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THE GENERALIZED QUASILINEARIZATION
FOR INTEGRO-DIFFERENTIAL EQUATIONS

OF VOLTERRA TYPE ON TIME SCALES

TADEUSZ JANKOWSKI

ABSTRACT. We apply the method of quasilinearization to
integro-differential equations of Volterra type. It is shown that
two monotone sequences converge quadratically to a unique
solution of our problem.

1. Introduction. Throughout this paper, we denote by T any time
scale (nonempty closed subset of real numbers R). By J = [0, T ], we
denote a subset of T such that [0, T ] = {t ∈ T : 0 ≤ t ≤ T}. By
C(J,R), we denote the set of continuous functions u : J → R.

In this paper, we investigate the following first order integro-differential
equations of Volterra type on time scales

(1)

⎧⎨
⎩

x�(t) = f

(
t, x(t),

∫ t

0

k(t, s)x(s)�s

)
≡ (Fx)(t) t ∈ J ,

x(0) = x0 ∈ R,

where f ∈ C(J × R × R,R), k ∈ C(J × J,R).

The method of quasilinearization is a well-known technique for ob-
taining approximate solutions of nonlinear differential equations (for
details, see for example [7] and references therein). There is a lot of
application of this method to ordinary differential equations both with
initial and boundary conditions. This technique can also be applied to
corresponding problems on time scales (see, for example [2, 3]). In this
paper, we apply the generalized quasilinearization method for integro-
differential problems of Volterra type on time scales. The purpose of
this paper is to exploit the recent ideas of this method applied to non-
linear differential equations (see, for example [7]). We investigate the
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case when f +Φ is convex for some convex function Φ. It is shown that
two monotone sequences converge quadratically to a unique solution of
problem (1). Note that in papers [2, 3] for the corresponding function
f , the quasilinearization method was applied for Φ = 0. It means that
our approach is more general than in [2,3]. In the last section, we dis-
cuss the application of the generalized quasilinearization method when
f in equation (1) is replaced by f +g assuming that f +Φ is convex for
some convex function Φ and g+Ψ is concave for some concave function
Ψ.

2. Calculus on time scales. In 1988, Stefan Hilger [5] introduced
the calculus of measure chains in order to unify continuous and discrete
analysis. Major works devoted to the calculus on time scales has
been conducted by Agarwal and Bohner [1], Bohner and Peterson [4],
Kaymakçalan et al. [6].

We present some definitions and notations which are common in the
recent literature. We define the forward jump operator σ : T → T by

σ(t) = inf{s ∈ T : s > t},
while the backward jump operator ρ : T → T is defined by

ρ(t) = sup{s ∈ T : s < t}.
If σ(t) > t, then we say that t is right-scattered. If σ(t) < t, then
we say that t is left-scattered. Points that are right-scattered and
left-scattered at the same time are called isolated. If t < supT and
σ(t) = t, then t is called right-dense, and if t > inf T and ρ(t) = t, then
t is called left-dense. Finally, the graininess function μ : T → [0,∞)
is defined by μ(t) = σ(t) − t. If T has a left-scattered maximum m,
then Tk = T − {m}; otherwise, Tk = T. Now we consider a function
f : T → R and let t ∈ Tk. Then we define f�(t) to be the number
(provided it exists) with the property that, given any ε > 0, there is a
neighborhood U of t, i.e., U = (t − δ, t + δ) ∩ T for some δ > 0, such
that

|[f(σ(t)) − f(s)] − f�(t)[σ(t) − t]| ≤ ε|σ(t) − s|
for all s ∈ U . We call f�(t) the delta (or Hilger) derivative of f
at t. If T = R, then f� = f ′; if T = Z (the integers), then
f�(t) = f(t + 1) − f(t).
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Theorem 1 [4]. Assume f, g : T → R, and let t ∈ Tk. Then we
have the following

(1) If f is differentiable at t, then f is continuous at t.

(2) If f is continuous at t and t is right-scattered, then f is differen-
tiable at t with

f�(t) =
f(σ(t)) − f(t)

μ(t)
.

(3) If f is differentiable at t and t is right-dense, then

f�(t) = lim
s→t

f(t) − f(s)
t − s

.

(4) If f is differentiable at t, then

fσ(t) = f(t) + μ(t)f�(t), where fσ = f ◦ σ.

(5) If f and g are differentiable at t, then so is fg with

(fg)�(t) = f�(t)g(t) + fσ(t)g�(t).

A function F : T → R is called an antiderivative of f : T → R
provided f�(t) = f(t) for all t ∈ Tk. In this case, we define the
integral of f by

∫ t

s

f(r)Δr = F (t) − F (s) for s, t ∈ T.

3. Some lemmas. Below we cite two lemmas from [8].

Lemma 1 [8]. Suppose that

(H1) there is a continuous function k : J × J → R+ and K0 =
max{k(t, s) : t, s ∈ J} > 0,

(H2) there exist two positive functions m, n continuous on J such
that α = supt∈J [μ(t)m(t)] < 1 and

(2)
αN0K0P

m0
≤ 1 − α,
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where

N0 = max
t∈J

n(t), m0 = min
t∈J

m(t), P = e�{−m}(a, 0) − 1.

Let

(3)

⎧⎨
⎩

x�(t) ≥ −m(t)x(t)− n(t)
∫ t

0

k(t, s)x(s)Δs,

x(0) ≥ 0.

Then x(t) ≥ 0, t ∈ J .

Lemma 2 [8]. Assume that assumptions (H1), (H2) are satisfied.
Then, for any h ∈ C(J,R), the initial problem

(4)

⎧⎨
⎩

x�(t) = −m(t)x(t)− n(t)
∫ t

0

k(t, s)x(s)Δs + h(t),

x(0) = x0

has a unique solution xh.

Put

Ω =
{

(t, u, v) : t ∈ J, y0(t) ≤ u ≤ z0(t),∫ t

0

k(t, s)y0(s)Δs ≤v≤
∫ t

0

k(t, s)z0(s)Δs
}
.

Using a mean value theorem, we have

Lemma 3. Let u ≥ ū, v ≥ v̄. Assume that F, Φ ∈ C(Ω,R). Assume
that Fx, Fy, Φx, Φy exist and Fx, Φx, Φy are nondecreasing in the
second variable and Fx, Fy, Φy are nondecreasing in the third variable.
Then, for F = f + Φ, we have

f(t, u, v) − f(t, ū, v̄) ≥ [Fx(t, ū, v̄) − Φx(t, u, v)][u − ū]
+ [Fy(t, ū, v̄) − Φy(t, u, v)][v − v̄].
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Note that Fx denotes the derivative of F with respect to second variable
and Fy denotes the derivative of F with respect to the last variable.

Put

(Fxu)(t) = Fx

(
t, u(t),

∫ t

0

k(t, s)u(s)Δs

)
,

(Φxu)(t) = Φx

(
t, u(t),

∫ t

0

k(t, s)u(s)Δs

)
.

In a similar way, we define (Fyu)(t), (Φyu)(t).

For n = 0, 1, . . . , let us define two sequences {yn, zn}, by relations
(5)⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

y�
n+1(t) = (Fyn)(t)+[(Fxyn)(t)−(Φxzn)(t)][yn+1(t)−yn(t)]

+[(Fyyn)(t)−(Φyzn)(t)]
∫ t

0

k(t, s)[yn+1(s)−yn(s)]Δs,

t ∈ J,

yn+1(0) = x0,

(6)⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

z�n+1(t) = (Fzn)(t)+[(Fxyn)(t)−(Φxzn)(t)][zn+1(t)−zn(t)]

+[(Fyyn)(t)−(Φyzn)(t)]
∫ t

0

k(t, s)[zn+1(s)−zn(s)]Δs,

t ∈ J,

zn+1(0) = x0.

A function y0 is said to be a lower solution of problem (1) if
⎧⎨
⎩

y�
0 (t) ≤ f

(
t, y0(t),

∫ t

0

k(t, s)y0(s)Δs

)
t ∈ J ,

y0(0) ≤ x0.

Similarly, a function z0 is an upper solution of (1) if the above inequal-
ities are reversed.

Lemma 4. Suppose f ∈ C(J × R × R,R). Assume that y0, z0

are lower and upper solutions of problem (1), respectively, and y0(t) ≤
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z0(t), t ∈ J . Let u, v be lower and upper solutions of (1), respectively,
and moreover y0(t) ≤ u(t) ≤ v(t) ≤ z0(t), t ∈ J . In addition, we
assume that Fx, Fy, Φx, Φy exist and Fx, Fy, Φx, Φy are nondecreasing
in the second variable and Fx, Fy, Φx, Φy are nondecreasing in the third
variable (here F = f + Φ). Let assumptions (H1), (H2) hold with

(7) m(t) = − (Fxy0)(t) + (Φxz0)(t), n(t) = − (Fyy0)(t) + (Φyz0)(t).

Put

h(t, w) = (Fw)(t) + M(t)w(t) + N(t)
∫ t

0

k(t, s)w(s)Δs

with

M(t) = − [(Fxu)(t) − (Φxv)(t)], N(t) = − [(Fyu)(t) − (Φyv)(t)].

Then

(i) the initial problems⎧⎨
⎩

y�(t) = −M(t)y(t) − N(t)
∫ t

0

k(t, s)y(s)Δs + h(t, u) t ∈ J ,

y(0) = x0,⎧⎨
⎩

z�(t) = −M(t)z(t) − N(t)
∫ t

0

k(t, s)z(s)Δs + h(t, v) t ∈ J ,

x(0) = x0

have their unique solutions y, z, respectively,

(ii) u(t) ≤ y(t) ≤ z(t) ≤ v(t), t ∈ J ,

(iii) y, z are lower and upper solutions of problem (1), respectively.

Proof. In view of the monotonicity of Fx, Fy, Φx, Φy, we have
M(t) ≤ m(t), N(t) ≤ n(t), t ∈ J . This and Lemma 2 show that
part (i) holds. To show part (ii) we put p = y − u. Then p(0) ≥ 0, and

p�(t) ≥ (Fu)(t) − M(t)[y(t) − u(t)]

− N(t)
∫ t

0

k(t, s)[y(s) − u(s)]Δs − (Fu)(t)

= −M(t)p(t) − N(t)
∫ t

0

k(t, s)p(s)Δs.
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Hence y(t) ≥ u(t), t ∈ J , in view of Lemma 1. In a similar way, we
have v(t) ≥ z(t), t ∈ J . Now, we put p = z − y, so p(0) = 0. In view of
Lemma 3, we have

p�(t) = (Fv)(t) − (Fu)(t) − M(t)[z(t) − v(t) − y(t) + u(t)]

− N(t)
∫ t

0

k(t, s)[z(s) − v(s) − y(s) + u(s)]Δs

≥ −M(t)[v(t) − u(t)] − N(t)
∫ t

0

k(t, s)[v(s) − u(s)]Δs

− M(t)[z(t) − v(t) − y(t) + u(t)]

− N(t)
∫ t

0

k(t, s)[z(s) − v(s) − y(s) + u(s)]Δs

= −M(t)p(t) − N(t)
∫ t

0

k(t, s)p(s)Δs.

By Lemma 1, z(t) ≥ y(t), t ∈ J . It proves that (ii) holds.

In the next step, we show that z is an upper solution of problem (1).
Note that

z�(t) = (Fv)(t) − (Fz)(t) + (Fz)(t) − M(t)[z(t) − v(t)]

− N(t)
∫ t

0

k(t, s)[z(s) − v(s)]Δs

≥ [(Fxz)(t) − (Φxv)(t)][v(t) − z(t)]

+ [(Fyz)(t) − (Φyv)(t)]
∫ t

0

k(t, s)[v(s) − z(s)]Δs

− M(t)[z(t) − v(t)] − N(t)
∫ t

0

k(t, s)[z(s) − v(s)]Δs

≥ (Fz)(t))

in view of Lemma 3 and the monotonicity of Fx, Fy, Φx, Φy. In the
same way, we can show that y is a lower solution of problem (1). This
ends the proof.

4. Main results.

Theorem 2. Suppose that f ∈ C(J × R × R,R). Assume that
y0, z0 are lower and upper solutions of problem (1), respectively, and
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y0(t) ≤ z0(t), t ∈ J . In addition, assume that Fxx, Fxy, Fyy, Φxx,
Φxy, Φyy exist for F = f + Φ, are continuous and

Fxx(t, u, v) ≥ 0, Fxy(t, u, v) ≥ 0, Fyy(t, u, v) ≥ 0,

Φxx(t, u, v) ≥ 0, Φxy(t, u, v) ≥ 0, Φyy(t, u, v) ≥ 0

for (t, u, v) ∈ Ω. Let assumptions (H1), (H2) hold with functions m
and n defined by (7). Then problem (1) has a unique solution being the
limit of sequences {yn, zn} defined by (5) (6) and this convergence is
quadratic.

Proof. In view of Lemma 4, y1, z1 are well defined and y0(t) ≤ y1(t) ≤
z1(t) ≤ z0(t), t ∈ J . Moreover, y1, z1 are lower and upper solutions of
problem (1), respectively. By induction, we have the following relation

y0(t) ≤ · · · ≤ yn(t) ≤ yn+1(t) ≤ zn+1(t) ≤ zn(t) ≤ · · · ≤ z0(t), t ∈ J

for n = 0, 1, . . . . Since the interval J is compact and the convergence
is monotone and bounded, sequences {yn, zn} converge uniformly to
some limit functions y and z, respectively. Indeed, functions y and z
satisfy the equations

y(t) = x0 +
∫ t

0

(Fy)(s)Δs, z(t) = x0 +
∫ t

0

(Fz)(s)Δs

and y0(t) ≤ y(t) ≤ z(t) ≤ z0(t), t ∈ J . Put

M(t) = −
[
Fx

(
t, ξ1(t),

∫ t

0

k(t, s)z(s)Δs

)

− Φx

(
t, ξ1(t),

∫ t

0

k(t, s)z(s)Δs

)]
,

N(t) = − [Fy(t, y(t), ξ2(t)) − Φy(t, y(t), ξ2(t))],

where y(t) ≤ ξ1(t) ≤ z(t),
∫ t

0
k(t, s)y(s)Δs < ξ2(t) <

∫ t

0
k(t, s)z(s)Δs

and ξ1, ξ2 are continuous functions. Let p(t) = z(t)−y(t), t ∈ J . Then,
using the mean value theorem, we have

(8) p�(t) = −M(t)p(t) − N(t)
∫ t

0

k(t, s)p(s)Δs, p(0) = 0.
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Note that M(t) ≤ m(t), N(t) ≤ n(t), t ∈ J . This and Lemma 2
show that p(t) = 0, t ∈ J , is a unique solution of problem (8). Hence,
y(t) = z(t) on J is a unique solution of problem (1).

Now we need to show that the convergence of yn and zn to y is
quadratic. Put

pn+1(t) = y(t) − yn+1(t) ≥ 0, qn+1(t) = zn+1(t) − y(t) ≥ 0, t ∈ J.

We see that

pn+1(t)

=
∫ t

0

[(Fy)(s) − (Fyn)(s)]Δs

−
∫ t

0

[(Fxyn)(s) − (Φxzn)(s)][yn+1(s) − yn(s)]Δs

−
∫ t

0

{
[(Fyyn)(s) − (Φyzn)(s)]

∫ s

0

k(s, τ)[yn+1(τ ) − yn(τ )]Δτ
}
Δs

≤
∫ t

0

[(Fxy)(s) − (Φxyn)(s)] pn(s)Δs

+
∫ t

0

{
[(Fyy)(s) − (Φyyn)(s)]

∫ s

0

k(s, τ) pn(τ )Δτ
}
Δs

−
∫ t

0

[(Fxyn)(s) − (Φxzn)(s)][pn(s) − pn+1(s)]Δs

−
∫ t

0

{
[(Fyyn)(s) − (Φyzn)(s)]

∫ s

0

k(s, τ)[pn(τ ) − pn+1(τ )]Δτ
}
Δs

=
∫ t

0

[(Fxy)(s) − (Fxyn)(s) + (Φxzn)(s) − (Φxyn)(s)] pn(s)Δs

+
∫ t

0

{
[(Fyy)(s) − (Fyyn)(s) + (Φyzn)(s) − (Φyyn)(s)]

×
∫ s

0

k(s, τ) pn(τ )Δτ
}
Δs

+
∫ t

0

[(Fxyn)(s) − (Φxzn)(s)] pn+1(s)Δs

+
∫ t

0

{
[(Fyyn)(s) − (Φyzn)(s)]

∫ s

0

k(s, τ) pn+1(τ )Δτ
}
Δs.



860 T. JANKOWSKI

Let

|Fxx(t, x, y)| ≤ A1, |Fxy(t, x, y)| ≤ A2, |Fyy(t, x, y)| ≤ A3,

|Φxx(t, x, y)| ≤ B1, |Φxy(t, x, y)| ≤ B2, |Φyy(t, x, y)| ≤ B3

for (t, x, y) ∈ Ω. Then

(Fxy)(s) − (Fxyn)(s) + (Φxzn)(s) − (Φxyn)(s)

= Fxx

(
s, ξ3(s),

∫ s

0

k(s, τ)y(τ )Δτ

)
pn(s)

+ Fxy(s, yn(s), ξ4(s))
∫ s

0

k(s, τ) pn(τ )Δτ

+ Φxx

(
s, ξ5(s),

∫ s

0

k(s, τ)zn(τ )Δτ

)
[zn(s) − yn(s)]

+ Φxy(s, yn(s), ξ6(s))
∫ s

0

k(s, τ)[zn(τ ) − yn(τ )]Δτ

≤ A1pn(s) + A2

∫ s

0

k(s, τ) pn(τ )Δτ + B1[qn(s) + pn(s)]

+ B2

∫ s

0

k(s, τ)[qn(τ ) + pn(τ )]Δτ,

where

yn(s) < ξ3(s) < y(s),∫ s

0

k(s, τ)yn(τ )Δτ < ξ4(s) <

∫ s

0

k(s, τ)y(τ )Δτ,

yn(s) < ξ5(s) < zn(s),∫ s

0

k(s, τ)yn(τ )Δτ < ξ6(s) <

∫ s

0

k(s, τ)zn(τ )Δτ.

In a similar way we can show that

(Fyy)(s) − (Fyyn)(s) + (Φyzn)(s) − (Φyyn)(s)

≤ A2pn(s) + A3

∫ s

0

k(s, τ) pn(τ )Δτ

+ B2[qn(s) + pn(s)] + B3

∫ s

0

k(s, τ)[qn(τ ) + pn(τ )]Δτ.
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Using the above inequalities, we have

(9) pn+1(t) ≤ D + D1

∫ t

0

pn+1(s)Δs + D2K0

∫ t

0

∫ s

0

pn+1(τ )ΔτΔs,

where

D = T [A‖pn‖2 + B‖qn‖2],

‖pn‖ = max
t∈J

|pn(t)|, ‖qn‖ = max
t∈J

|qn(t)|,

A = A1 + TK0(2A2 + A3K0T ) +
3
2

[B1 + TK0(2B2 + B3K0T )],

B =
1
2

[B1 + TK0(2B2 + B3TK0)],

D1 = D11 + D12, D2 = D21 + D22,

|Fx(t, x, y)| ≤ D11, |Φx(t, x, y)| ≤ D12,

|Fy(t, x, y)| ≤ D21, |Φy(t, x, y)| ≤ D22.

To obtain the formula for D we applied the property that 2ab ≤ a2 +b2

for nonnegative a, b. By w we denote the right-hand side of equation
(9). Then

w�(t) = D1pn+1(t) + D2K0

∫ t

0

pn+1(τ )Δτ.

Note that w�(t) ≥ 0 on J , so w is nondecreasing. This yields

{
w�(t) ≤ αw(t) t ∈ J ,
w(0) = D

with α = D1 + D2K0T . The constant α is positive, so α is positive
regressive, i.e., 1 + μ(t)α > 0. This and Theorem 6.1 of [4] yield

w(t) ≤ Deα(t, 0), t ∈ J.

Hence,

(10) pn+1(t) ≤ w(t) ≤ Deα(t, 0),



862 T. JANKOWSKI

so

(11) ‖pn+1‖ ≤ α1[A‖pn‖2 + B‖qn‖2]

with α1 = T maxt∈J eα(t, 0).

In a similar way, we can show that

‖qn+1‖ ≤ α2‖pn‖2 + α3‖qn‖2

for some positive α2, α3. This and (11) prove the assertion of Theo-
rem 1. It ends the proof.

Remark 1. If T = R, then eα(t, 0) = exp(αt), but if T = Z, then
eα(t, 0) = (1 + α)t.

We can also discuss the case when f in equation (1) is replaced by
f + g. Then problem (1) takes the form

(12)
{

x�(t) = (Fx)(t) + (Gx)(t) t ∈ J ,
x(0) = x0 ∈ R

with

(Fx)(t) ≡ f

(
t, x(t),

∫ t

0

k(t, s)x(s)�s

)
,

(Gx)(t) ≡ g

(
t, x(t),

∫ t

0

k(t, s)x(s)�s

)
.

For n = 0, 1, . . . , let us define two sequences {yn, zn}, by relations
(13)⎧⎪⎪⎪⎨

⎪⎪⎪⎩

y�
n+1(t) = (Fyn + Gyn)(t) + V (t, yn, zn)[yn+1(t) − yn(t)]

+ W (t, yn, zn)
∫ t

0

k(t, s)[yn+1(s) − yn(s)]Δs t ∈ J ,

yn+1(0) = x0,

(14)⎧⎪⎪⎪⎨
⎪⎪⎪⎩

z�n+1(t) = (Fzn + Gzn)(t) + V (t, yn, zn)[zn+1(t) − zn(t)]

+ W (t, yn, zn)
∫ t

0

k(t, s)[zn+1(s) − zn(s)]Δs t ∈ J ,

zn+1(0) = x0,
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where F = f + Φ, G = g + Ψ and

V (t, yn, zn) = (Fxyn)(t) − (Φxzn)(t) + (Gxzn)(t) − (Ψxyn)(t)
W (t, yn, zn) = (Fyyn)(t) − (Φyzn)(t)] + (Gyzn)(t) − (Ψyyn)(t).

Theorem 3. Suppose that f, g ∈ C(J × R × R,R). Assume that
y0, z0 are lower and upper solutions of problem (12), respectively and
y0(t) ≤ z0(t), t ∈ J . In addition assume that Fxx, Fxy, Fyy, Φxx, Φxy,
Φyy, Gxx, Gxy, Gyy, Ψxx, Ψxy, Ψyy, exist for F = f + Φ, G = g + Ψ,
are continuous and

Fxx(t, u, v) ≥ 0, Fxy(t, u, v) ≥ 0, Fyy(t, u, v) ≥ 0,

Φxx(t, u, v) ≥ 0, Φxy(t, u, v) ≥ 0, Φyy(t, u, v) ≥ 0,

Gxx(t, u, v) ≤ 0, Gxy(t, u, v) ≤ 0, Gyy(t, u, v) ≤ 0,

Ψxx(t, u, v) ≤ 0, Ψxy(t, u, v) ≤ 0, Ψyy(t, u, v) ≤ 0

for (t, u, v) ∈ Ω. Let Assumptions (H1), (H2) hold with functions

m(t) = −V (t, y0, z0), n(t) = −W (t, y0, z0).

Then problem (12) has a unique solution being the limit of sequences
{yn, zn} defined by (13) (14), and this convergence is quadratic.
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6. B. Kaymakçalan, V. Lakshmikantham and S. Sivasundaram, Dynamic systems
on measure chains, Kluwer Acad. Publ., Boston, 1996.



864 T. JANKOWSKI

7. V. Lakshmikantham and A.S. Vatsala, Generalized quasilinearization for
nonlinear problems, Kluwer Acad. Publ., Dordrecht, 1998.

8. Y. Xing, M. Han and G. Zheng, Initial value problem for first-order integro-
differential equation of Volterra type on time scales, Nonlinear Anal. 60 (2005),
429 442.

Gdansk University of Technology, Department of Differential Equa-

tions, 11/12 G. Narutowicz Str., 80-952 Gdańsk, Poland
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