
ROCKY MOUNTAIN
JOURNAL OF MATHEMATICS
Volume 37, Number 3, 2007

INTEGRAL CLOSURES, LOCAL COHOMOLOGY
AND IDEAL TOPOLOGIES

R. NAGHIPOUR

ABSTRACT. Let (R, m) be a formally equidimensional
local ring of dimension d. Suppose that Φ is a system of
nonzero ideals of R such that, for all minimal prime ideals p of
R, a+p is m-primary for every a ∈ Φ. In this paper, the main
result asserts that for any ideal b of R, the integral closure

b∗(H
d
Φ(R)) of b with respect to the Artinian R-module Hd

Φ(R)
is equal to ba, the classical Northcott-Rees integral closure
of b. This generalizes the main result of [13] concerning the
question raised by D. Rees.

1. Introduction. Let R denote a commutative Noetherian ring
(with identity) of dimension d, and let A be an Artinian R-module.
We say that the ideal a of R is a reduction of the ideal b of R with
respect to A if a ⊆ b and there exists an integer s ≥ 1 such that
(0 :A abs) = (0 :A bs+1). An element x of R is said to be integrally
dependent on a with respect to A if a is a reduction of a + Rx with
respect to A, see [12]. Moreover, the set a∗(A) := {x ∈ R | x is
integrally dependent on a with respect to A} is an ideal of R, called the
integral closure of a with respect to A.

In [13] the dual concepts of reduction and integral closure of the ideal
b with respect to a Noetherian R-module N were introduced; we shall
use b

(N)
a to denote the integral closure of b with respect toN . If N = R,

then b
(N)
a reduces to that the usual Northcott-Rees integral closure ba

of b.

The purpose of the present paper is to show that, for any system of
ideals Φ of a formally equidimensional local ring (R,m) of dimension d,
if Rad (a + p) = m for all minimal primes p of R and for every a ∈ Φ,
then b∗(H

d
Φ(R)), the integral closure of b with respect to Hd

Φ(R), is equal
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to ba, the classical Northcott-Rees integral closure of b, for each ideal
b of R.

Throughout this paper, all rings considered will be commutative and
Noetherian and will have nonzero identity elements. Such a ring will be
denoted by R, and a typical ideal of R will be denoted by a. Moreover,
throughout this paper, let Φ denote a system of nonzero ideals of R,
i.e., for all a, b ∈ Φ, there exists an c ∈ Φ such that c ⊆ ab.

Let S be a multiplicatively closed subset of R and a an ideal of R.
The nth (S)-symbolic power of a, denoted by S(an), is defined to be
the ideal ∪s∈S(an :R s) of R. In the case S = R\ ∪ {p ∈ mAssRR/a},
where mAssRR/a is the set of the minimal primes of AssRR/a, the nth
(S)-symbolic power of a is denoted by a(n). Let dimR = d, and let
ht a = d− 1 for all a ∈ Φ. Then the sets Φ and Φ(1) := {a(1) : a ∈ Φ}
induce topologies on R, which are called the Φ-adic and Φ(1)-symbolic
topology, respectively. These topologies are said to be equivalent if,
for every a ∈ Φ there exists b ∈ Φ such that b(1) ⊆ a. Equivalence
of some topologies have been studied in [5, 8, 9] and has led to
some interesting results. We shall use C(R) to denote the category of
all R-modules and all R-homomorphisms between them. The system
of ideals Φ determines the Φ-torsion functor ΓΦ : C(R) → C(R).
This is the subfunctor of the identity functor on C(R) for which
ΓΦ(N) = {x ∈ N : ax = 0 for some a ∈ Φ} for each R-module N .
For each i ≥ 0, the ith right derived functor of ΓΦ is denoted by Hi

Φ.
Moreover, for any R-module N and for any prime ideal p of R, the
ideal ∩n≥1p

(n) of R, respectively submodule ∪n≥1(0 :N p(n)) of N , is
denoted by c(p), respectively Γ(p)(N). We denote ∪a∈ΦV (a) by V (Φ),
where V (a) = {p ∈ SpecR : p ⊇ a}. Finally, if (R,m) is local, then R̂,
respectively E, denotes the completion of R with respect to the m-adic
topology, respectively injective envelope of the simple R-module R/m.

In the second section we give a generalization of Lichtenbaum-
Hartshorne theorem in the context of general local cohomology mod-
ules, whose applications will be used in the proof of the main theorem.
More precisely we prove the following:

(1.1) Theorem. Assume that (R,m) is local of dimension d. Then
the following statements are equivalent :
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(i) Hd
Φ(R) 	= 0.

(ii) There exists p ∈ Spec R̂ such that dim R̂/p = d and dim R̂/(aR̂+
p) = 0 for each a ∈ Φ.

Let (R,m) be a local ring. Then R is said to be equidimensional if,
for any minimal prime ideal p of R, dimR/p = dimR. Also, R is called
formally equidimensional if its completion R̂ is equidimensional, see
[6, p. 251].

In the third section, for any ideal b of R, we examine the equality
of the classical Northcott-Rees’ integral closure ba and the integral
closure b∗(H

d
Φ(R)) of b with respect to the Artinian R-module Hd

Φ(R), by
using the applications of the Lichtenbaum-Hartshorne theorem. More
precisely, we shall show that:

(1.2) Theorem. Let (R,m) be a formally equidimensional local ring
of dimension d such that for all p ∈ mAssR, Rad (a + p) = m for each
a ∈ Φ. Then ba = b∗(H

d
Φ(R)) for every ideal b of R.

2. Ideal topologies and the Lichtenbaum-Hartshorne theo-
rem. The main point of this section is to establish a generalization
of the Lichtenbaum-Hartshorne theorem in the context of general lo-
cal cohomology modules. Some applications are given. The following
lemma plays a key role in this section.

(2.1) Lemma. Let (R,m) be a complete Gorenstein local ring
of dimension d, and let V := {p ∈ V (Φ) : ht p = d − 1}. Then
Hd

Φ(R) ∼= HomR(∩p∈V c(p), E).

Proof. Let E . : 0 → E0 → E1 → · · · → Ed−1 → Ed → 0 be a minimal
injective resolution of R. Then, by [6, Theorems 18.1 and 18.8], we have
Ei ∼= ⊕p∈SpecR

ht p=i

ER(R/p). Moreover, in view of [6, Theorem 18.4],

ΓΦ

( ⊕
p∈SpecR
ht p=d−1

ER(R/p)

)
=
⊕
p∈V

ER(R/p) and ΓΦ(E) = E.
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Consequently, the exact sequence E . induces an exact sequence⊕
p∈V

ER(R/p) −→ E −→ Hd
Φ(R) −→ 0.

Let p ∈ V so that ht p = d − 1. Since each element of ER(R/p) is
annihilated by some symbolic power of p, it follows that Γ(p)(Ed−1) =
Γ(p)(ER(R/p)) = ER(R/p). Hence, we obtain the following exact
sequence

ER(R/p) −→ Γ(p)(E) −→ lim
−→
i

ExtdR(R/p(i), R) −→ 0.

On the other hand, since p(i) is p-primary it follows that AssRR/p(i) =
{p}, and so depthRR/p(i) > 0, note that ht p = d − 1. Conse-
quently, from [3, Lemma 8.1.8] we get ExtdR(R/p(i), R) = 0. There-
fore, the sequence ER(R/p) → Γ(p)(E) → 0 is exact, and so Hd

Φ(R) ∼=
E/
∑

p∈V Γ(p)(E). Hence, it is enough to show that

E/Σp∈V Γ(p)(E) = HomR

( ⋂
p∈V

c(p), E
)
.

To this end, as R is complete, by using the notations of [14, Section 5.4]
we get

Σp∈V Γ(p)(E) = Σp∈V Σn≥1(0 :E p(n))

=
( ⋂

p∈V

⋂
n≥1

(0 :E p(n))λ
)μ

=
( ⋂

p∈V

⋂
n≥1

p(n)0λ
)μ

=
(

0 :E
⋂
p∈V

c(p)
)
.

The exact sequence 0 → ∩p∈V c(p) → R → R/ ∩p∈V c(p) → 0
induces an exact sequence 0 → HomR(R/ ∩p∈V c(p), E) → E →
HomR(∩p∈V c(p), E) → 0, and the desired result now follows.
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The following corollary will establish the equivalence between the
topologies defined by Φ and Φ(1) in terms of vanishing the local
cohomology module Hd

Φ(R). Recall that for any ideal a of R, we use
a(1) to denote the ideal ∪s∈S(a :R s), where S = R\∪{p ∈ mAssRR/a}
and Φ(1) := {b(1) : b ∈ Φ}.

(2.2) Corollary. Let (R,m) be a Gorenstein local (not necessarily
complete) ring of dimension d, and let ht a = d − 1 for each a ∈ Φ.
Then the following conditions are equivalent :

(i) Hd
Φ(R) = 0.

(ii) The Φ(1)-symbolic topology is equivalent to the Φ-adic topology.

Proof. First we show (i) ⇒ (ii). To do this, suppose that a ∈ Φ.
Then, we can write a = a(1) ∩ q for some m-primary ideal q. In view
of [11, Lemma 1.3], there exists a parameter ideal q0 of R such that
q0 ⊆ q. By virtue of [6, Theorem 18.1], q0 is irreducible; and hence
there exists x ∈ E such that q0 = Ann (x). By assumption and the
proof of (2.1), there is an n ∈ N such that x ∈ Σ p∈V (Φ)

ht p=d−1

(0 :E p(n)).

Hence, we can write x = e1 + · · · + er, where ei ∈ (0 :E p
(n)
i ) and

pi ∈ V (Φ) with ht pi = d − 1 for all i = 1, . . . , r. There exists
b ∈ Φ such that b ⊆ ∩ri=1pi. Since ht b = d − 1, it follows that
p1, . . . , pr are minimal prime ideals of b. Now, let b ∈ b(n). Then,
sb ∈ bn for some s ∈ R\ ∪ {p ∈ mAssRR/b}. Since bn ⊆ ∩ri=1p

(n)
i , it

follows that sb ∈ ∩ri=1p
(n)
i , and therefore b ∈ ∩ri=1p

(n)
i . Consequently

bx = be1 + · · · + ber = 0, so that b ∈ q0. Accordingly b(n) ⊆ q.
Moreover, it is easily seen that there exists c ∈ Φ such that c(1) ⊆ b(n),
(note that ht a = d − 1 for all a ∈ Φ). Therefore we have c(1) ⊆ q.
On the other hand, there is an d ∈ Φ such that d ⊆ ac; hence,
d(1) ⊆ a(1) ∩ c(1) ⊆ a(1) ∩ q, as required.

In order to prove that (ii) ⇒ (i) suppose that x ∈ E. Then, there
is a ∈ Φ such that ax = 0. Therefore, by assumption, there exists
b ∈ Φ such that b(1) ⊆ a. Next, let mAssRR/b = {p1, . . . , pr}. Then,
it is easy to see that ∩ri=1p

(l)
i ⊆ b(1) for sufficiently large l. Therefore,

(∩ri=1p
(l)
i )x = 0, and hence x ∈ Σri=1(0 :E p

(l)
i ) by [10, Lemma 2.2].



910 R. NAGHIPOUR

Consequently E = Σ p∈V (Φ)
ht p=d−1

∪j∈N (0 :E p(j)); so that, by the proof of

(2.1) Hd
Φ(R) = 0, as desired.

Before obtaining the main result of this section we recall some useful
properties of the local cohomology functors Hi

Φ(.) in the following
remark.

(2.3) Remark. Let ϕ : R → S be a ring homomorphism.

(i) For any system of ideals Φ of R, let ΦS := {aS : a ∈ Φ}. Then
it is easy to see that ΦS is a system of ideals of S and for any i ∈ N0,
Hi

ΦS(N) ∼= Hi
Φ(N), for any S-module N , see [3, Theorem 4.2.1].

(ii) Suppose that ϕ : R → S is surjective and Φ is a system of ideals of
S. Then one can check easily that Φϕ := {(ϕ−1(a))n : a ∈ Φ, n ∈ N}
is a system of ideals of R. Consequently, for any S-module N and
i ∈ N0, there is an isomorphism of R-modules Hi

Φϕ(N) ∼= Hi
Φ(N) as Φ

and ΦϕS introduce the same topology on S.

Now we are ready to state and prove the main theorem of this section.

(2.4) Theorem (Lichtenbaum-Hartshorne theorem). Let (R,m) be
local of dimension d. Then the following statements are equivalent :

(i) Hd
Φ(R) = 0.

(ii) For every p ∈ Spec R̂ with dim R̂/p = d, there exists a ∈ Φ such
that dim R̂/aR̂ + p > 0.

Proof. First we show (i) ⇒ (ii). Suppose the contrary is true. Then
there exists p ∈ Spec R̂ such that dim R̂/p = d but dim R̂/aR̂ + p = 0
for all a ∈ Φ. Suppose that Ψ = ΦR̂ := {aR̂ : a ∈ Φ} and
Θ = Ψ(R̂/p) := {aR̂/p : a ∈ Φ} are systems of ideals of R̂ and R̂/p,
respectively. Then, in view of (2.3), we have Hd

Φ(R̂/p) ∼= Hd
Ψ(R̂/p) ∼=

Hd
Θ(R̂/p). On the other hand, it is easy to see that two systems of ideals

Θ and {(mR̂/p)n : n ∈ N} are ‘comparable’ in sense [3, Proposition
3.1.1]. It follows that Hd

Φ(R̂/p) ∼= Hd

mR̂/p
(R̂/p), and so by [3, Theorem

6.1.4]), Hd
Φ(R̂/p) 	= 0.
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Moreover, in view of [1, Proposition 2.1], Hd
Φ(R̂/p) ∼= Hd

Ψ(R̂)⊗
R̂
R̂/p

and by virtue of (2.3) we have Hd
Ψ(R̂) ∼= Hd

Φ(R) ⊗R R̂. Now, putting
this together with the above isomorphism, we obtain a contradiction.

In order to prove (ii) ⇒ (i), suppose that ΦR̂ := {aR̂ : a ∈ Φ}.
Then by virtue of (2.3), Hd

Φ(R) ⊗R R̂ ∼= Hd

ΦR̂
(R̂). Since R̂ is faithfully

flat over R, we may assume that R is complete. Now, we use the
Cohen structure theorem to see that there is a complete Gorenstein
local ring A of dimension d and a surjective ring homomorphism
ψ : A→ R. Let Ψ = Φψ := {(ψ−1(a))n : a ∈ Φ, n ∈ N}, then by (2.3)
Hi

Ψ(R) ∼= Hi
Φ(R). Therefore, it is enough to show that Hd

Ψ(R) = 0. To
achieve this, suppose b = Kerψ. Then A/b and R are isomorphic
A-modules, and therefore, it follows from [1, Proposition 2.1] that
Hd

Ψ(R) ∼= Hd
Ψ(A) ⊗A R. On the other hand, in view of (2.1),

Hd
Ψ(A) ∼= HomA

( ⋂
p∈V (Ψ)
ht p=d−1

c(p), EA(A/m)
)
.

Hence, we obtain that

Hd
Ψ(R) ∼= HomA

( ⋂
p∈V (Ψ)
ht p=d−1

c(p), EA(A/m)
)⊗

A

R.

From this and [3, Lemma 10.2.16], it is sufficient for us to show that

AssAHomA

(
R,

⋂
p∈V (Ψ)
ht p=d−1

c(p)
)

= ∅.

To this end, by [2, Section 2.1, Proposition 10], an associated prime
ideal of the A-module HomA(R,∩ p∈V (Ψ)

ht p=d−1

c(p)) must contain b, and

belong to AssA (and so have dimension d), and cannot be contained in
any prime ideal p of V (Ψ) with ht p = d−1. Therefore, the hypotheses
show that there is no such associated prime ideal, and so the proof is
complete.
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(2.5) Corollary. Suppose that (R,m) is local and has dimension d

and that for every prime ideal p of R̂ with dim R̂/p = d there exists
a ∈ Φ such that dim R̂/(aR̂ + p) > 0. Then Hi

Φ(N) = 0 for all i ≥ d
and for every R-module N .

Proof. As Hi
Φ(N) = lim−→

a∈Φ

Hi
a(N), the result follows from Grothen-

dieck’s vanishing theorem, [3, Exercise 6.1.9], and (2.4).

(2.6) Corollary. Let (R,m) be local, and let N be a nonzero finitely
generated R-module of dimension d. Assume that for every prime
ideal p ∈ Supp N̂ with dim R̂/p = d there exists a ∈ Φ such that
dim R̂/(aR̂+ p) > 0. Then Hi

Φ(N) = 0 for all i ≥ d.

Proof. In view of [1, Lemma 2.3], we may assume that R is complete.
Let Ψ = Φ(R/AnnRN) := {a(R/AnnRN) : a ∈ Φ}, then, by (2.3) and
[1, Proposition 2.1], we have

Hd
Φ(N) ∼= Hd

Ψ(N) ∼= Hd
Ψ(R/AnnRN)

⊗
R/AnnRN

N.

The result now follows by using (2.4) and [3, Theorem 6.1.2]).

The following proposition will be one of our main tools in Section 3.
Before we state it, let us recall that, if R is local with dimension d, then
the general local cohomology module Hd

Φ(R) is an Artinian R-module,
see [1, Theorem 3.1], and so has a natural structure as an R̂-module.

(2.7) Proposition. Suppose that (R,m) is local of dimension d.
Then

Att
R̂
(Hd

Φ(R)) = {p ∈ Spec R̂ : dim R̂/p = d,

and Rad (aR̂+ p) = mR̂ for all a ∈ Φ}.

Proof. In view of (2.3) without loss of generality, we may assume
that R is complete. First, suppose that p ∈ AttR(Hd

Φ(R)). Then, by
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virtue of [3, Proposition 7.2.11], we have Hd
Φ(R) 	= pHd

Φ(R), whence
Hd

Φ(R) ⊗R R/p 	= 0. Therefore Hd
Φ(R/p) 	= 0 by [1, Proposition 2.1].

Let Ψ = Φ(R/p) := {a(R/p) : a ∈ Φ}, then by (2.3), Hd
Ψ(R/p) 	= 0. It

follows that dimR/p = d. On the other hand, in view of (2.4), we have
dimR/a + p = 0 for all a ∈ Φ. That is Rad (a + p) = m, as desired.

Conversely, let p ∈ SpecR be such that dimR/p = d and Rad (a +
p) = m for all a ∈ Φ. Let Ψ = Φ(R/p) := {a(R/p) : a ∈ Φ}, then
in view of (2.3), Hd

Ψ(R/p) ∼= Hd
Φ(R/p), and it is straightforward to

check that two systems of ideals Ψ and {(m/p)n : n ∈ N} introduce the
same topology on R/p. Consequently, we have Hd

Ψ(R/p) ∼= Hd
m/p(R/p).

Thus, by [3, Theorems 6.1.4 and 7.1.3], Hd
Ψ(R/p) is a nonzero Artinian

R/p-module which is 0-secondary. Therefore, Hd
Φ(R/p) is a nonzero

Artinian R-module with Rad (0 :R Hd
Φ(R/p)) = p. But, by virtue of

[1, Proposition 2.1], Hd
Φ(R/p) is a homomorphic image of Hd

Φ(R), and
so it follows that p ∈ AttR(Hd

Φ(R)). This completes the proof.

(2.8) Remark. Let the situation be as in (2.7). Then

Att
R̂
(Hd

Φ(R)) = Ass
R̂
D((Hd

Φ(R))) = Ass
R̂

(
HomA

(
R,

⋂
p∈V (Ψ)
ht p=d−1

c(p)
))

,

in which the second equation follows from the proof of Theorem 2.4
and D := Hom

R̂
(−, E(R̂/mR̂)) represents Matlis duality.

(2.9) Corollary. Let the situation be as in (2.7). Then

AttR(Hd
Φ(R)) = {p ∩R : p ∈ Spec R̂, dim R̂/p = d,

and Rad (aR̂+ p) = mR̂ for all a ∈ Φ}.

3. Local cohomology and integral closures. The purpose of
this section is to prove that, for any system of ideals Φ of a formally
equidimensional local ring (R,m) of dimension d, the integral closure
b∗(H

d
Φ(R)) of b with respect to the Artinian R-module Hd

Φ(R) is equal
to the classical Northcott-Rees integral closure ba for every ideal b of
R provided Rad (a+p) = m for all minimal primes p of R and for every
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a ∈ Φ. The main goal of this section is Theorem 3.3. Before we state
Theorem 3.3, we give a couple of lemmas that we will use in the proof
of this theorem.

(3.1) Lemma. Let (R,m) be a local ring of dimension d. Then the
following statements are equivalent :

(i) AnnRHd
Φ(R) is a nilpotent ideal.

(ii) R is equidimensional and Rad (aR̂+q) = mR̂ for all q ∈ mAss R̂
and for every a ∈ Φ.

Proof. First we show (i) ⇒ (ii). To do this, suppose p is an arbitrary
minimal prime of R. In view of [3, Proposition 7.2.11] and (2.9), it
follows that

Rad (AnnR(Hd
Φ(R))) = ∩{q ∩R : q ∈ Spec R̂, dim R̂/q = d,

and Rad (aR̂+ q) = mR̂ for all a ∈ Φ
}
.

Hence, there exists q ∈ Spec R̂ such that dim R̂/q = d, q ∩ R = p;
and, for every a ∈ Φ, Rad (aR̂ + q) = mR̂. Now, it is easy to see that
dimR/p = d, and so (ii) holds.

In order to prove that (ii) ⇒ (i), suppose that R is equidimensional
and p is an arbitrary minimal prime of R. Then, there exists q ∈
Ass

R̂
R̂/pR̂ such that dim R̂/q = dim R̂/pR̂ = dimR/p = d. Therefore,

by assumption Rad (aR̂+q) = mR̂ for every a ∈ Φ. Moreover, by using
the Going Down theorem it follows that p ∩ R = q. Consequently, in
view of (2.9) and [3, Proposition 7.2.11], we deduce that AnnRHd

Φ(R)
is nilpotent, as desired.

(3.2) Lemma. Suppose that (R,m) is a local ring and that A is an
Artinian R-module. Then, for any ideal b of R, (bR̂)∗(A) ∩R = b∗(A).

Proof. Follows from the definition and [6, Theorem 7.11].

We are now ready to state and prove the main theorem of this paper.
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(3.3) Theorem. Let (R,m) be a formally equidimensional local ring
of dimension d such that, for all minimal primes p of R, Rad (a+p) = m

for every a ∈ Φ. Then, for every ideal b of R, b∗(H
d
Φ(R)) = ba.

Proof. First of all, let us assume q is an arbitrary minimal prime ideal
of R̂. Then it is readily checked that p := q∩R is a minimal prime ideal
of R, so that we have Rad (aR̂+ q) = mR̂, for every a ∈ Φ. Therefore,
in view of [7, Lemma 3.15] and (3.2), without loss of generality we may
assume that (R,m) is complete. Let D := HomR(−, E), then according
to the Matlis’ duality theorem [3, Theorem 10.2.12], D(Hd

Φ(R)) is a
Noetherian R-module and Hd

Φ(R) ∼= DD(Hd
Φ(R)). Now, let b be an

arbitrary ideal of R, then by [13, Theorem 2.1] we have (b)D(Hd
Φ(R))

a =
b∗(H

d
Φ(R)). Furthermore, because AnnRD(Hd

Φ(R)) = AnnRHd
Φ(R) from

(3.1), it follows that AnnRD(Hd
Φ(R)) is a nilpotent ideal. Thus using

[13, Remark 1.6], it is straightforward to check that ba = (b)D(Hd
Φ(R))

a .
Therefore now the assertion follows.

As an application of Theorem 3.3, we provide the following result
which generalizes the main theorem of [13] concerning the question
raised by D. Rees.

(3.4) Corollary (see [13, Corollary 3.5]). Let (R,m) be a formally
equidimensional local ring of dimension d and a an ideal of R such that,
for every minimal prime ideal p of R, a + p is m-primary. Then, for
each ideal b of R, b∗(H

d
a(R)) = ba.
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