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OPERATOR ALGEBRAS AND
MAULDIN-WILLIAMS GRAPHS

MARIUS IONESCU

ABSTRACT. We describe a method for associating a C∗-
correspondence to a Mauldin-Williams graph and show that
the Cuntz-Pimsner algebra of this C∗-correspondence is iso-
morphic to the C∗-algebra of the underlying graph. In addi-
tion, we analyze certain ideals of these C∗-algebras.

We also investigate Mauldin-Williams graphs and fractal
C∗-algebras in the context of the Rieffel metric. This gener-
alizes the work of Pinzari, Watatani and Yonetani. Our main
result here is a “no go” theorem showing that such algebras
must come from the commutative setting.

1. Introduction. In recent years many classes of C∗-algebras
have been shown to fit into the Pimsner construction of what are
known now as Cuntz-Pimsner algebras, see [20, 22]. This construction
is based on a so-called C∗-correspondence over a C∗-algebra. For
example, a natural C∗-correspondence can be associated with a graph
G, see [10], [11, Example 1.5]. The Cuntz-Pimsner algebra of this C∗-
correspondence is isomorphic to the graph C∗-algebra C∗(G) as defined
in [16]. Another example is the C∗-correspondence associated with a
local homeomorphism on a compact metric space studied by Deaconu in
[6], and the C∗-correspondence associated with a local homeomorphism
on a locally compact space studied by Deaconu, Kumjian, and Muhly
in [7]. They showed that the Cuntz-Pimsner algebra is isomorphic to
the groupoid C∗-algebra associated with a local homeomorphism in
[5, 7, 26].

By a (directed) graph we mean a system G = (V,E, r, s) where V
and E are finite sets, called the sets of vertices and edges, respectively,
of the graph, and where r and s are maps from E to V , called the
range and source maps, respectively. Thus, s(e) is the source of an
edge e and r(e) is its range. A Mauldin-Williams graph is a graph
G together with a collection of compact metric spaces, one for each
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vertex of the graph, and a collection of contraction maps, one for each
edge of the graph which satisfy certain properties, see Definition 2.1
below. In this note we follow the notations from [8]. We associate with
such a system a C∗-correspondence which reflects the dynamics of the
Mauldin-Williams graph, and we analyze the Cuntz-Pimsner algebra of
this C∗-correspondence. Our construction is related with topological
generalizations of graph C∗-algebras of Katsura [14] and Muhly and
Tomforde [21]. The study of the Cuntz-Pimsner algebra associated
with graph dynamical systems was initiated in [23], where the authors
consider the case when the graph G consists of a single vertex v and
edges e1, e2, . . . , en. In this case, the φes constitute what is known as
an iterated function system acting on the space (Tv, ρv). They conclude
that O(X ) is isomorphic to the Cuntz algebra On. The first of our two
principal theorems in this note generalizes this result. Our proof is
different from the proof in [23] and reveals extra structure.

Theorem. Let (G, {Tv, ρv}v∈V , {φe}e∈E) be a Mauldin-Williams
graph such that the graph G has no sinks and no sources. Let A and X
be the associated C∗-algebra and C∗-correspondence. Then the Cuntz-
Pimsner algebra O(X ) is isomorphic to C∗(G) of [4].

Thus the structure of O(X ) is completely determined by the graph G.
From one perspective, this result is somewhat disappointing. Given the
richness of dynamical systems expressed as Mauldin-Williams graphs
and given the fact that Cuntz-Pimsner algebras generalize crossed
products, one might expect a lively interplay between the dynamics
and the structure of O(X ). However, the “rigidity” that this theorem
expresses is quite remarkable, and it may inspire one to wonder about
the natural limits of the result.

In particular, one might wonder if there are noncommutative versions
of Mauldin-Williams graphs and whether these might prove to have a
richer theory. This thought was taken up in [23, Section 4.3] where
Pinzari, Watatani and Yonetani considered noncommutative iterated
function systems based on Rieffel’s notion of “noncommutative metric
spaces” [27, 28]. The second objective of this note is to show that
noncommutative iterated function systems of Pinzari, Watatani and
Yonetani can be formulated in the setting of Mauldin-Williams-type
graphs, but that the generality gained is illusory. Roughly, the Rieffel
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metric is a metric on the state space of a (not necessarily commutative)
C∗-algebra A defined by a certain subset of “Lipschitz elements” in
A (see Definition 3.1 below). When we associate a C∗-algebra Av

to each vertex v ∈ V , for a prescribed graph G = (V,E, r, s), and
when we associate a ∗-homomorphism φe : As(e) → Ar(e) to each edge
e ∈ E that is strictly contractive with respect to the Rieffel metrics
on As(e) and Ar(e), we call the resulting system a noncommutative
Mauldin-Williams graph. It also gives rise to a Cuntz-Pimsner algebra
O(X ). Our second objective in this note is to show that once more
O(X ) is isomorphic to the Cuntz-Krieger algebra associated to G. In
fact, we shall show in Theorem 3.4 that, in such situations, the C∗-
algebras Av are necessarily commutative. This implies, in particular,
that the structures considered by Pinzari, Watatani and Yonetani are
necessarily no more general than those arising from ordinary iterated
function systems.

2. The Cuntz-Pimsner algebra associated to a Mauldin-
Williams graph.

Definition 2.1. By a Mauldin-Williams graph, see [8, 18], we mean
a system (G, {Tv, ρv}v∈V , {φe}e∈E) where G = (V,E, r, s) is a graph
and where {Tv, ρv}v∈V and {φe}e∈E are families such that:

(1) For each v ∈ V , Tv is a compact metric space with a prescribed
metric ρv.

(2) For e ∈ E, φe is a continuous map from Tr(e) to Ts(e) such that

ρs(e)(φe(x), φe(y)) ≤ cρr(e)(x, y)

for some constant c satisfying 0 < c < 1, independent of e, and all
x, y ∈ Tr(e).

We shall assume, too, that the functions s and r are surjective. Thus,
we assume that there are no sinks and no sources in the graph G. An
invariant list associated with a Mauldin-Williams graph is a family
(Kv)v∈V of compact sets, such that Kv ⊂ Tv for all v ∈ V and

Kv =
⋃
e∈E

s(e)=v

φe(Kr(e)).



832 M. IONESCU

Since each φe is a contraction, a Mauldin-Williams graph

(G, {Tv, ρv}v∈V , {φe}e∈E)

has a unique invariant list, see [18, Theorem 1]. We set T := ∪v∈V Tv

and K := ∪v∈V Kv, and we call K the invariant set of the Mauldin-
Williams graph.

In the particular case when we have one vertex v and n edges, i.e.,
in the setting of an iterated function system, the invariant set is the
unique compact subset K := Kv of T = Tv such that

K = φ1(K) ∪ · · · ∪ φn(K).

Definition 2.2. Given a Mauldin-Williams graph

(G, {Tv, ρv}v∈V , {φe}e∈E),

we construct a so called C∗-correspondence X over the C∗-algebra
A = C(T ), where T =

∐
v∈V Tv is the disjoint union of the spaces Tv,

as follows. Let E×G T = {(e, x) : | : x ∈ Tr(e)}. Then, by our finiteness
assumptions, E ×G T is a compact space. We set X = C(E ×G T ) and
view X as a bimodule over C(T ) via the formulae:

ξ · a(e, x) := ξ(e, x)a(x)

and

a · ξ(e, x) := a ◦ φe(x)ξ(e, x),

where a ∈ C(T ) and ξ ∈ C(E ×G T ). Further, X comes equipped with
the structure of a Hilbert C∗-module over C(T ) via the formula

〈ξ, η〉A(x) :=
∑
e∈E

x∈Tr(e)

ξ(e, x) η(e, x)

for all ξ, η ∈ X so that, in the language of [20], X may be viewed as a
C∗-correspondence over C(T ). Since there are no sources in the graph
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G, the A-valued inner product is well defined. Let n = |E|, and let
Cn(A) be the column space over A, i.e., Cn(A) = {(ξe)e∈E : ξe ∈
A, for all e ∈ E}. Then we view X as a subset of Cn(A).

We note that the left action is given by the ∗-homomorphism Φ :
A → L(X ), (Φ(a)ξ)(e, x) = a ◦ φe(x)ξ(e, x). Then Φ is faithful if and
only if K = T .

In the case of an iterated function system the C∗-correspondence
will be the full column space over the C∗-algebra A = C(T ), that is
X = Cn(A), with the structure:

• The right action is the untwisted right multiplication, i.e., ξ ·
a(i, x) = ξ(i, x)a(x) for all i ∈ {1, . . . , n} and x ∈ T .

• The left action is given by the ∗-homomorphism Φ : A → L(X )
defined by the formula Φ(a)(ξ)(i, x) = a ◦ ϕi(x)ξi(x).

• The A-valued inner product given by the formula:

〈ξ, η〉A(x) =
n∑

i=1

ξ∗(i, x) η(i, x).

Given a C∗-correspondence X over a C∗-algebra A a Toeplitz represen-
tation of X in a C∗-algebra B consists of a pair (ψ, π), where ψ : X → B
is a linear map and π : A→ B is a ∗-homomorphism such that

ψ(x · a) = ψ(x)π(a) , ψ(a · x) = π(a)ψ(x),

i.e., the pair (ψ, π) is a bimodule map and

ψ(x)∗ψ(y) = π(〈x, y〉A).

That is, the map ψ preserves inner product, see [11, Section 1]. Given
such a Toeplitz representation, there is an ∗-homomorphism π(1) from
K(X ) into B which satisfies

π(1)(Θx,y) = ψ(x)ψ(y)∗ for all x, y ∈ X ,

where Θx,y = x ⊗ ỹ is the rank one operator defined by Θx,y(z) =
x · 〈y, z〉A.
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We define then
J(X ) := Φ−1(K(X )),

which is a closed two sided-ideal in A, see [11, Definition 1.1]. Let K
be an ideal in J(X ). We say that a Toeplitz representation (ψ, π) of X
is coisometric on K if

π(1)(Φ(a)) = π(a) for all a ∈ K.

When (ψ, π) is coisometric on all of J(X ), we say that it is Cuntz-
Pimsner covariant.

It is shown in [11, Proposition 1.3] that, for an ideal K in J(X ), there
is a C∗-algebra O(K,X ) and a Toeplitz representation (kX , kA) of X
into O(K,X ) which is coisometric on K and satisfies:

(1) for every Toeplitz representation (ψ, π) of X which is coisometric
on K, there is an ∗-homomorphism ψ ×K π of O(K,X ) such that
(ψ ×K π) ◦ kX = ψ and (ψ ×K π) ◦ kA = π; and

(2) O(K,X ) is generated as a C∗-algebra by kX (X ) ∪ kA(A).

The algebra O({0},X ) is the Toeplitz algebra TX , and O(J(X ),X ) is
the Cuntz-Pimsner algebra OX .

For a finite graph G = (E, V, r, s), a Cuntz-Krieger G-family consists
of a family {Pv : v ∈ V } of mutually orthogonal projections and a
family of partial isometries {Se}e∈E such that

S∗
eSe = Pr(e) for e ∈ E, and Pv =

∑
s(f)=v

SfS
∗
f for v ∈ s(E).

The edge matrix of G is the E × E matrix defined by

AG(e, f) =
{

1 if r(e) = s(f)
0 otherwise.

Then, a Cuntz-Krieger G-family satisfies:

S∗
eSe =

∑
f∈E

AG(e, f)SfS
∗
f

for every e ∈ E such that AG(e, ·) has nonzero entries. It is shown
in [16, Theorem 1.2] that there exists a C∗-algebra C∗(G) generated
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by a Cuntz-Krieger G-family {Se, Pv} of nonzero elements such that,
for every Cuntz-Krieger G-family {We, Tv} of partial isometries on H,
there is a representation π of C∗(G) on H such that π(Se) = We and
π(Pv) = Tv for all e ∈ E and v ∈ V . The triple (C∗(G), Se, Pv) is
unique up to isomorphism. Since we are assuming that G has no sinks,
{Se}e∈E is a Cuntz-Krieger family for the edge matrix AG in the sense
of [4], see [16, Section 1], and the projections Pv are redundant. If
the matrix AG satisfies Condition (I) from [4] (or, equivalently, since
G is finite, if G satisfies Condition (L) from [16], which asserts that
every loop has an exit), then C∗(G) is unique and is isomorphic to the
Cuntz-Krieger algebra from [4], see [16, Theorem 3.7].

Theorem 2.3. Let (G, {Tv, ρv}v∈V , {φe}e∈E) be a Mauldin-Williams
graph such that the graph G has no sinks and no sources. Let A and X
be defined as above. Then the Cuntz-Pimsner algebra OX is isomorphic
to C∗(G).

Before proving the theorem, we introduce some notation. For k ≥ 2,
set

Ek := {α = (α1, . . . , αk) : αi ∈ E and
r(αi) = s(αi+1), i = 1, . . . , k − 1},

the set of paths of length k in the graph G. Let E∗ = ∪k∈NE
k be the

space of finite paths in the graph G. Also the infinite path space E∞

is defined to be

E∞ := {(αi)i∈N : αi ∈ E and r(αi) = s(αi+1) ∀ i ∈ N}.

For v ∈ V , we also define Ek(v) := {α ∈ Ek : s(α) = v}, and we define
E∗(v) and E∞(v) in a similar way. We consider E∞(v) endowed with
the metric δv(α, β) = c|α∧β| if α �= β and 0 otherwise, where α ∧ β is
the longest common prefix of α and β, and |w| is the length of the word
w ∈ E∗, see [8, p. 116]. Then E∞(v) is a compact metric space and,
since E∞ equals the disjoint union of the spaces E∞(v), E∞ becomes
a compact metric space in a natural way.

For α ∈ Ek, we write φα = φα1 ◦ · · · ◦ φαk
and Sα = Sα1 · · ·Sαk

. Let
Sv be the state space of Av = C(Tv) and S =

∏
v∈V Sv. We consider
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the metrics Lv defined on Sv by the formula

(2.1) Lv(μ, ν) = sup{|μ(f) − ν(f)| : f ∈ Lip (Tv), cf ≤ 1},

where Lip (Tv) is the space of Lipschitz functions on Tv and cf is the
Lipschitz constant of the Lipschitz function f . For f ∈ Lip (Tv), v ∈ V
and μ, ν ∈ Sv,

(2.2) |μ(f) − ν(f)| ≤ cfLv(μ, ν).

Further, if α ∈ Ek, k ≥ 1, and μ, ν ∈ Sr(α), then μ ◦ φ−1
αk

◦ · · · ◦ φ−1
α1
, ν ◦

φ−1
αk

◦ · · · ◦ φ−1
α1

∈ Ss(α) and

(2.3) Ls(α1)(μ ◦ φ−1
αk

◦ · · · ◦ φ−1
α1
, ν ◦ φ−1

αk
◦ · · · ◦ φ−1

α1
) ≤ ckdiamL(S),

where diamL(S) = maxv∈V diamLv
(Sv).

For α ∈ E∞, the sequence
(
φα1···αk

(Tr(αk))
)
k∈N

⊂ Ts(α) is a de-
creasing sequence of compact sets. Moreover, diam

(
φα1···αk

(Tr(αk))
)
≤

ckD, where D := maxv∈V diam (Tv). Therefore

lim
k→∞

diam
(
φα1···αk

(Tr(αk))
)

= 0,

so the intersection ∩k∈Nφα1···αk
(Tr(αk)) consists of a single point,

xα ∈ Ts(α). Hence, we can define a map Π : E∞ → T by the formula

Π(α) = xα.

Then Π is a continuous map and its image is the invariant set K of the
Mauldin-Williams graph.

Proof of Theorem 2.3. Let μ0 = (μ0
v)v∈V ∈ S be fixed and a =∑⊕

v∈V av ∈ Lip (T ). We define

iA(a) = lim
k→∞

∑
α∈Ek

μ0
r(α)(as(α) ◦ φα)SαS

∗
α.

We prove that iA is a norm decreasing ∗-homomorphism from the ∗-
algebra Lip (T ) into C∗(G). Then, since Lip (T ) is a dense ∗-subalgebra
of A = C(T ), we can extend iA to A.
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We show first that the limit from the definition of iA(a) exists. Let
a ∈ Lip (T ), and let ε > 0. Choose k0 ∈ N such that ckdiamL(S)ca < ε
for all k ≥ k0. Set ak :=

∑
α∈Ek μ0

r(α)(as(α) ◦ φα)SαS
∗
α. Let k,m ≥ k0,

and suppose that k > m. Then

am − ak =
∑

α∈Em

∑
β∈Ek−m

s(β)=r(α)

μ0
r(α)(as(α) ◦ φα)SαSβS

∗
βS

∗
α

−
∑

α∈Em

∑
β∈Ek−m

s(β)=r(α)

μ0
r(β)(as(α) ◦ φαβ)SαSβS

∗
βS

∗
α

=
∑

α∈Em

∑
β∈Ek−m

s(β)=r(α)

(μ0
r(α)(as(α) ◦ φα)

− μ0
r(β)(as(α) ◦ φαβ))SαSβS

∗
βS

∗
α

=
∑

α∈Em

∑
β∈Ek−m

s(β)=r(α)

(μ0
r(α)(as(α) ◦ φα)

− μ0
r(β) ◦ φ−1

β (as(α) ◦ φα))SαSβS
∗
βS

∗
α.

Since |μ0
r(α)(as(α) ◦ φα) − μ0

r(β) ◦ φ
−1
β (as(α) ◦ φα)| < ε, by equations

(2.2) and (2.3), for all α ∈ Em, β ∈ Ek−m such that s(β) = r(α),
and since SαSβS

∗
βS

∗
α are orthogonal projections, ‖am − ak‖ < ε, for

all m, k ≥ k0. So (ak)k∈N is a Cauchy sequence, hence convergent.
Since ‖am‖ = maxα∈Em |μ0

r(α)(as(α) ◦ φα)| ≤ ‖a‖ for all m ∈ N,
‖iA(a)‖ ≤ ‖a‖ for all a ∈ A.

Next we prove that iA is a homomorphism. Let a, b ∈ Lip (T ). Then
for each α ∈ E∞ there is a point xα ∈ K such that ∩k∈Nφα1···αk

(Tr(αk))
= {xα}. Then limk→∞ μ0

r(αk)(as(α) ◦ φα1···αk
) = a(xα), limk→∞ μ0

r(αk)

(bs(α) ◦ φα1···αk
) = b(xα) and limk→∞ μ0

r(αk)((ab)s(α) ◦ φα1···αk
) =

a(xα)b(xα). Let ε > 0. Since diam (φα1···αk
(Tr(αk))) ≤ ckD for

all α ∈ E∞ and k ∈ N, there exists some N ∈ N such that
|μ0

r(α)(as(α) ◦ φα1···αk
)− a(xα)| < ε, |μ0

r(α)(bs(α) ◦ φα1···αk
)− b(xα)| < ε

and |μ0
r(α)(as(α)◦φα1···αk

bs(α)◦φα1···αk
)−a(xα)b(xα)| < ε for all k ≥ N
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and for all α ∈ E∞. Then∥∥∥∥∥∥
∑

α∈Ek

μ0
r(α)(as(α) ◦ φαbs(α) ◦ φα)SαS

∗
α

−
∑

α∈Ek

μ0
r(α)(as(α) ◦ φα)μ0

r(α)(bs(α) ◦ φα)SαS
∗
α

∥∥∥∥∥∥
≤ max

α∈Ek
|μ0

r(α)(as(α) ◦ φαbs(α) ◦ φα)− μ0
r(α)(as(α) ◦ φα)μ0

r(α)(bs(α) ◦ φα)|

< ε(1 + ‖a‖ + ‖b‖)

for all k ≥ N . Thus, iA(ab) = iA(a)iA(b). Hence, iA is a homomor-
phism and one can easily see that it is an ∗-homomorphism.

Further, iA satisfies the equation

(2.4) iA(a)Se = SeiA(as(e) ◦ φe) for all a ∈ A, and e ∈ E,

where we extend the map as(e) ◦ φe to all T by setting it to be 0 when
x /∈ Tr(e), since, for a ∈ Lip (T ), we have:

iA(a)Se =

⎛
⎝ lim

k→∞

∑
α∈Ek

μ0
r(α)(as(α) ◦ φα)SαS

∗
α

⎞
⎠Se

= lim
k→∞

∑
α∈Ek,α1=e

μ0
r(α)(as(α) ◦ φα)SeSα2 · · ·Sαk

S∗
αk

· · ·S∗
α2

= Se lim
k→∞

∑
α′∈Ek−1(r(e))

μ0
r(α′)(as(e) ◦ φe ◦ φα′)Sα′S∗

α′

= SeiA(as(e) ◦ φe).

We also define the linear map iX : X → C∗(G) by the formula

iX (ξ) =
∑
e∈E

SeiA(ξe),

where ξe ∈ C(T ) is defined by ξe(x) = ξ(e, x) if x ∈ Tr(e) and 0
otherwise. We have

iX (ξ · a) =
∑
e∈E

SeiA(ξea) =
∑
e∈E

SeiA(ξe)iA(a) = iX (ξ)iA(a),
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iX (a · ξ) =
∑
e∈E

SeiA(as(e) ◦ φeξe) =
∑
e∈E

SeiA(as(e) ◦ φe)iA(ξe)

=
∑
e∈E

iA(a)SeiA(ξe) = iA(a)iX (ξ)

and

iX (ξ)∗iX (η) =
(∑

e∈E

SeiA(ξe)
)∗(∑

f∈E

Sf iA(ηf )
)

=
∑
e∈E

iA(ξe)∗iA(ηe) = iA

(∑
e∈E

ξ∗eηe

)
= iA(〈ξ, η〉A).

Hence (iA, iX ) is a Toeplitz representation.

Let J(X ) := Φ−1(K(X )). Note that J(X ) = A since for a ∈ A we
have

Φ(a)ξ =
∑
e∈E

Θxe,δe(ξ),

where xe ∈ X is defined by xe
f = as(e) ◦ φeδ

e
f ,

δe(f, x) =
{

1 if f = e and x ∈ Tr(e)

0 otherwise.

Then, for a ∈ A, we have

i
(1)
A (Φ(a)) = i

(1)
A

(∑
e∈E

Θxe,δe

)
=
∑
e∈E

i
(1)
A (Θxe,δe)

=
∑
e∈E

iX (xe)iX (δe)∗

=
∑
e∈E

(∑
f∈E

Sf iA(xe
f )
)(∑

g∈E

SgiA(δe
g)
)∗

=
∑
e∈E

(SeiA(as(e) ◦ φe))(iA(1Tr(e))S
∗
e )

= iA(a)
∑
e∈E

SeS
∗
e = iA(a).

Therefore, (iA, iX ) is a Cuntz-Pimsner covariant representation.
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For δe defined as above, we notice that

iX (δe) =
∑
f∈E

Sf iA(δe
f ) = SeiA(1Tr(e)) = Se.

Then iX (X ) ∪ iA(A) generates C∗(G).

Since (iA, iX ) is a Cuntz-Pimsner covariant representation, there
exists a homomorphism iX × iA of OX onto C∗(G) such that (iX ×
iA) ◦ kX = iX and (iX × iA) ◦ kA = iA. We prove that iX × iA
is also injective. Let γ : T → Aut (OX ) defined by γz(kX (ξ)) =
zkX (ξ), and let γz(kA(a)) = kA(a) be the gauge action on OX . Let
β : T → Aut (C∗(G)) defined by βz(Se) = zSe for all e ∈ E be the
gauge action on C∗(G). Therefore, by the definition of iA and iX ,
βz(iX (ξ)) = ziX (ξ) and βz(iA(a)) = iA(a) for all ξ ∈ X and a ∈ A.
Hence βz ◦ (iX × iA) = (iX × iA) ◦ γz for all z ∈ T. Then the gauge-
invariant uniqueness theorem [11, Theorem 4.1] implies that iX × iA
is injective. Thus, C∗(G) is isomorphic to the Cuntz-Pimsner algebra
associated to the C∗-correspondence X .

Corollary 2.4. The Cuntz-Pimsner algebra OX = O(J(X ),X )
of the C∗-correspondence associated with an iterated function system
(φ1, φ2, . . . , φn) is isomorphic to the Cuntz algebra On.

If K (the invariant set of the Mauldin-Williams graph) is a proper
subset of T , then U := T \ K is a nonempty open set of T . Let
IU := C0(U) be the corresponding ideal in A. Then

XIU
:= {ξ ∈ X : 〈ξ, η〉A ∈ IU for all η ∈ X}

is a right Hilbert IU -module, and we know that XIU
= X IU := {ξ · i :

ξ ∈ X , i ∈ IU}, see [11, Section 2]. It follows that XIU
= {ξ ∈ X : ξe ∈

C0(U)} (ξe ∈ C0(U) means that ξ(e, x) = 0 if x ∈ K). We claim that IU
is an X -invariant ideal in A, i.e., Φ(IU )X ⊂ X IU . For i ∈ IU and ξ ∈ X ,
we have (Φ(i)ξ)e = i ◦ φeξe, and, since i ∈ IU and φe(Kr(e)) ⊂ Ks(e),
i◦φe ∈ IU . Hence, (Φ(i)ξ)e ∈ IU . Therefore, IU is an X -invariant ideal
in A and X/X IU is a C∗-correspondence over A/IU � C(K), see [11,
Lemma 2.3]. Moreover X/X IU � X (K), where X (K) = C(E×GK) is
the C∗-correspondence defined as in Definition 2.2 for the C∗-algebra
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C(K). Then the ideal I(IU ) of OX generated by iA(IU ) is Morita
equivalent to OXIU

, and since Φ(A) ⊂ K(X ), OX /I(IU ) ∼= OX/XIU
,

see [11, Corollary 3.3].

Proposition 2.5. The ideal I(IU ) generated by iA(IU ) is equal
to 0.

Proof. Let a ∈ IU be a Lipschitz function. As in the proof
of Theorem 2.3, we have that iA(a) = limk→∞

∑
α∈Ek μ0

r(α)(as(α) ◦
φα)SαS

∗
α. Let ε > 0. Since ∩k∈Nφα1···αk

(Tr(αk)) = {xα} with
xα ∈ Ks(α) and diam (φα1···αk

)(Tr(αk)) < ckD for all α ∈ E∞,
there exists N ∈ N such that |μ0

r(αk)(a ◦ φα1···αk
) − a(xα)| < ε

for all α ∈ E∞ and k ≥ N . Since a(x) = 0 for all x ∈ K,
‖
∑

α∈Ek μ0
r(α)(as(α) ◦ φα)SαS

∗
α‖ < ε for all k ≥ N . Hence, iA(a) = 0.

Corollary 2.6. The Cuntz-Pimsner algebra associated to the C∗-
correspondence C(E ×G K) over C(K) with the actions defined as in
Definition 2.2 is isomorphic to C∗(G).

One can interpret the previous results in the particular case of the
iterated function system and obtain the result from [23, Remark 4.6].

3. On noncommutative Mauldin-Williams graphs. We give
a generalization of the work of Pinzari, Watatani and Yonetani from
[23, Section 4.3] on noncommutative iterated function systems in the
context of “noncommutative” Mauldin-Williams graphs and the Rieffel
metric. We show that, in fact, these situations are no more general than
those just discussed.

We begin by reviewing the Rieffel metric.

Definition 3.1. Let A be a unital C∗-algebra, let L(A) ⊂ A be a
dense subspace of A (the Lipschitz elements), and let L be a semi-norm
(the Lipschitz semi-norm) on L(A) such that K := {a ∈ L(A) : L(a) =
0} equals the scalar multiples of the identity. The Rieffel metric ρ on
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the state space S of A is defined by the equation

ρ(μ, ν) = sup{|μ(a) − ν(a)| : a ∈ L(A), L(a) ≤ 1}

for all μ, ν ∈ S. We will suppose that the metric ρ is bounded on S
and that the corresponding topology coincides with the weak-∗ topology
on S.

For a compact metric space (X, ρ), let

C(X) := {E : E is a non-empty compact subset of X}.

The Hausdorff metric on C(X) is defined by the formula

δρ(E,F ) = inf{r > 0 : Ur(E) ⊇ F and Ur(F ) ⊇ E}

for all E,F ∈ C(X), where Ur(E) = {x ∈ X : ρ(x, y) < r for some y ∈
E}, see [8, Theorem 2.4.1] or [15, Proposition 1.1.5]. Then (C(X), δρ)
is a compact metric space.

For a C∗-algebra A, Rieffel defines the quantum closed subsets of A in
[29, p. 14] to be the closed convex subsets of the state space S(A) of A.
If L is a Lipschitz semi-norm on A and ρL is the corresponding Rieffel
metric, the space Q(A) of quantum closed subsets of A is a compact
metric space for the associated Hausdorff metric, see [29, p. 14]).

Following the definition of the classical Mauldin-Williams graphs, we
define a noncommutative variant.

Definition 3.2. A noncommutative Mauldin-Williams graph is a
system (G, {Av,Lv, Lv, ρv}v∈V , {φe}e∈E) where G = (V,E, s, r) is a
graph and where {Av,Lv, Lv}v∈V and {φe}e∈E are families such that

(1) For each v ∈ V , Av is a unital C∗-algebra with a prescribed
Lipschitz semi-norm Lv on a prescribed subspace Lv of Lipschitz
elements in Av and ρv is the corresponding Rieffel metric.

(2) For e ∈ E, φe is a unital ∗-homomorphism from As(e) to Ar(e)

such that
ρs(e)(φ∗e(μ), φ∗e(ν)) ≤ cρr(e)(μ, ν)

for some constant c satisfying 0 < c < 1 and all μ, ν ∈ Sr(e) (where Sv

is the state space of the C∗-algebra Av).
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We shall assume, too, that there are no sinks in the graph G. We also
let S :=

∏
v∈V Sv.

When we have one vertex and n edges we call the system a noncom-
mutative iterated function system.

Let C(Sv) be the space of compact subsets of Sv endowed with the
Hausdorff metric δρLv

, for each v ∈ V . Let C =
∏

v∈V C(Sv). Then C
is a compact metric space. Moreover, the map F : C → C defined by
the formula

F
(
(Kv)v∈V

)
=

( ⋃
e∈E

s(e)=v

φ∗e(Kr(e))

)
v∈V

is a contraction, since each φ∗e is a contraction with respect to the Rieffel
metric. Thus, there exists a unique element (Kv)v∈V ∈ C such that

(3.1) Kv =
⋃
e∈E

s(e)=v

φ∗e(Kr(e))

for all v ∈ V . Let Tv be the closed convex hull of Kv, for v ∈ V . That
is Tv ∈ Q(Av) for all v ∈ V . Since by [29, Proposition 3.6] there is
a bijection between isomorphism classes of quotients of Av and closed
convex subsets of Sv, we will assume that

(3.2) Sv = Tv for all v ∈ V,

by taking a quotient of the original C∗-algebra Av, if necessary. In
particular, if (Mv)v∈V ∈ S is any family which satisfies equation (3.1),
then Mv = Kv and the closed convex hull of Mv equals Sv for all v ∈ V .

Lemma 3.3. In the above situation, if I is an ideal in
∑⊕

v∈V Av of
the form I = (Iv)v∈V , with Iv a proper ideal of Av, then

(3.3)

Iv =
⋂
e∈E

s(e)=v

φ−1
e (Ir(e)) if and only if Iv = (0v) for all v ∈ V.

Proof. Let I = (Iv)v∈V be such that Iv = ∩e∈E,s(e)=vφ
−1
e (Ir(e)) for

all v ∈ V . Let Mv := {μ ∈ Sv : μ(a) = 0 for all a ∈ Iv}. We show that
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(Mv)v∈V is a family which satisfies equation (3.1). Let v ∈ V , and let
μ ∈ ∪e∈E,s(e)=vφ

∗
e(Mr(e)). Then there exists some e ∈ E and ν ∈Mr(e)

such that μ = φ∗e(ν). Let a ∈ Iv. Then φe(a) belongs to Ir(e). Hence
μ(a) = ν(φe(a)) = 0. Therefore μ ∈Mv.

Now suppose that there is some μ ∈Mv such that

μ /∈
⋃
e∈E

s(e)=v

φ∗e(Mr(e)).

Hence, there is some a ∈ Av such that μ(A) �= 0 and φ∗e(ν)(a) = 0 for all
ν ∈Mr(e) and for all e ∈ E such that s(e) = v. Then φe(av) ∈ Ir(e) for
all e ∈ E, therefore av ∈ Iv. Thus μ(a) = 0, which is a contradiction.
Then the family (Mv)v∈V satisfies equation (3.1). Therefore μ(a) = 0
for all μ ∈ Sv and a ∈ Iv, hence Iv = 0 for all v ∈ V .

Suppose that there exists some a ∈ Av which is not zero, but
a ∈ ∩e∈E,s(e)=v Kerφe. Then there is some μ ∈ Sv such that μ(a) = 0.
Since Kv = ∪e∈E,s(e)=v φ

∗
e(Kr(e)), there is some e ∈ E with s(e) = v

and some ν ∈ Sr(e) such that μ = φ∗e(ν). Since φe(a) = 0, we
obtain that μ(a) = ν(φe(a)) = 0, which is a contradiction. Hence
(0v) = ∩e∈E,s(e)=v Kerφe.

Recall that Ek denotes the set of paths of length k, E∞ denotes the
set of infinite paths in the graph G, Ek(v) denotes the set of paths of
length k starting at the vertex v, and E∞(v) denotes the set of infinite
paths starting at the vertex v. For k ∈ N and α ∈ Ek, we write φ∗α1···αk

for the map φ∗α1
◦ · · · ◦ φ∗αk

: Sr(αk) → Ss(α1) and φαk···α1 for the map
φαk

◦ · · · ◦ φα1 : As(α1) → Ar(αk). We will use the following results
(which are similar to the commutative case): if v ∈ V , a ∈ Lv(Av)
and μ, ν ∈ Sv then |μ(a) − ν(a)| ≤ ρv(μ, ν) · Lv(a); if α ∈ Ek and
μ, ν ∈ Sr(α), then

(3.4) ρs(α)(φ∗α(μ), φ∗α(ν)) ≤ ckρr(α)(μ, ν) ≤ ckD,

where s(α) = s(α1), r(α) = r(αk) and D = maxv∈V diamLv
(Sv).

Since (G, {Sv, ρv}v∈V , {φ∗e}e∈E) is a (classical) Mauldin-Williams
graph, for each α ∈ E∞ there is a unique state μα ∈ Ss(α) such that
{μα} = ∩k∈Nφ

∗
α1···αk

(Sr(αk)). In particular limk→∞ φ∗α1···αk
(μr(αk)) =

μα for all μ = (μv)v∈V ∈ S.
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Theorem 3.4. Let (G, {Av,Lv, Lv, ρv}v∈V , {φe}e∈E) be a (non-
commutative) Mauldin-Williams graph. Suppose that the graph G has
no sinks. Then there is an injective ∗-homomorphism from A into
C(E∞).

Proof. Fix v0 ∈ V . Define πv0 : Av0 → C(E∞(v0)) by the formula

πv0(a)(α) = μα(a)

for all a ∈ Av0 . Thus, if a ∈ Lv0 ,

πv0(a)(α) = lim
k→∞

μr(αk)(φαk···α1(a))

for all μ = (μv)v∈V ∈ S. By the comments preceding the theorem the
map πv0 is well defined. We prove that it is a homomorphism.

Let μ0 = (μ0
v)v∈V ∈ S be fixed. Let a ∈ Lv0 , α ∈ E∞(v0) and

let ε > 0. Let k ∈ N be such that ckDLv0(a) < ε. For any
μ = (μv)v∈V ∈ S, we have

∣∣∣μr(αk)

(
μ0

r(αk)(φαk···α1(a))1Ar(αk) − φαk···α1(a)
)∣∣∣

=
∣∣∣μ0

r(αk)(φαk···α1(a)) − μr(αk)(φαk···α1(a))
∣∣∣ < ckDLv0(a) < ε.

Hence,

(3.5) ‖μ0
r(αk)(φαk···α1(a))1Ar(αk) − φαk···α1(a)‖ < 4ε.

Let a, b ∈ Av0 . We have

|μ0
r(αk)(φαk···α1(ab)) − μ0

r(αk)(φαk···α1(a))μ
0
r(αk)(φαk···α1(b))|

≤ ‖μ0
r(αk)(φαk···α1(ab)) − φαk···α1(a)φαk···α1(b)‖

+ ‖φαk···α1(a)φαk···α1(b) − φαk···α1(a)μ
0
r(αk)(φαk···α1(b))‖

+ ‖φαk···α1(a)μ
0
r(αk)(φαk···α1(b))

− μ0
r(αk)(φαk···α1(a))μ

0
r(αk)(φαk···α1(b))‖

< 4ε+ 4‖a‖ε+ 4ε = (8 + 4‖a‖)ε,
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by inequality (3.5). Since limk→∞ μ0
r(αk)(φαk···α1(ab)) = πv0(ab)(α)

and limk→∞ μ0
r(αk)(φαk···α1(a))μ

0
r(αk)(φαk···α1(b)) = πv0(a)(α)πv0(b)(α),

we see that πv0 is a homomorphism.

Hence, for each v ∈ V , we have defined an ∗-homomorphism πv :
Av → C(E∞(v)). We prove that πv is injective for all v ∈ V . Let
v ∈ V . Let a ∈ Av. Then

a ∈ Kerπv ⇐⇒ πv(a)(α) = 0 ∀ α = (αn)n∈N ∈ E∞(v)
⇐⇒ πv(a)(eβ) = 0 ∀ β ∈ E∞(r(e)) and e ∈ E(v)
⇐⇒ πr(e)(φe(a))(β) = 0 ∀ β ∈ E∞(r(e)) and e ∈ E(v)

⇐⇒ a ∈
⋂

s(e)=v

Kerπr(e) ◦ φe.

Lemma 3.3 implies that Kerπv = 0 for all v ∈ V , hence the ∗-
homomorphism π : A→ C(E∞) defined by the formula

π ((av)v∈V ) =
∑
v∈V

⊕πv(av)

is an injective ∗-homomorphism.

Corollary 3.5. Under the hypothesis of Theorem 3.4, we conclude
that A must be a commutative C∗-algebra.

Even in the setting of a “noncommutative” iterated function system
studied in [23, Section 4.2], if we have defined a Rieffel metric such
that the underlying topology and the weak-∗ topology coincide, and if
the duals of the endomorphisms restricted to the state space of A are
contractions with respect to the Rieffel metric, then (under the hypoth-
esis that A satisfies equation (3.2)) A is forced to be commutative and
the endomorphisms φi must come from an ordinary iterated function
system, i.e., A = C(K) for some compact metric space and there are
contractions {ϕi}i=1,... ,n defined on K such that φi(a) = a ◦ ϕi. This
seems not to have been noticed by the authors of [23].

The assumption that the graph G has no sinks is essential in the
proofs of Theorems 2.3 and 3.4, since it forces the presence of infinite
paths in the graph. Also, the assumption that the graph G has no
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sources was needed to define the C∗-correspondence associated with
a Mauldin-Williams graph. It is not needed, though, in the proof of
Theorem 3.4.

We would like to call attention to a recent preprint of Kajiwara
and Watatani [13] in which they considered a somewhat different C∗-
correspondences associated with an iterated function system and arrive
at a C∗-algebra that is sometimes different from On. It appears that
their construction can be modified to cover the setting of Mauldin-
Williams graphs, leading to C∗-algebras different from the Cuntz-
Krieger algebras of the underlying graphs. We intend to pursue the
ramifications of this in a future note.
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