ROCKY MOUNTAIN JOURNAL OF MATHEMATICS Volume 37, Number 3, 2007

INTEGRAL CLOSURES, LOCAL COHOMOLOGY AND IDEAL TOPOLOGIES

R. NAGHIPOUR

ABSTRACT. Let (R, \mathfrak{m}) be a formally equidimensional local ring of dimension d. Suppose that Φ is a system of nonzero ideals of R such that, for all minimal prime ideals \mathfrak{p} of $R, \mathfrak{a} + \mathfrak{p}$ is \mathfrak{m} -primary for every $\mathfrak{a} \in \Phi$. In this paper, the main result asserts that for any ideal \mathfrak{b} of R, the integral closure $\mathfrak{b}^{*(H^d_{\Phi}(R))}$ of \mathfrak{b} with respect to the Artinian R-module $H^d_{\Phi}(R)$ is equal to \mathfrak{b}_a , the classical Northcott-Rees integral closure of \mathfrak{b} . This generalizes the main result of [13] concerning the question raised by D. Rees.

1. Introduction. Let R denote a commutative Noetherian ring (with identity) of dimension d, and let A be an Artinian R-module. We say that the ideal \mathfrak{a} of R is a *reduction* of the ideal \mathfrak{b} of R with respect to A if $\mathfrak{a} \subseteq \mathfrak{b}$ and there exists an integer $s \geq 1$ such that $(0 :_A \mathfrak{a}\mathfrak{b}^s) = (0 :_A \mathfrak{b}^{s+1})$. An element x of R is said to be *integrally dependent on* \mathfrak{a} with respect to A if \mathfrak{a} is a reduction of $\mathfrak{a} + Rx$ with respect to A, see [12]. Moreover, the set $\mathfrak{a}^{*(A)} := \{x \in R \mid x \text{ is integrally dependent on <math>\mathfrak{a}$ with respect to A} is an ideal of R, called the *integral closure of* \mathfrak{a} with respect to A.

In [13] the dual concepts of reduction and integral closure of the ideal \mathfrak{b} with respect to a Noetherian *R*-module *N* were introduced; we shall use $\mathfrak{b}_a^{(N)}$ to denote the integral closure of \mathfrak{b} with respect to *N*. If N = R, then $\mathfrak{b}_a^{(N)}$ reduces to that the usual Northcott-Rees integral closure \mathfrak{b}_a of \mathfrak{b} .

The purpose of the present paper is to show that, for any system of ideals Φ of a formally equidimensional local ring (R, \mathfrak{m}) of dimension d, if Rad $(\mathfrak{a} + \mathfrak{p}) = \mathfrak{m}$ for all minimal primes \mathfrak{p} of R and for every $\mathfrak{a} \in \Phi$, then $\mathfrak{b}^{*(H_{\Phi}^d(R))}$, the integral closure of \mathfrak{b} with respect to $H_{\Phi}^d(R)$, is equal

²⁰⁰⁰ AMS Mathematics Subject Classification. Primary 13D45, 13B20, 13E05. Key words and phrases. Integral closures, local cohomology, formally equidimensional rings.

This research was been in part supported by a grant from IPM (No. 81130020). Received by the editors on May 25, 2004, and in revised form on Feb. 5, 2005.

to \mathfrak{b}_a , the classical Northcott-Rees integral closure of \mathfrak{b} , for each ideal \mathfrak{b} of R.

Throughout this paper, all rings considered will be commutative and Noetherian and will have nonzero identity elements. Such a ring will be denoted by R, and a typical ideal of R will be denoted by \mathfrak{a} . Moreover, throughout this paper, let Φ denote a system of nonzero ideals of R, i.e., for all $\mathfrak{a}, \mathfrak{b} \in \Phi$, there exists an $\mathfrak{c} \in \Phi$ such that $\mathfrak{c} \subseteq \mathfrak{a}\mathfrak{b}$.

Let S be a multiplicatively closed subset of R and \mathfrak{a} an ideal of R. The *n*th (S)-symbolic power of \mathfrak{a} , denoted by $S(\mathfrak{a}^n)$, is defined to be the ideal $\bigcup_{s \in S} (\mathfrak{a}^n :_R s)$ of R. In the case $S = R \setminus \bigcup \{ \mathfrak{p} \in m \operatorname{Ass}_R R / \mathfrak{a} \}$, where $m \operatorname{Ass}_R R/\mathfrak{a}$ is the set of the minimal primes of $\operatorname{Ass}_R R/\mathfrak{a}$, the *n*th (S)-symbolic power of \mathfrak{a} is denoted by $\mathfrak{a}^{(n)}$. Let dim R = d, and let ht $\mathfrak{a} = d - 1$ for all $\mathfrak{a} \in \Phi$. Then the sets Φ and $\Phi^{(1)} := {\mathfrak{a}^{(1)} : \mathfrak{a} \in \Phi}$ induce topologies on R, which are called the Φ -adic and $\Phi^{(1)}$ -symbolic topology, respectively. These topologies are said to be equivalent if, for every $\mathfrak{a} \in \Phi$ there exists $\mathfrak{b} \in \Phi$ such that $\mathfrak{b}^{(1)} \subset \mathfrak{a}$. Equivalence of some topologies have been studied in [5, 8, 9] and has led to some interesting results. We shall use $\mathcal{C}(R)$ to denote the category of all *R*-modules and all *R*-homomorphisms between them. The system of ideals Φ determines the Φ -torsion functor $\Gamma_{\Phi} : \mathcal{C}(R) \to \mathcal{C}(R)$. This is the subfunctor of the identity functor on $\mathcal{C}(R)$ for which $\Gamma_{\Phi}(N) = \{x \in N : ax = 0 \text{ for some } a \in \Phi\}$ for each *R*-module *N*. For each $i \geq 0$, the *i*th right derived functor of Γ_{Φ} is denoted by H^i_{Φ} . Moreover, for any *R*-module N and for any prime ideal \mathfrak{p} of R, the ideal $\cap_{n\geq 1}\mathfrak{p}^{(n)}$ of R, respectively submodule $\cup_{n\geq 1}(0:_N\mathfrak{p}^{(n)})$ of N, is denoted by $c(\mathfrak{p})$, respectively $\Gamma_{(\mathfrak{p})}(N)$. We denote $\cup_{\mathfrak{a}\in\Phi}V(\mathfrak{a})$ by $V(\Phi)$, where $V(\mathfrak{a}) = \{\mathfrak{p} \in \operatorname{Spec} R : \mathfrak{p} \supseteq \mathfrak{a}\}$. Finally, if (R, \mathfrak{m}) is local, then \hat{R} , respectively E, denotes the completion of R with respect to the \mathfrak{m} -adic topology, respectively injective envelope of the simple R-module R/\mathfrak{m} .

In the second section we give a generalization of Lichtenbaum-Hartshorne theorem in the context of general local cohomology modules, whose applications will be used in the proof of the main theorem. More precisely we prove the following:

(1.1) **Theorem.** Assume that (R, \mathfrak{m}) is local of dimension d. Then the following statements are equivalent:

(i) $H^{d}_{\Phi}(R) \neq 0.$

(ii) There exists $\mathfrak{p} \in \operatorname{Spec} \widehat{R}$ such that $\dim \widehat{R}/\mathfrak{p} = d$ and $\dim \widehat{R}/(\mathfrak{a}\widehat{R} + \mathfrak{p}) = 0$ for each $\mathfrak{a} \in \Phi$.

Let (R, \mathfrak{m}) be a local ring. Then R is said to be *equidimensional* if, for any minimal prime ideal \mathfrak{p} of R, dim $R/\mathfrak{p} = \dim R$. Also, R is called *formally equidimensional* if its completion \widehat{R} is equidimensional, see [6, p. 251].

In the third section, for any ideal \mathfrak{b} of R, we examine the equality of the classical Northcott-Rees' integral closure \mathfrak{b}_a and the integral closure $\mathfrak{b}^{*(H^d_{\Phi}(R))}$ of \mathfrak{b} with respect to the Artinian R-module $H^d_{\Phi}(R)$, by using the applications of the Lichtenbaum-Hartshorne theorem. More precisely, we shall show that:

(1.2) Theorem. Let (R, \mathfrak{m}) be a formally equidimensional local ring of dimension d such that for all $\mathfrak{p} \in mAss R$, $\operatorname{Rad}(\mathfrak{a} + \mathfrak{p}) = \mathfrak{m}$ for each $\mathfrak{a} \in \Phi$. Then $\mathfrak{b}_a = \mathfrak{b}^{*(H^d_{\Phi}(R))}$ for every ideal \mathfrak{b} of R.

2. Ideal topologies and the Lichtenbaum-Hartshorne theorem. The main point of this section is to establish a generalization of the Lichtenbaum-Hartshorne theorem in the context of general local cohomology modules. Some applications are given. The following lemma plays a key role in this section.

(2.1) Lemma. Let (R, \mathfrak{m}) be a complete Gorenstein local ring of dimension d, and let $V := \{\mathfrak{p} \in V(\Phi) : \operatorname{ht} \mathfrak{p} = d - 1\}$. Then $H^d_{\Phi}(R) \cong \operatorname{Hom}_R(\cap_{\mathfrak{p} \in V} c(\mathfrak{p}), E)$.

Proof. Let $\mathcal{E}^{\cdot}: 0 \to E^0 \to E^1 \to \cdots \to E^{d-1} \to E^d \to 0$ be a minimal injective resolution of R. Then, by [**6**, Theorems 18.1 and 18.8], we have $E^i \cong \bigoplus_{\substack{\mathfrak{p} \in \operatorname{Spec} R}} E_R(R/\mathfrak{p})$. Moreover, in view of [**6**, Theorem 18.4], ht $\mathfrak{p}_{=i}$

$$\Gamma_{\Phi}\left(\bigoplus_{\substack{\mathfrak{p}\in \operatorname{Spec} R\\ \operatorname{ht}\mathfrak{p}=d-1}} E_R(R/\mathfrak{p})\right) = \bigoplus_{\mathfrak{p}\in V} E_R(R/\mathfrak{p}) \quad \text{and} \quad \Gamma_{\Phi}(E) = E$$

Consequently, the exact sequence \mathcal{E}^{\cdot} induces an exact sequence

$$\bigoplus_{\mathfrak{p}\in V} E_R(R/\mathfrak{p}) \longrightarrow E \longrightarrow H^d_{\Phi}(R) \longrightarrow 0.$$

Let $\mathfrak{p} \in V$ so that $\operatorname{ht} \mathfrak{p} = d - 1$. Since each element of $E_R(R/\mathfrak{p})$ is annihilated by some symbolic power of \mathfrak{p} , it follows that $\Gamma_{(\mathfrak{p})}(E^{d-1}) = \Gamma_{(\mathfrak{p})}(E_R(R/\mathfrak{p})) = E_R(R/\mathfrak{p})$. Hence, we obtain the following exact sequence

$$E_R(R/\mathfrak{p}) \longrightarrow \Gamma_{(\mathfrak{p})}(E) \longrightarrow \varinjlim_i \operatorname{Ext}^d_R(R/\mathfrak{p}^{(i)}, R) \longrightarrow 0.$$

On the other hand, since $\mathfrak{p}^{(i)}$ is \mathfrak{p} -primary it follows that $\operatorname{Ass}_R R/\mathfrak{p}^{(i)} = {\mathfrak{p}}$, and so depth_R $R/\mathfrak{p}^{(i)} > 0$, note that ht $\mathfrak{p} = d - 1$. Consequently, from [3, Lemma 8.1.8] we get $\operatorname{Ext}_R^d(R/\mathfrak{p}^{(i)}, R) = 0$. Therefore, the sequence $E_R(R/\mathfrak{p}) \to \Gamma_{(\mathfrak{p})}(E) \to 0$ is exact, and so $H_{\Phi}^d(R) \cong E/\sum_{\mathfrak{p} \in V} \Gamma_{(\mathfrak{p})}(E)$. Hence, it is enough to show that

$$E/\Sigma_{\mathfrak{p}\in V}\Gamma_{(\mathfrak{p})}(E) = \operatorname{Hom}_{R}\bigg(\bigcap_{\mathfrak{p}\in V}c(\mathfrak{p}), E\bigg).$$

To this end, as R is complete, by using the notations of [14, Section 5.4] we get

$$\begin{split} \Sigma_{\mathfrak{p}\in V}\Gamma_{(\mathfrak{p})}(E) &= \Sigma_{\mathfrak{p}\in V}\Sigma_{n\geq 1}(0:_E\mathfrak{p}^{(n)})\\ &= \bigg(\bigcap_{\mathfrak{p}\in V}\bigcap_{n\geq 1}(0:_E\mathfrak{p}^{(n)})^\lambda\bigg)^\mu\\ &= \bigg(\bigcap_{\mathfrak{p}\in V}\bigcap_{n\geq 1}\mathfrak{p}^{(n)}0^\lambda\bigg)^\mu\\ &= \bigg(0:_E\bigcap_{p\in V}c(\mathfrak{p})\bigg). \end{split}$$

The exact sequence $0 \to \bigcap_{\mathfrak{p} \in V} c(\mathfrak{p}) \to R \to R / \bigcap_{\mathfrak{p} \in V} c(\mathfrak{p}) \to 0$ induces an exact sequence $0 \to \operatorname{Hom}_R(R / \bigcap_{\mathfrak{p} \in V} c(\mathfrak{p}), E) \to E \to \operatorname{Hom}_R(\bigcap_{\mathfrak{p} \in V} c(\mathfrak{p}), E) \to 0$, and the desired result now follows. \Box

The following corollary will establish the equivalence between the topologies defined by Φ and $\Phi^{(1)}$ in terms of vanishing the local cohomology module $H^d_{\Phi}(R)$. Recall that for any ideal \mathfrak{a} of R, we use $\mathfrak{a}^{(1)}$ to denote the ideal $\bigcup_{s \in S} (\mathfrak{a} :_R s)$, where $S = R \setminus \bigcup \{ \mathfrak{p} \in m \operatorname{Ass}_R R/\mathfrak{a} \}$ and $\Phi^{(1)} := \{ \mathfrak{b}^{(1)} : \mathfrak{b} \in \Phi \}$.

(2.2) Corollary. Let (R, \mathfrak{m}) be a Gorenstein local (not necessarily complete) ring of dimension d, and let $\operatorname{ht} \mathfrak{a} = d - 1$ for each $\mathfrak{a} \in \Phi$. Then the following conditions are equivalent:

- (i) $H^d_{\Phi}(R) = 0.$
- (ii) The $\Phi^{(1)}$ -symbolic topology is equivalent to the Φ -adic topology.

Proof. First we show (i) \Rightarrow (ii). To do this, suppose that $\mathfrak{a} \in \Phi$. Then, we can write $\mathfrak{a} = \mathfrak{a}^{(1)} \cap \mathfrak{q}$ for some m-primary ideal \mathfrak{q} . In view of [11, Lemma 1.3], there exists a parameter ideal \mathfrak{q}_0 of R such that $\mathfrak{q}_0 \subseteq \mathfrak{q}$. By virtue of [6, Theorem 18.1], \mathfrak{q}_0 is irreducible; and hence there exists $x \in E$ such that $\mathfrak{q}_0 = \operatorname{Ann}(x)$. By assumption and the proof of (2.1), there is an $n \in \mathbb{N}$ such that $x \in \Sigma_{\substack{\mathfrak{p} \in V(\Phi) \\ \operatorname{ht} \mathfrak{p} = d - 1}} (0 :_E \mathfrak{p}^{(n)})$.

Hence, we can write $x = e_1 + \cdots + e_r$, where $e_i \in (0 :_E \mathfrak{p}_i^{(n)})$ and $\mathfrak{p}_i \in V(\Phi)$ with $\operatorname{ht} \mathfrak{p}_i = d - 1$ for all $i = 1, \ldots, r$. There exists $\mathfrak{b} \in \Phi$ such that $\mathfrak{b} \subseteq \cap_{i=1}^r \mathfrak{p}_i$. Since $\operatorname{ht} \mathfrak{b} = d - 1$, it follows that $\mathfrak{p}_1, \ldots, \mathfrak{p}_r$ are minimal prime ideals of \mathfrak{b} . Now, let $b \in \mathfrak{b}^{(n)}$. Then, $sb \in \mathfrak{b}^n$ for some $s \in R \setminus \bigcup \{\mathfrak{p} \in m\operatorname{Ass}_R R/\mathfrak{b}\}$. Since $\mathfrak{b}^n \subseteq \cap_{i=1}^r \mathfrak{p}_i^{(n)}$, it follows that $sb \in \cap_{i=1}^r \mathfrak{p}_i^{(n)}$, and therefore $b \in \cap_{i=1}^r \mathfrak{p}_i^{(n)}$. Consequently $bx = be_1 + \cdots + be_r = 0$, so that $b \in \mathfrak{q}_0$. Accordingly $\mathfrak{b}^{(n)} \subseteq \mathfrak{q}$. Moreover, it is easily seen that there exists $\mathfrak{c} \in \Phi$ such that $\mathfrak{c}^{(1)} \subseteq \mathfrak{b}^{(n)}$, (note that $\operatorname{ht} \mathfrak{a} = d - 1$ for all $\mathfrak{a} \in \Phi$). Therefore we have $\mathfrak{c}^{(1)} \subseteq \mathfrak{q}$. On the other hand, there is an $\mathfrak{d} \in \Phi$ such that $\mathfrak{d} \subseteq \mathfrak{ac}$; hence, $\mathfrak{d}^{(1)} \subseteq \mathfrak{a}^{(1)} \cap \mathfrak{c}^{(1)} \subseteq \mathfrak{a}^{(1)} \cap \mathfrak{q}$, as required.

In order to prove that (ii) \Rightarrow (i) suppose that $x \in E$. Then, there is $\mathfrak{a} \in \Phi$ such that $\mathfrak{a}x = 0$. Therefore, by assumption, there exists $\mathfrak{b} \in \Phi$ such that $\mathfrak{b}^{(1)} \subseteq \mathfrak{a}$. Next, let $m \operatorname{Ass}_R R/\mathfrak{b} = {\mathfrak{p}_1, \ldots, \mathfrak{p}_r}$. Then, it is easy to see that $\bigcap_{i=1}^r \mathfrak{p}_i^{(l)} \subseteq \mathfrak{b}^{(1)}$ for sufficiently large *l*. Therefore, $(\bigcap_{i=1}^r \mathfrak{p}_i^{(l)})x = 0$, and hence $x \in \Sigma_{i=1}^r(0 :_E \mathfrak{p}_i^{(l)})$ by [10, Lemma 2.2].

Consequently $E = \sum_{\substack{\mathfrak{p} \in V(\Phi) \\ ht \mathfrak{p} = d-1}} \bigcup_{j \in \mathbb{N}} (0 :_E \mathfrak{p}^{(j)})$; so that, by the proof of (2.1) $H^d_{\Phi}(R) = 0$, as desired. \Box

Before obtaining the main result of this section we recall some useful properties of the local cohomology functors $H^i_{\Phi}(.)$ in the following remark.

(2.3) Remark. Let $\varphi : R \to S$ be a ring homomorphism.

(i) For any system of ideals Φ of R, let $\Phi S := \{\mathfrak{a}S : \mathfrak{a} \in \Phi\}$. Then it is easy to see that ΦS is a system of ideals of S and for any $i \in \mathbb{N}_0$, $H^i_{\Phi S}(N) \cong H^i_{\Phi}(N)$, for any S-module N, see [3, Theorem 4.2.1].

(ii) Suppose that $\varphi : R \to S$ is surjective and Φ is a system of ideals of S. Then one can check easily that $\Phi^{\varphi} := \{(\varphi^{-1}(\mathfrak{a}))^n : \mathfrak{a} \in \Phi, n \in \mathbb{N}\}$ is a system of ideals of R. Consequently, for any S-module N and $i \in \mathbb{N}_0$, there is an isomorphism of R-modules $H^i_{\Phi^{\varphi}}(N) \cong H^i_{\Phi}(N)$ as Φ and $\Phi^{\varphi}S$ introduce the same topology on S.

Now we are ready to state and prove the main theorem of this section.

(2.4) Theorem (Lichtenbaum-Hartshorne theorem). Let (R, \mathfrak{m}) be local of dimension d. Then the following statements are equivalent:

(i) $H^d_{\Phi}(R) = 0.$

(ii) For every $\mathfrak{p} \in \operatorname{Spec} \widehat{R}$ with $\dim \widehat{R}/\mathfrak{p} = d$, there exists $\mathfrak{a} \in \Phi$ such that $\dim \widehat{R}/\mathfrak{a}\widehat{R} + \mathfrak{p} > 0$.

Proof. First we show (i) \Rightarrow (ii). Suppose the contrary is true. Then there exists $\mathfrak{p} \in \operatorname{Spec} \widehat{R}$ such that $\dim \widehat{R}/\mathfrak{p} = d$ but $\dim \widehat{R}/\mathfrak{a}\widehat{R} + \mathfrak{p} = 0$ for all $\mathfrak{a} \in \Phi$. Suppose that $\Psi = \Phi \widehat{R} := \{\mathfrak{a}\widehat{R} : \mathfrak{a} \in \Phi\}$ and $\Theta = \Psi(\widehat{R/\mathfrak{p}}) := \{\mathfrak{a}\widehat{R/\mathfrak{p}} : \mathfrak{a} \in \Phi\}$ are systems of ideals of \widehat{R} and $\widehat{R/\mathfrak{p}}$, respectively. Then, in view of (2.3), we have $H^d_{\Phi}(\widehat{R}/\mathfrak{p}) \cong H^d_{\Psi}(\widehat{R}/\mathfrak{p}) \cong$ $H^d_{\Theta}(\widehat{R}/\mathfrak{p})$. On the other hand, it is easy to see that two systems of ideals Θ and $\{(\mathfrak{m}\widehat{R}/\mathfrak{p})^n : n \in \mathbf{N}\}$ are 'comparable' in sense [3, Proposition 3.1.1]. It follows that $H^d_{\Phi}(\widehat{R}/\mathfrak{p}) \cong H^d_{\mathfrak{m}\widehat{R}/\mathfrak{p}}(\widehat{R}/\mathfrak{p})$, and so by [3, Theorem 6.1.4]), $H^d_{\Phi}(\widehat{R}/\mathfrak{p}) \neq 0$. Moreover, in view of [1, Proposition 2.1], $H^d_{\Phi}(\widehat{R}/\mathfrak{p}) \cong H^d_{\Psi}(\widehat{R}) \otimes_{\widehat{R}} \widehat{R}/\mathfrak{p}$ and by virtue of (2.3) we have $H^d_{\Psi}(\widehat{R}) \cong H^d_{\Phi}(R) \otimes_R \widehat{R}$. Now, putting this together with the above isomorphism, we obtain a contradiction.

In order to prove (ii) \Rightarrow (i), suppose that $\Phi \widehat{R} := \{\mathfrak{a}\widehat{R} : \mathfrak{a} \in \Phi\}$. Then by virtue of (2.3), $H^d_{\Phi}(R) \otimes_R \widehat{R} \cong H^d_{\Phi \widehat{R}}(\widehat{R})$. Since \widehat{R} is faithfully flat over R, we may assume that R is complete. Now, we use the Cohen structure theorem to see that there is a complete Gorenstein local ring A of dimension d and a surjective ring homomorphism $\psi : A \to R$. Let $\Psi = \Phi^{\psi} := \{(\psi^{-1}(\mathfrak{a}))^n : \mathfrak{a} \in \Phi, n \in \mathbb{N}\}$, then by (2.3) $H^i_{\Psi}(R) \cong H^i_{\Phi}(R)$. Therefore, it is enough to show that $H^d_{\Psi}(R) = 0$. To achieve this, suppose $\mathfrak{b} = \operatorname{Ker} \psi$. Then A/\mathfrak{b} and R are isomorphic A-modules, and therefore, it follows from [1, Proposition 2.1] that $H^d_{\Psi}(R) \cong H^d_{\Psi}(A) \otimes_A R$. On the other hand, in view of (2.1),

$$H^d_{\Psi}(A) \cong \operatorname{Hom}_A\left(\bigcap_{\substack{\mathfrak{p}\in V(\Psi)\\ \operatorname{ht}\mathfrak{p}=d-1}} c(\mathfrak{p}), E_A(A/\mathfrak{m})\right).$$

Hence, we obtain that

$$H^{d}_{\Psi}(R) \cong \operatorname{Hom}_{A}\left(\bigcap_{\substack{\mathfrak{p}\in V(\Psi)\\ \operatorname{ht}\mathfrak{p}=d-1}} c(\mathfrak{p}), E_{A}(A/\mathfrak{m})\right) \bigotimes_{A} R.$$

From this and [3, Lemma 10.2.16], it is sufficient for us to show that

$$\operatorname{Ass}_{A}\operatorname{Hom}_{A}\left(R,\bigcap_{\substack{\mathfrak{p}\in V(\Psi)\\ \operatorname{ht}\,\mathfrak{p}=d-1}}c(\mathfrak{p})\right)=\varnothing.$$

To this end, by [2, Section 2.1, Proposition 10], an associated prime ideal of the A-module $\operatorname{Hom}_A(R, \bigcap_{\mathfrak{p} \in V(\Psi)} c(\mathfrak{p}))$ must contain \mathfrak{b} , and $\operatorname{ht} \mathfrak{p} = d - 1$ belong to Ass A (and so have dimension d), and cannot be contained in any prime ideal \mathfrak{p} of $V(\Psi)$ with $\operatorname{ht} \mathfrak{p} = d - 1$. Therefore, the hypotheses show that there is no such associated prime ideal, and so the proof is complete. \Box

(2.5) Corollary. Suppose that (R, \mathfrak{m}) is local and has dimension dand that for every prime ideal \mathfrak{p} of \widehat{R} with $\dim \widehat{R}/\mathfrak{p} = d$ there exists $\mathfrak{a} \in \Phi$ such that $\dim \widehat{R}/(\mathfrak{a}\widehat{R} + \mathfrak{p}) > 0$. Then $H^i_{\Phi}(N) = 0$ for all $i \geq d$ and for every R-module N.

Proof. As $H^i_{\Phi}(N) = \lim_{\substack{a \in \Phi \\ \mathfrak{a} \in \Phi}} H^i_{\mathfrak{a}}(N)$, the result follows from Grothendieck's vanishing theorem, [3, Exercise 6.1.9], and (2.4).

(2.6) Corollary. Let (R, \mathfrak{m}) be local, and let N be a nonzero finitely generated R-module of dimension d. Assume that for every prime ideal $\mathfrak{p} \in \text{Supp } \widehat{N}$ with $\dim \widehat{R}/\mathfrak{p} = d$ there exists $\mathfrak{a} \in \Phi$ such that $\dim \widehat{R}/(\mathfrak{a}\widehat{R} + \mathfrak{p}) > 0$. Then $H^i_{\Phi}(N) = 0$ for all $i \geq d$.

Proof. In view of [1, Lemma 2.3], we may assume that R is complete. Let $\Psi = \Phi(R/\operatorname{Ann}_R N) := \{\mathfrak{a}(R/\operatorname{Ann}_R N) : \mathfrak{a} \in \Phi\}$, then, by (2.3) and [1, Proposition 2.1], we have

$$H^d_{\Phi}(N) \cong H^d_{\Psi}(N) \cong H^d_{\Psi}(R/\operatorname{Ann}_R N) \bigotimes_{R/\operatorname{Ann}_R N} N.$$

The result now follows by using (2.4) and [3, Theorem 6.1.2]).

The following proposition will be one of our main tools in Section 3. Before we state it, let us recall that, if R is local with dimension d, then the general local cohomology module $H^d_{\Phi}(R)$ is an Artinian R-module, see [1, Theorem 3.1], and so has a natural structure as an \hat{R} -module.

(2.7) **Proposition.** Suppose that (R, \mathfrak{m}) is local of dimension d. Then

$$\operatorname{Att}_{\widehat{R}}(H^{d}_{\Phi}(R)) = \{ \mathfrak{p} \in \operatorname{Spec} \widehat{R} : \dim \widehat{R}/\mathfrak{p} = d,$$

and Rad $(\mathfrak{a}\widehat{R} + \mathfrak{p}) = \mathfrak{m}\widehat{R} \text{ for all } \mathfrak{a} \in \Phi \}.$

Proof. In view of (2.3) without loss of generality, we may assume that R is complete. First, suppose that $\mathfrak{p} \in \operatorname{Att}_R(H^d_{\Phi}(R))$. Then, by

virtue of [3, Proposition 7.2.11], we have $H^d_{\Phi}(R) \neq \mathfrak{p}H^d_{\Phi}(R)$, whence $H^d_{\Phi}(R) \otimes_R R/\mathfrak{p} \neq 0$. Therefore $H^d_{\Phi}(R/\mathfrak{p}) \neq 0$ by [1, Proposition 2.1]. Let $\Psi = \Phi(R/\mathfrak{p}) := \{\mathfrak{a}(R/\mathfrak{p}) : \mathfrak{a} \in \Phi\}$, then by (2.3), $H^d_{\Psi}(R/\mathfrak{p}) \neq 0$. It follows that dim $R/\mathfrak{p} = d$. On the other hand, in view of (2.4), we have dim $R/\mathfrak{a} + \mathfrak{p} = 0$ for all $\mathfrak{a} \in \Phi$. That is Rad $(\mathfrak{a} + \mathfrak{p}) = \mathfrak{m}$, as desired.

Conversely, let $\mathfrak{p} \in \operatorname{Spec} R$ be such that $\dim R/\mathfrak{p} = d$ and $\operatorname{Rad}(\mathfrak{a} + \mathfrak{p}) = \mathfrak{m}$ for all $\mathfrak{a} \in \Phi$. Let $\Psi = \Phi(R/\mathfrak{p}) := \{\mathfrak{a}(R/\mathfrak{p}) : \mathfrak{a} \in \Phi\}$, then in view of (2.3), $H^d_{\Psi}(R/\mathfrak{p}) \cong H^d_{\Phi}(R/\mathfrak{p})$, and it is straightforward to check that two systems of ideals Ψ and $\{(\mathfrak{m}/\mathfrak{p})^n : n \in \mathbb{N}\}$ introduce the same topology on R/\mathfrak{p} . Consequently, we have $H^d_{\Psi}(R/\mathfrak{p}) \cong H^d_{\mathfrak{m}/\mathfrak{p}}(R/\mathfrak{p})$. Thus, by [3, Theorems 6.1.4 and 7.1.3], $H^d_{\Psi}(R/\mathfrak{p})$ is a nonzero Artinian R/\mathfrak{p} -module which is 0-secondary. Therefore, $H^d_{\Phi}(R/\mathfrak{p})$ is a nonzero Artinian R-module with $\operatorname{Rad}(0:_R H^d_{\Phi}(R/\mathfrak{p})) = \mathfrak{p}$. But, by virtue of [1, Proposition 2.1], $H^d_{\Phi}(R/\mathfrak{p})$ is a homomorphic image of $H^d_{\Phi}(R)$, and so it follows that $\mathfrak{p} \in \operatorname{Att}_R(H^d_{\Phi}(R))$. This completes the proof. \Box

(2.8) Remark. Let the situation be as in (2.7). Then

$$\operatorname{Att}_{\widehat{R}}(H^{d}_{\Phi}(R)) = \operatorname{Ass}_{\widehat{R}}D((H^{d}_{\Phi}(R))) = \operatorname{Ass}_{\widehat{R}}\left(\operatorname{Hom}_{A}\left(R, \bigcap_{\substack{\mathfrak{p} \in V(\Psi)\\ \operatorname{ht}\mathfrak{p} = d-1}} c(\mathfrak{p})\right)\right),$$

in which the second equation follows from the proof of Theorem 2.4 and $D := \operatorname{Hom}_{\widehat{R}}(-, E(\widehat{R}/\mathfrak{m}\widehat{R}))$ represents Matlis duality.

(2.9) Corollary. Let the situation be as in (2.7). Then

$$\operatorname{Att}_{R}(H^{d}_{\Phi}(R)) = \{\mathfrak{p} \cap R : \mathfrak{p} \in \operatorname{Spec} R, \dim R/\mathfrak{p} = d,$$

and Rad $(\mathfrak{a}\widehat{R} + \mathfrak{p}) = \mathfrak{m}\widehat{R}$ for all $\mathfrak{a} \in \Phi\}.$

3. Local cohomology and integral closures. The purpose of this section is to prove that, for any system of ideals Φ of a formally equidimensional local ring (R, \mathfrak{m}) of dimension d, the integral closure $\mathfrak{b}^{*(H^d_{\Phi}(R))}$ of \mathfrak{b} with respect to the Artinian *R*-module $H^d_{\Phi}(R)$ is equal to the classical Northcott-Rees integral closure \mathfrak{b}_a for every ideal \mathfrak{b} of *R* provided Rad $(\mathfrak{a} + \mathfrak{p}) = \mathfrak{m}$ for all minimal primes \mathfrak{p} of *R* and for every

 $\mathfrak{a} \in \Phi$. The main goal of this section is Theorem 3.3. Before we state Theorem 3.3, we give a couple of lemmas that we will use in the proof of this theorem.

(3.1) Lemma. Let (R, \mathfrak{m}) be a local ring of dimension d. Then the following statements are equivalent:

(i) $\operatorname{Ann}_{R}H^{d}_{\Phi}(R)$ is a nilpotent ideal.

(ii) R is equidimensional and $\operatorname{Rad}(\mathfrak{a}\widehat{R}+\mathfrak{q})=\mathfrak{m}\widehat{R}$ for all $\mathfrak{q}\in m\operatorname{Ass}\widehat{R}$ and for every $\mathfrak{a}\in\Phi$.

Proof. First we show (i) \Rightarrow (ii). To do this, suppose \mathfrak{p} is an arbitrary minimal prime of R. In view of [3, Proposition 7.2.11] and (2.9), it follows that

$$\operatorname{Rad}\left(\operatorname{Ann}_{R}(H_{\Phi}^{d}(R))\right) = \cap \left\{ \mathfrak{q} \cap R : \mathfrak{q} \in \operatorname{Spec}\widehat{R}, \ \dim \widehat{R}/\mathfrak{q} = d, \\ \operatorname{and} \operatorname{Rad}\left(\mathfrak{a}\widehat{R} + \mathfrak{q}\right) = \mathfrak{m}\widehat{R} \text{ for all } \mathfrak{a} \in \Phi \right\}.$$

Hence, there exists $\mathbf{q} \in \operatorname{Spec} \widehat{R}$ such that $\dim \widehat{R}/\mathbf{q} = d$, $\mathbf{q} \cap R = \mathbf{p}$; and, for every $\mathbf{a} \in \Phi$, Rad $(\mathbf{a}\widehat{R} + \mathbf{q}) = \mathfrak{m}\widehat{R}$. Now, it is easy to see that $\dim R/\mathfrak{p} = d$, and so (ii) holds.

In order to prove that (ii) \Rightarrow (i), suppose that R is equidimensional and \mathfrak{p} is an arbitrary minimal prime of R. Then, there exists $\mathfrak{q} \in$ $\operatorname{Ass}_{\widehat{R}}\widehat{R}/\mathfrak{p}\widehat{R}$ such that $\dim \widehat{R}/\mathfrak{q} = \dim \widehat{R}/\mathfrak{p}\widehat{R} = \dim R/\mathfrak{p} = d$. Therefore, by assumption $\operatorname{Rad}(\mathfrak{a}\widehat{R}+\mathfrak{q}) = \mathfrak{m}\widehat{R}$ for every $\mathfrak{a} \in \Phi$. Moreover, by using the Going Down theorem it follows that $\mathfrak{p} \cap R = \mathfrak{q}$. Consequently, in view of (2.9) and [3, Proposition 7.2.11], we deduce that $\operatorname{Ann}_R H_{\Phi}^d(R)$ is nilpotent, as desired. \Box

(3.2) Lemma. Suppose that (R, \mathfrak{m}) is a local ring and that A is an Artinian R-module. Then, for any ideal \mathfrak{b} of R, $(\mathfrak{b}\widehat{R})^{*(A)} \cap R = \mathfrak{b}^{*(A)}$.

Proof. Follows from the definition and [6, Theorem 7.11].

We are now ready to state and prove the main theorem of this paper.

(3.3) Theorem. Let (R, \mathfrak{m}) be a formally equidimensional local ring of dimension d such that, for all minimal primes \mathfrak{p} of R, Rad $(\mathfrak{a}+\mathfrak{p}) = \mathfrak{m}$ for every $\mathfrak{a} \in \Phi$. Then, for every ideal \mathfrak{b} of R, $\mathfrak{b}^{*(H^d_{\Phi}(R))} = \mathfrak{b}_a$.

Proof. First of all, let us assume **q** is an arbitrary minimal prime ideal of \hat{R} . Then it is readily checked that $\mathfrak{p} := \mathfrak{q} \cap R$ is a minimal prime ideal of R, so that we have Rad ($\mathfrak{a}\hat{R} + \mathfrak{q}$) = $\mathfrak{m}\hat{R}$, for every $\mathfrak{a} \in \Phi$. Therefore, in view of [7, Lemma 3.15] and (3.2), without loss of generality we may assume that (R, \mathfrak{m}) is complete. Let $D := \operatorname{Hom}_R(-, E)$, then according to the Matlis' duality theorem [3, Theorem 10.2.12], $D(H_{\Phi}^{d}(R))$ is a Noetherian R-module and $H_{\Phi}^{d}(R) \cong DD(H_{\Phi}^{d}(R))$. Now, let **b** be an arbitrary ideal of R, then by [13, Theorem 2.1] we have ($\mathfrak{b}_{a}^{D(H_{\Phi}^{d}(R))} = \mathfrak{b}^{*(H_{\Phi}^{d}(R))}$. Furthermore, because Ann_R $D(H_{\Phi}^{d}(R)) = \operatorname{Ann}_R H_{\Phi}^{d}(R)$ from (3.1), it follows that Ann_R $D(H_{\Phi}^{d}(R))$ is a nilpotent ideal. Thus using [13, Remark 1.6], it is straightforward to check that $\mathfrak{b}_{a} = (\mathfrak{b})_{a}^{D(H_{\Phi}^{d}(R))}$. Therefore now the assertion follows. □

As an application of Theorem 3.3, we provide the following result which generalizes the main theorem of [13] concerning the question raised by D. Rees.

(3.4) Corollary (see [13, Corollary 3.5]). Let (R, \mathfrak{m}) be a formally equidimensional local ring of dimension d and \mathfrak{a} an ideal of R such that, for every minimal prime ideal \mathfrak{p} of R, $\mathfrak{a} + \mathfrak{p}$ is \mathfrak{m} -primary. Then, for each ideal \mathfrak{b} of R, $\mathfrak{b}^{*(H^d_{\mathfrak{a}}(R))} = \mathfrak{b}_a$.

Acknowledgments. The author is deeply grateful to the referee for his or her valuable suggestions on the paper and for drawing the author's attention to Remarks 2.3 and 2.8. Also, I would like to thank Prof. P. Schenzel for his useful suggestions and the many helpful discussions during the preparation of this paper.

REFERENCES

^{1.} M.H. Bijan-Zadeh, On the Artinian property of certain general local cohomology modules, J. London Math. Soc. 32 (1985), 399–403.

^{2.} N. Bourbaki, Commutative algebra, Hermann, Paris, 1972.

3. M.P. Brodmann and R.Y. Sharp, *Local cohomology: An algebraic introduction with geometric applications*, University Press, Cambridge, 1998.

 ${\bf 4.}$ F.W. Call, On local cohomology modules, J. Pure Appl. Algebra ${\bf 43}$ (1986), 111–117.

5. K. Divaani-Aazar and P. Schenzel, *Ideal topologies, local cohomology and connectedness*, Math. Proc. Cambridge Philos. Soc. **131** (2001), 211–226.

6. H. Matsumura, Commutative ring theory, University Press, Cambridge, 1986.

7. S. McAdam, Asymptotic prime divisors, Lecture Notes in Math., vol. 1023, Springer, New York, 1983.

8. L.J. Ratliff, Jr., Topology determined by the symbolic powers of primary ideals, Comm. Algebra **13** (1985), 2073–2104.

9. P. Schenzel, Explicit computations around the Lichtenbaum-Hartshorne vanishing theorem, Manuscripta Math. 78 (1993), 57–68.

10. R.Y. Sharp, Secondary representations for injective modules over commutative Noetherian rings, Proc. Edinburgh Math. Soc. 20 (1976), 143–151.

11. ——, Cohen-Macaulay properties for balanced big Cohen-Macaulay modules, Math. Proc. Cambridge Philos. Soc. 90 (1981), 229–238.

12. R.Y. Sharp and A.J. Taherizadeh, *Reductions and integral closures of ideals relative to an Artinian module*, J. London Math. Soc. 37 (1988), 203–218.

13. R.Y. Sharp, Y. Tiras and M. Yassi, *Integral closures of ideals relative to local cohomology modules over quasi-unmixed local rings*, J. London Math. Soc. 42 (1990), 385–392.

14. D.W. Sharpe and P. Vamos, *Injective modules*, University Press, Cambridge, 1972.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF TABRIZ, POST CODE 51664, TABRIZ, IRAN AND INSTITUTE FOR STUDIES IN THEORETICAL PHYSICS AND MATH-EMATICS, P.O. BOX 19395-5746, TEHRAN, IRAN

E-mail address: naghipour@tabrizu.ac.ir, naghipou@informatik.uni-halle.de