 − β2k−1/2+1
,

and the last product converges. On the other hand, if |z| ≥ β2−n+(1/2)
,

then ∣∣∣∣∣
n−1∏
k=1

z2k − β

1 − z2kβ

∣∣∣∣∣ ≥
n−1∏
k=1

β2k−n+1/2 − β

1 − ββ2k−n+1/2 =
n−1∏
k=1

β2−k+1/2 − β

1 − ββ2−k+1/2

≥ β1/
√

2 − β

1 − ββ1/
√

2

n−2∏
k=1

β2−k − β

1 − ββ2−k .
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Put n0 = �logμ/log 2�, and write

n−2∏
k=1

β2−k − β

1 − ββ2−k =
n0∏

k=1

β2−k − β

1 − ββ2−k

n−2∏
k=n0+1

β2−k − β

1 − ββ2−k .

Since

β2−k − β

1 − ββ2−k = 1 − (1 + β)(1 − β2−k

)
1 − (β2−k)(2k+1)

> 1 − 1 + β

(1 + 2k)β
,

we get

n−2∏
k=n0+1

β2−k − β

1 − ββ2−k = e

∑n−2

k=n0+1
log(1−(1+β)/((1+2k)β))

> e
−C
∑n−2

k=n0+1
(1+β)/((1+2k)β)

,

and our claim is the consequence of the convergence of the series∑
k(1 + β)/((1 + 2k)β). Now, to obtain (5) similar reasoning to that

in the proof of the first inequality can be applied.

Let z ∈ D be arbitrarily chosen. Then there is an n such that
β2−n+(1/2) ≤ |z| ≤ β2−n−(1/2)

and βi, where βi is a root of z2n

= β,
such that | arg z − arg βi| ≤ 2π/2n+1. Let zk ∈ Γ be such that
ρ(z,Γ) = |(z − zk)/(1 − z̄kz)| = ρ(z, zk). If zk = βi, then note that

lim
z→βi

|Hn(z)|∣∣(z − βi)/(1 − β̄iz)
∣∣ =

2nβ(1 − β2−n+1
)

β2−n(1 − β2)

and
2nβ(1 − β2−n+1

)
β2−n(1 − β2)

> β−2−n+1 > β.

It is also clear that the function Hn(z)/[(z − βi)/(1 − β̄iz)] is analytic
and nonvanishing in the cell

{
z : β2−n+(1/2) ≤ |z| ≤ β2−n−(1/2)

, | arg z − arg βi| ≤ π

2n

}
.
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Thus its modulus attains minimum on the boundary. Moreover,

|Hn(z)|∣∣(z − βi)/(1 − β̄iz)
∣∣ ≥ |Hn(z)|,

and one can easily show that on the boundary of the cell |Hn(z)| > β/7.
So, in the case when ρ(z,Γ) = ρ(z, βi), inequality (4) holds. If zk �= βi,
then ρ(z, zk) < ρ(z, βi), so (4) also holds. This ends the proof of
Theorem 1.

For β > 1 and γ ∈ (0, 1), set

rk = 1 − γβ−k, Nk = �βk�,

and let Λ consist of Nk equally spaced points on each circle |z| = rk,
k = 1, 2, . . . . Then for each k there is θk such that points in Λ lying on
the circle |z| = rk are of the form zkj = rke

iθkζj , j = 1, . . . , Nk, where
ζj are the distinct Nkth roots of unity. Analysis similar to that in the
proof of Theorem 1 can be applied to obtain the following

Theorem 2. If Λ is as above and

(6) G(z) =
∞∏

k=1

rNk

k − zNke−iNkθk

rNk

k

(
1 − rNk

k zNke−iNkθk

) , z ∈ D,

then
|G(z)| � ρ(z,Λ)(1 − |z|)−α

with α = γ/log β.

We start with showing the following

Lemma 1. If the function G is defined by (6), then there is a positive
constant C such that

(7) |G(z)| ≤ C

(1 − |z|)α , z ∈ D,

with α = γ/log β.
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Proof. Assume that θk = 0, k = 1, 2, . . . . We first show that (7)
holds for |z| = rn = 1 − γβ−n. We have

|G(z)| =
n∏

k=1

1
rNk

k

∣∣∣∣∣ r
Nk

k − zNk

1 − rNk

k zNk

∣∣∣∣∣ ·
∞∏

k=n+1

1
rNk

k

∣∣∣∣∣ r
Nk

k − zNk

1 − rNk

k zNk

∣∣∣∣∣
≤

n∏
k=1

1
rNk

k

·
∞∏

k=n+1

1
rNk

k

∣∣∣∣∣ r
Nk

k − zNk

1 − rNk

k zNk

∣∣∣∣∣ .
Now note that

log
n∏

k=1

1
rNk

k

= −
n∑

k=1

Nk log
(
1 − γβ−k

) ≤ n∑
k=1

Nk
γβ−k

1 − γβ−k

≤
n∑

k=1

γ

1 − γβ−k
= nγ + γ2

n∑
k=1

β−k

1 − γβ−k

≤ nγ +
γ2

(1 − γ)(β − 1)
.

Thus there is a constant C > 0 such that
n∏

k=1

1
rNk

k

≤ Cenγ .

On the other hand, a calculation shows that

1
(1 − rn)α = γ−(γ/log β) · enγ .

Moreover, if |z| = rn, then∣∣∣∣∣∣
∏

k≥n+1

rNk

k − zNk

rNk

k

(
1 − rNk

k zNk

)
∣∣∣∣∣∣

≤
∏

k≥n+1

rNk

k + rNk
n

rNk

k

(
1 + rNk

k rNk
n

) ≤
∏

k≥n+1

(
1 +

(
rn
rk

)Nk
)

= e

∑
k≥n+1

log(1+(rn/rk)Nk) ≤ e

∑
k≥n+1

(rn/rk)Nk

≤ e
C
∑

k≥n+1
r

Nk
n ≤ e(C/(1−γ))

∑∞
k=1

e−γβk

,
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where the one before the last inequality follows from the fact that {rNn
n }

converges asymptotically to e−γ . In the case when rn ≤ |z| ≤ rn+1, we
have

|G(z)| ≤ sup
|z|=rn+1

|G(z)| ≤ C

(1 − rn+1)α
= Cγ−(γ/log β) · e(n+1)γ

=
Ceγ

(1 − rn)α
≤ Ceγ

(1 − |z|)α
.

It is also clear that the same proof can be applied for a general case
when not all θk are zeros.

Proof of Theorem 2. Without loss of generality, we can assume that
all θk are zeros. For a positive integer n, put

Gn(z) =
rNn
n − zNn

1 − rNn
n zNn

and rn−1/2 = 1 − γβ−n+1/2. We will show that if z ∈ Ln = {z :
rn−1/2 ≤ |z| ≤ rn+1/2}, then there is a positive constant C independent
of n such that ∣∣∣∣ G(z)

Gn(z)

∣∣∣∣ ≤ C

(1 − |z|)α

with α = γ/log β. Since there are positive constants C1 and C2

independent of n such that for z ∈ Ln,

C1

(1 − |z|)α
≤ eγn ≤ C2

(1 − |z|)α
,

to prove this claim the reasoning similar to that used in the proof of
Lemma 1 can be used. Now our aim is to prove that∣∣∣∣ G(z)

Gn(z)

∣∣∣∣ ≥ C

(1 − |z|)α
for z ∈ Ln.

To this end we write

(8)
∣∣∣∣ G(z)
Gn(z)

∣∣∣∣ =
n∏

k=1

1
rNk

k

·
n−1∏
k=1

∣∣∣∣∣ r
Nk

k − zNk

1 − rNk

k zNk

∣∣∣∣∣ ·
∞∏

k=n+1

1
rNk

k

∣∣∣∣∣ r
Nk

k − zNk

1 − rNk

k zNk

∣∣∣∣∣ .
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We first note that

log
n∏

k=1

1
rNk

k

≥ nγ − γ

β − 1
,

which means that
n∏

k=1

1
rNk

k

≥ C

(1 − |z|)α
,

provided that z ∈ Ln. Now we observe that for z ∈ Ln each factor in
the second product in (8) is bounded below by a constant dependent
only on β and γ. Indeed, for k = 1, 2, . . . , n− 1,

∣∣∣∣∣ r
Nk

k − zNk

1 − rNk

k zNk

∣∣∣∣∣ ≥
rNk

n−1/2 − rNk
n−1

1 − rNk

n−1/2r
Nk
n−1

≥ (1 − γ)
rn−1/2 − rn−1

1 − rn−1/2rn−1

≥ (1 − γ)
√
β − 1√
β + 1

.

Consequently, there is a constant C > 0 such that

log
n−1∏
k=1

1
|Gk(z)| ≤ C

n−1∑
k=1

(1 − |Gk(z)|) ≤ C
n−1∑
k=1

(1 + rNk

k )(1 − rNk

n−1/2)

1 − rNk

n−1/2r
Nk

k

≤ C
n−1∑
k=1

(1 − (1 − γβ−n+1/2)Nk) ≤ C
n−1∑
k=1

Nkβ
−n+1/2

≤ Cγ
√
β

β − 1
,

where we have used the fact that rNk

k is bounded away from 1. This
proves our claim. Finally, to see that the third product in (8) is bounded
below in the annulus Ln, note first that each factor in this product is
bounded below by a positive constant independent of n for all z ∈ Ln.
Indeed, if z ∈ Ln, then

1
rNk

k

∣∣∣∣∣ r
Nk

k − zNk

1 − rNk

k zNk

∣∣∣∣∣ ≥ 1 − (rn+1/2/rk
)Nk

1 − rNk

k rNk

n+1/2

≥ 1 −
(
rn+1/2

rn+1

)Nn+1

,
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and since limn→∞ r
Nn+1

n+1/2 = e−γ
√

β and limn→∞ r
Nn+1
n+1 = e−γ , our claim

follows. Consequently,

∞∏
k=n+1

1
rNk

k

∣∣∣∣∣ r
Nk

k − zNk

1 − rNk

k zNk

∣∣∣∣∣
≥ e

−C
∑∞

k=n+1

(
1−(1/r

Nk
k

)[(r
Nk
k

−|z|Nk )/(1−r
Nk
k

|z|Nk )]
)
.

Moreover,

∞∑
k=n+1

(
1 − rNk

k − |z|Nk

rNk

k (1 − rNk

k |z|Nk)

)
=

∞∑
k=n+1

|z|Nk(1 − rNk

k )
rNk

k (1 − rNk

k |z|Nk)

≤
∞∑

k=n+1

|z|Nk

rNk

k

≤ C

∞∑
k=n+1

rNk

n+1/2 = C

∞∑
k=1

(1 − γβ−n−1/2)	β
k+n
 <∞.

Now, since an annulus Ln contains pseudohyperbolic disks with
centers rnζj , where ζj are Nnth roost of unity, and radius (

√
β −

1)/(
√
β + 1), the inequality

|G(z)| ≤ C

(1 − |z|)α
ρ(z,Λ)

can be derived from the proved inequality in much the same way as it
is in the proof of Theorem 1. To see that the inequality

|G(z)| ≥ C

(1 − |z|)α
ρ(z,Λ)

also holds, notice that

lim
z→rnζj

|Gn(z)|∣∣(z − rnζj)/(1 − zrnζ̄j)
∣∣ ≥ 1 − γ,

and that |Gn(z)| is bounded below by a constant independent of n and
j = 1, . . . , Nn on the boundary of a cell

{z : rn−1/2 ≤ |z| ≤ rn+1/2, | arg z − arg ζj | ≤ π/Nn}.
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