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THE PENNEY-FUJIWARA PLANCHEREL
FORMULA FOR GELFAND PAIRS

RONALD L. LIPSMAN

ABSTRACT. This paper is concerned with the Penney-
Fujiwara Plancherel formula for the quasi-regular representa-
tion of a homogeneous space G/H. The specific spaces consid-
ered are semidirect products G = H X N, where H is compact
and N is simply connected nilpotent. An explicit description
is given for the Plancherel formula, and the attendant Penney
distributions associated with it, in the important special case
that (G, H) is a Gelfand pair. The description is in orbital pa-
rameters, and thereby supplies an important instance of the
validity of the Kirillov orbit method that is outside the usual
context of exponential solvable groups. Other results that
are found in the paper include: (i) a proof of the fact that
a distribution-theoretic form of Frobenius reciprocity holds
for Gelfand pairs; (ii) the demonstration that the well-known
form of the Penney distributions in terms of real polarizations
continues to be valid when the representations are realized by
complez polarizations; (iii) an explicit formula for the inter-
twining operator for the direct integral decomposition of the
quasi-regular representation of G/H; and (iv) an orbital cri-
terion for the quasi-regular representation to be multiplicity-
free, as well as a criterion for an irreducible to occur in the
spectrum.

0. Introduction. This paper is devoted to the Plancherel formula
which describes the direct integral decomposition of a quasi-regular
representation. The latter is the natural representation of a Lie group
G on the square-integrable functions on a homogeneous space of G.
More precisely, if H is a closed subgroup of G, the corresponding
quasi-regular representation is nothing more than the representation
7 of G obtained by inducing the identity representation of H up to G.
The abstract or “soft” Plancherel formula is a statement of unitary
equivalence between 7 and a direct integral of irreducible unitary
representations
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vy is the Plancherel measure class, X is the spectrum, and n(7) is the
multiplicity. The formula is considered soft because only the class of the
measure is specified and because the intertwining operator which affects
the unitary equivalence may not be specified. To “harden” the formula,
one must deal with a distribution-theoretic version [19]. Such a version
is called a Penney-Fujiwara Plancherel formula (abbreviated PFPF).
The specific ingredients of the PFPF are reviewed below in Section 1.
Suffice it to say in this introduction that the Kirillov orbit method has
played a governing role in its development (also discussed in Section
1). Because of that, all instances but one (namely, reductive symmetric
spaces) in which the PFPF has been computed explicitly have fallen
within the realm of monomial spectrum—that is, when the spectrum
consists of representations induced from a character. According to
the orbit method, irreducible representations are parameterized by
coadjoint orbits. Monomial spectrum means that the orbits have real
polarizations. The polarizing groups themselves are critical ingredients
in the formulas for the Penney distributions that enter the PFPF—see
formula (1.3) below. The reader may find extensive discussions of these
ideas in [7, 14, 15 and 16].

But, of course, monomial spectrum scenarios do not exhaust all of
the interesting situations. As mentioned earlier, reductive symmetric
spaces constitute a prime example. For those, the spectrum is highly
nonmonomial. Even the next most sophisticated kind of induction,
namely, holomorphic induction via a positive complex polarization,
does not suffice to describe the spectrum. We would like to consider sit-
uations in which holomorphically induced representations do constitute
the spectrum. This is important because, up to now, no one has had
any idea how to extend the definition of the Penney distributions to
the situation in which the polarizing groups lie in the complexification
of G. Accomplishing that is one of the main goals of this paper.

The simplest and most natural place to consider holomorphically
induced representations is in the context of solvable groups. At least
in the algebraic case, those are semidirect products of tori with simply
connected nilpotent groups. We shall be concerned primarily with a
natural analog of those, namely groups G = K X N, where K is compact
and N is normal and simply connected nilpotent. The homogeneous
spaces G/K have been studied recently in [3] and [2], in particular
for the case where (G, K) is a Gelfand pair (see Section 5 for the
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definition). In this paper we shall compute the Penney distributions
(in two different guises) and the PFPF for all Gelfand pairs. We note
that the case where N is abelian, in which case G/H is an abelian
symmetric space, has been studied in [12] and [15].

The organization of the paper is as follows. In Section 1 we describe
explicitly the PFPF for a general homogeneous space G/H. In
Section 2 we specialize to the case of compact H. In Section 3 we
further specialize to the situation in which the multiplicity function is
identically 1. For now the reader may take that to be the definition
of a Gelfand pair. In Section 4 we review the representation theory
of Lie groups with co-compact nilradical. We apply that theory to
Gelfand pairs in Section 5. In Section 6, we prove the PFPF for a
Gelfand pair in the context of Mackey parameters. Finally, in Section
7, we reformulate and refine the results of Section 6 by recasting
the formulas into an orbital configuration. The main results of the
paper are: Theorem 3.1, which asserts the uniqueness of the Penney
distributions when H is compact; Theorem 6.2, the actual PFPF for
a Gelfand pair; and Theorem 7.1, the orbital realization of the Penney
distributions for a holomorphically induced representation.

Some of the results were announced in [17].

1. The Penney-Fujiwara Plancherel formula. For simplicity,
we shall assume that G and its closed subgroup H are both unimodular.
Let 7 be a unitary representation of G on a Hilbert space H,. We write
H° to denote the Frechet space of C*° vectors of 7. Its antidual space
is denoted by H. °>°. Each of H2°, H > is acted upon by G, therefore
also by D(G) := C°(G). It is well-known that

T(D(G)HZ® C H®.

We shall always denote the quasi-regular representation Indgl by
7. It acts (by right translation) on the space H, of Borel functions
f on G which are left H-invariant and square-integrable with respect
to the G-invariant measure on G/H. The canonical cyclic distribution

ar € H;°° is defined by (o, f) = f(1). The matrix coefficients of .,
are computed in [15]:

(r(ar,ar) =wu (1),  weDG),
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where

(1.1) wr(g) :/ w(g th 1Y) dh.
H
The abstract PFPF is formula (1.2) in the following

Theorem 1.1. Suppose that T is type I and that in the direct integral
decomposition of T (formula (0.1)), the multiplicity function is finite
almost everywhere. Then, for vk — a.a. w € G', there are n(m) linearly
independent, H-invariant distributions 8] € (H;‘X’)H, and a measure
wg wn the class vy so that

n()
(1.2) wH(l):/éZ<7r(w) T BT dug(n),  we D(G).

The 37 are called the Penney distributions. It is explained in [14]
and [15] that one consequence of this formula is the fact that the map

WH < {ﬂ'(w)ﬂ;}

is the intertwining operator affecting the direct integral decomposition
of 7. It is also quite well known that the dimension of the space
(H, °°)H of invariant distributions may exceed n(r); but, in this regard,
see Theorem 3.1 below.

We close this section by citing the explicit orbital formulas for all of
these ingredients which are known when G and H are simply connected
nilpotent Lie groups [4, 7] and [13]. A substantial amount of recent
research has centered around the question of extending the applicability
of these formulas to more general groups and homogeneous spaces. The
facts are these:

1. The spectrum of 7 is parameterized by the orbits that meet
bt ={p€g*:4(h) =0}
2. The multiplicity is finite precisely when the orbits in (1) have an

intersection with h* whose dimension agrees generically with that of
the H-orbits on ht;



GELFAND PAIRS 659

3. In that case, the multiplicity of a representation associated to such
an orbit A is # (ANpt) /H.

4. The Penney distribution for the representation corresponding to
an H-orbit H - ¢, ¢ € b inside G- ¢ N h* is

(1.3) f— f

HNB\H

Here B is a real polarizing group for ¢, 7 = Ind%X,, X4(exp X) =
e'(X) and the space M, consists of Borel functions, transforming on
the left under B by Xy, and square-integrable on G/B.

We shall investigate the truth of these properties for Gelfand pairs in
Section 7.

2. The PFPF for Ind$% 1. We assume now that G is a connected
unimodular Lie group and K C G is a compact subgroup. We
are concerned with the PFPF for the quasi-regular representation
7 = Ind%1.

Proposition 2.1. For any irreducible unitary representation m of
G, acting in a Hilbert space H,, we set

HE ={¢eH, :m(k)e=¢€ Ve K}

and n(m) = dimHE. Suppose 7 = Ind$1 is type 1. Then there is a
unique Borel measure class vk on G, concentrated in Gx = {m € G :

HE £ {0}}, such that

D
(2.1) _— / n(r) = dvi ().

G

Proof. We first observe that the multiplicities n(7) do not depend
on the realization of 7; in fact, n(m) depends only on the (unitary
equivalence) class of m. Next we observe that the technique of Anh
reciprocity applies here [1]. In particular, since K is compact, the
identity representation 1 € K has positive Plancherel measure. Thus
the conclusion follows immediately from [1, Corollary 1.10]. o
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Henceforth, we assume that K is large enough in G to guarantee that
for
vk —a.a. ™€ G, dimHE < co.

In that case the multiplicities n(m) that appear in (2.1) are (almost)
all finite. The abstract PFPF enunciated in Theorem 1.1 therefore
asserts that: for vg —a.a. 7 € G, we can find n(n) distributions

BT Baa € (H;C’O)K, and a choice px of Plancherel measure (in

the class vk ), so that

n()
(2.2) wK(l):/éZ<7r(w) T BT dux(n),  weD(G).

Remark. The Plancherel measure px in the class vk is not yet
uniquely specified by formula (2.2). This is because the choice of
the 57 may vary, e.g., by scalars depending on 7. Canonical choices
of the distributions will yield a specific px, as happens in the usual
Plancherel formula for a unimodular type I group [5, Chapter 18], where
the existence of a canonical trace specifies the distributions. (See the
remark in Section 6.)

We can be somewhat more precise about the choice of the distribu-
tions B7. For any m € Gk, we may choose a family of orthonormal
vectors

&5 &nm € HE.
Then the 87 may be specified by the equation

( ;r,£>:<£;r,£>, 1 <j < n(m).

At this point we make two observations. First, it is conceivable that the
space spanned by the 87, 1 < j < n(w), does not exhaust (’H;OO)K.
Second, even if it does, there is typically no canonical choice of the

vectors {£7}. We can move toward canonical choices if we specialize to

3. The multiplicity-free situation. We continue with the scenario
of Section 2, but now we impose the additional hypothesis: for

vk - a.a. 7 € G, n(m) = 1.
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Then the quasi-regular representation 7 is multiplicity-free

= /6 x dvic ().

G

Therefore, according to Penney’s result [19], we have in this case
lgdim(H;m)K, vk — a.a. 7€ G.

But in fact, one of the main results of this paper is

Theorem 3.1. If 7 = Ind$.1 is multiplicity-free, then

dim(’H;OO)K:l, vk — a.a. 7€ G.

Proof. Aside from a vg-null set in G K, every representation m € Gk
satisfies n(r) = dimHX = 1. For any of these representations r,
corresponding to any non-zero & € HX  we may define 3 = 3y by
(Bo, &) = (€0,&),& € HE®. Then By is a non-zero element of (’H;OO)K.
On the other hand, suppose 3 € (”H*OO)K, B # 0. Then there is

™

& € HE, (B,£1) # 0. Next define a projection P on H, by

P:/Kw(k)dk.

We note that P # 0 since P = ¢ for any ¢ € HE. In fact P is
precisely the orthogonal projection of #H, onto the one-dimensional
space HE. Next we observe that P preserves H>°, and so by duality
also maps H,*° to itself. B being K- fixed, it follows that P fixes S.
Therefore 0 # (8,&1) = (PB,&1) = (B, P&). In particular P& # 0.
Moreover P¢; € H® N HE. Hence HE C HX®. Now it is clearly
no loss of generality to assume & € HE, replacing & by P& if
necessary. Moreover, we may assume (3,£;) = 1. Thus to summarize,

for any nonzero 3 € ('H"’O)K we have produced a non-zero element

™

€1 € HE C H satisfying (8,£,) = 1.

Now set V, = (Hf)L =ker P, H, = HX ® V,. This decomposition
respects the C'* vectors. That is, if we set V2° = H2° NV, then

(3.1) HZ =HE V.
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In fact, if £ € H°, then it is written uniquely
E=c&1+n, ceC, Pn=0.

Since & € HE C HY®, then ) € VZ°. Note also that V2° = ker P|ye.

Claim. V2 =kerf. In fact, if n € V° and {B,n) # 0, then

0 # (8,m) = (PB,n) = (B8, Pn) = 0.

The reverse inclusion is evident from (3.1).

The argument concludes quickly now. Any & € HS® is written
uniquely £ = ¢€; +1,¢c € C, n € VX =ker 8. Then (8,£) = (B,c&1) =
¢ = (£&,€). That is, any 3 € (H;W)K is uniquely determined by an
element in the one-dimensional space HX; or alternatively the map

€= Be, HE — (’H;O")K is a (conjugate-linear) bijection. O

We shall use Theorem 3.1 in a critical way in the last section of the
paper. We close this section with two

Remarks. 1. If we rewrite formula (2.2) (i.e. the PFPF) in the
multiplicity-free situation, we obtain

(3.2) wK(l):/ (r(w)B", B7) duxc (1), w € D(G).

G

If we replace 8™ by ¢(m)B™, the Plancherel measure pg is replaced
by |c(m)|"2uk. Therefore, taking into account Theorem 3.1, if we
choose 8™ to correspond to an invariant vector of norm 1, 8™ is only
uniquely specified up to a scalar of modulus 1, but g is then uniquely
determined.

2. It follows from [9, IV.3] that if 7 is multiplicity-free, then

1 WEGK

dim’HfE{ .
0 ’/T¢GK

That is, n(r) cannot do anything pathological on a set of measure zero.
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4. Groups with co-compact nilradical. Next we specialize
to connected Lie groups G with co-compact and simply connected
nilradical N. That is, the quotient G/N of the group by its nilradical is
presumed compact. The harmonic analysis of such groups was studied
thoroughly in [11]. In particular, both orbital and Mackey parameters
for the irreducible unitary representations of G were derived therein.
The Mackey parameters start with the fact that the nilradical must
split. That is, there exists a compact (connected) subgroup K C G
such that G = K x N. Now let v € ]\7, K, the stability group. Since
K, is compact, there is no obstruction to extending 7 [6, 11]. That
is, there exists an ordinary representation 4 of K, on the space of
satisfying

(4.1) F(k)y (k™ nk) = y(n)7(k), ke K,, neN.

Equation (4.1) only specifies 5 up to a character of K,. The irreducible
unitary representations of G are given by

Tyo = Ind?{A’NU ®7 X, o¢cK,.

Two of these 7y, »,, Ty,,0, are equivalent if and only if there exists
a k € K such thatAk “Y1 = Yo, k- 01 = o03. Thus the Mackey
parameterization of G is summarized by the fiber diagram

Here is the orbital parameterization. Let A(G) denote the allowable
linear functionals in the real dual of the Lie algebra

A(G) = {¢ € g" : 3 a unitary character Xy of Gg > dXy = id|g, }-

The stability groups G4 will not be connected in general. But for the
application we have in mind, they are connected. So now assume Gy
is connected for all ¢ € A(G). Then X4 is unique if it exists. Now
a key role in [11, Lemma 4.2] is played by the Alignment Lemma. It
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asserts that within any G-orbit (over all of g* actually), there exists a
functional ¢ satisfying

Gy = KyNgy, Go = Ko Ny, 0 = ¢l

Any such functional is called aligned. The alignment property is pre-
served under the action of K, hence any functional can be aligned by
means of an element from N. If two functionals ¢ and n - ¢ are both
aligned, then n € NyoZn(Kp) [11]. Now let ¢ € 2(G) be aligned,
0 = ¢ln. Let vy € N be the corresponding representation. Then it
is possible to make a canonical choice of the extension jg—see [11] (or
more generally [6]). Briefly, we select a Ky-invariant positive polariza-
tion h for 6, realize 9 by holomorphic induction via h, and then define
Fo(k)f(n) = f(k~ink), when f is realized in the natural space of equiv-
ariant functions that comprise the space of the holomorphically induced
representation. (The reader can find the details in [6], including the
independence of polarization argument.) Next, let & = ¢|¢, € A(Kp).
Then (Kg); = K, and thus [11] a unique representation o¢ € Ky
is determined (we are using the connectivity of the stabilizer here.)
The representation of G' corresponding to ¢ is then 7y := 7, 5. The
Mackey parameters can be completely expunged from the picture by
using holomorphic induction on G itself. For example, augment the
above choice of h by the choice a of a positive polarization for £. Then
the algebra b = a + h is a positive polarization for ¢ satisfying the
Pukanszky condition, and the corresponding holomorphically induced
representation of G, usually denoted b-Indg¢X¢, is equivalent to mg.

(See [11].) Thus the orbital parameterization of G (with connected
stabilizers) can be “diagramed” via

A(Ky)/ Ky — G = A(G)/G

|

n*/G.

5. Gelfand pairs. Now specialize further to Gelfand pairs (G, K).
We take G = K x N as in the previous section, but we suppose
7 = Ind$ 1 is multiplicity-free. One of the basic results of [3] is that,
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for all practical purposes, N must be a Heisenberg group. We assume
henceforth therefore that N is a (2r+1)-dimensional Heisenberg group.
Since K is connected (and compact) it must fix Z := Cent N. It acts
naturally then on N/Z = C”, and so we may assume K C U(r). In
somewhat more detail, we shall realize N as in [3] or [17]; namely,

N=V&R, V=C

with multiplication
! 1 4l / ! 1 —/
nn' = (v,t)(v',t') = (v+v S+t +§Imv-v>.

The Lie algebra n can be parameterized by the same coordinates, except
that the Lie bracket is specified by

[(v,t), (v, )] = (0, Imv - ¥).

We can therefore denote elements 8 € n* by the coordinates 6 =
(¥, A), ¥ € V* =Homg(V,R), A € R where

0(v,t) = h(v) + At.

It is easy to compute the adjoint and co-adjoint actions in these
coordinates: for n = (v,t) € N, X = (w,s) € n, 0 = (Y,\) € n*,
we have

AdnX = (w,s+ Imv - @)

Ad*n 6 = (¢ — 0,),
where © € V* is defined by 9(vy) = Imwv - vy.

Now any compact (connected) subgroup K C U(r) acts naturally on
N by k- (v,t) = (k-v,t), where the dot on the right denotes the natural
action of U(r) on C". The semidirect product group G = K x N is our
object of concern.

Various equivalent criteria for the representation 7 = Ind$¢1 to be
multiplicity-free are known. The most important ones are found in [3],
[10] and [2]. They are:

1. the algebra L'(G//K) of K-bi-invariant integrable functions under
convolution is abelian;
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2. the algebra D(G/K) of G-invariant differential operators on G/K
is abelian;

3. the action of K., the complexification of K, on the algebra P(V)
of holomorphic polynomials is without multiplicity;

4. the algebra PD(V)X of K-invariant differential operators with
polynomial coefficients is abelian;

5. a Borel subgroup of K, has a Zariski-open orbit on V.

In case K acts irreducibly on V, these actions have been classified by
V. Kac. This is tabulated elegantly in [3].

The “soft” representation-theoretic decomposition of 7 can be read
off from [13,Theorem 7.1]. The details are as follows. G has three kinds
of irreducible representations: (i) those trivial on N, i.e., irreducibles
of K; (ii) those trivial on Z, but not N, i.e., the infinite-dimensional
irreducibles of the motion group K X (N/Z); and (iii) those non-trivial
on Z. The representations in (i) are finite-dimensional. Those in (ii)
constitute the spectrum of the abelian symmetric space K x (N/Z)/K,
which is well understood [12]. The representations in (iii) are the
generic representations of G, while those in (i)—(ii) are degenerate and
do not appear in 7. We shall deal only with those in (iii) in what
follows.

Fix a non-zero element Z; € Centn. If ¢ € g* is generic, then
A = ¢(Zy) # 0. Corresponding to each A\ # 0, the flat variety
Ay =10 € n* : 6(Zy) = A} = {(¥,A) : ¥ € V*} is a single N-
orbit. Hence, there is a unique irreducible v, € N corresponding. For
any 0 € Ay, there is a unique n € V so that n -6 = (0,)) is aligned.
This is because the set NyZy(K) equals Z. Indeed, Ny = Z and any
element in Zy (K) would give rise to a K-invariant vector in V. In that
case the action of K on P (V) would have uniform infinite multiplicity.
(Note that we are using Ky = K here.)

The representation 45 = 99, 8§ € A\ was defined canonically earlier.
We have

Lemma 5.1. The class of yx as a representation of K depends at
most on sgn ().

Proof. It is enough to prove the result for K = U(r). Actually this is
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a well-known fact. The scalars act on N by a-(v,t) = (av,a’t),a € R*.
Moreover, that action commutes with the action of K. The result is
clear from those observations. O

Thus for any A, X\ # 0, we have 4, = y if sgn (\) = sgn (X). %1
may or may not be equivalent to 7_; depending upon the size of K.
For example, they are not equivalent if K = U(r) or T", but they are
equivalent for K = SU(2).

Now suppose 7y = Z?ef( ny (o) o. Our assumption is that ny(o) < 1.
Write
K* = spec of 7y, A>0

K~ = spec of Ay, A <O0.

Then, according to [13], we have

e © e @
(51) T = / Z DWW d\ @ / T\ o dA.
A A e

>0 sck+ <0 seR

We have used the obvious abbreviation 7y, = m,, . The Lebesgue
measure class is indicated. But of course one of our main desires is to
specify the precise measure within the class; see Theorem 6.2 below.

It is also worth mentioning that when the multiplicity-free hypothesis
is suspended, several new (and perhaps unexpected) features emerge.
The features are illustrated in the following

Examples. In all of the following r = 2 and K = T, but we take
three different embeddings of K into U(2). The first two are discussed
n [13], the last in [2].

1. Let K ={u € C:|ul =1} act on V = C% = {v = (vy,v2) :
v; € C} by u - (v1,v2) = (uvy,u lvg). One computes readily that
the allowable G-orbits which meet ¢ parameterize the spectrum of 7.
Furthermore, the generic orbit intersections G - ¢ N &L, ¢ € A(G) N &L,
are of dimension 3, 2 bigger than the generic K-orbit dimensions. And,
in fact, the multiplicity in 7 is uniformly infinite.

2. Let K act on V by u - (v1,v2) = (uvy,uvs). Once again, the
allowable G-orbits that meet ¢ parameterize the spectrum. And
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the orbit dimension statements are unchanged. But in this case, the
multiplicity is finite, albeit unbounded.

3. Let K act on V by u - (v,v2) = (u?vp,udvs). Again we
have finite unbounded multiplicity. Moreover, one can compute that
although the representation 7y ; fails to appear in the spectrum of 7,
its corresponding orbit does meet £*.

The import of these examples will become fully clear after the orbital
presentation of the PFPF for 7 in the last section.

6. The PFPF for Gelfand pairs. Now we want the Penney
distributions and an explicit Plancherel measure for Gelfand pairs. The
material in Section 3 tells us how to get the data. We shall work in
this section in the Mackey parameters. In the next section we turn to
the orbital configuration.

From formula (5.1), we see that the spectrum of 7 consists of repre-
sentations

(6.1) {mro:A>0ands e K*; or A<0Oand 6 € K}

Hence, in what follows, we always assume the pair (), o) satisfies one of
the conditions in the set (6.1). Then the representation 7y, = o @4 X
v acts on Hy @ H ., where H := H.,,. Moreover, 7r)\70|K = o0®7x. Let
H (o) stand for the unique K-invariant finite-dimensional subspace of
H which transforms under the action of K according to . We then
realize H, as a copy of H (o) with the conjugate structure. Then we
need to identify a vector in H, ® Hx (o) which is fixed by K. But that
is classical. Let {{} be any orthonormal basis in H,. Denote the
corresponding family in the conjugate space H (o) by {£}. Then an
invariant vector is given by vy, = >, & ® £7. Correspondingly, we
can define an invariant distribution by

(62) B)\,a : 6 — <v/\,t7)£>'

Of course a different choice of basis might lead to a different invariant
vector (and so a different distribution), but only up to a scalar (by
Theorem 3.1). In accordance with the first remark after Theorem 3.1,
we can uniquely specify the matrix coefficients of 8 , by normalizing.
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Hence we modify the choice as follows
ds

(6.3) e =d,'?Y g 08,  d, =dimo.
1=1

B, is defined as before in terms of vy , by formula (6.2).

Before stating the explicit PFPF for (G, K) we recall the well-known
Plancherel theorem for the unimodular group V. It asserts

Theorem 6.1 (Plancherel theorem for the Heisenberg group). There
is a scalar ¢, so that for any f € D(N), we have

£0) = e [ Ton(P AT
where A (f) = [y 7a(n) f(n) dn.

Remark. As is well known, this can be interpreted as a PFPF by
considering N x N/A, A = {(n,n) : n € N}. The irreducibles are
those of the form vy ® Jx, v € ]\7, which act on Hy ® Hx. The latter
Hilbert space is naturally isomorphic to HS(#H,), the Hilbert-Schmidt
operators on Hy. The canonical A-invariant distribution on the space
HS(H) is precisely

Ba:T — Tr(T)
and a standard computation reveals that if f = wa, w € D(N x N),
then
(72 @ 2) (W) Brs Br) = Tra(f)-
For this, see [19, Chapter 3].

Now we are ready for the PFPF for (G, K).

Theorem 6.2. Let (G, K) be a Gelfand pair. Let

®
Hir= Y Hii(o)

GeK+

be the decomposition of the Hilbert space H1 into inequivalent invari-
ant irreducible unitary K-modules. By Lemma 5.1, the decomposition
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for Hiy is the same as that for any Hix, X > 0. Let {7} be any
orthonormal basis in H11(0). Define vy, by (6.3) and By by (6.2).
Then the PFPF takes the form

(6.4)

wr(l) = ¢, / S (a0 (@)Br0 Br) do A" dA

A -
>0 geEKTt

+ Cr / Z <7T/\,0'(w)/8/\,0'7 B)\,U> dtr |)\|r d)\, w ED(G)
A<0

GeEK~

Proof. We compute the matrix coefficients (my o (w)Bx0)Br,0)- We
begin by computing the vector my ,(w)Bx,s. The representation m =
Tre acts in He @ Hy. Let £ € Hy, n € Hy. Then, using the usual
functional adjoint w*(g) = @(g!), we have

<7r)\,a' (w)ﬂ)\,au £ b2y 77> = <B>\,0’7 ’/T((U)*é- 0 n>
= (B0, m(w")E @)

:/Gw(g_l)w,\,aﬂr(g)f@ﬁ) dg

_/ w(n_lk_1)</8/\,0'70-(k)£
KN
® Ya(k)ya(n)n) dk dn
_ / W k) (0r g, o (R)E
KN

® Aa(k)va(n)n) dk dn
do

— w nflkfl d71/2 o
IR WC

=1
® &7, (k) ® A (k)ya(n)n) dk dn
do

:/KNw(nflkfl)d,;lﬂZ@lga"(k)@

=1

(€7, 72 (k)ya(n)n) dk dn
do

o PR R S G

=1
(A (k~HET, ya(n)n) dk dn.
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But on H, ® Hx (o) the vector > & ® & is K-invariant. Hence, the
last formula is exactly

do

/N wie()d; Y23 (e ) (n e, n) dn

=1

=/NwK 1/225"®w D& E@m)dn

In particular, we have

do
Tao(@)Bro = /N wic(n)d; Y23 €7 @ 4 (n~1)EF dn.
=1

This enables us to complete the computation of the matrix coefficient.
Indeed

<7r)\,¢7 (w)ﬂ)\,dv /BA,0'> = <7r)\ 0( )ﬂ)\ oy UX a>
7Zd 1/2 ﬂ-)\o' B)\Uafl’®£l’>

I'=1

—Zd /

I'=1

Z (& @n(n N, & ® &) dn
=1

:/N i_j N7, &) dn

forms a complete

Next we observe that the family {{f_{’ };1;1}
5e

orthonormal family inside H+ . Therefore

o

d
> (mao(@)Bros Bro)do = /UJK ) (a(n gL E7) dn
=1

GeK* GeK*
=Tr A (WK)a
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where Wg (n) = wi(n™1). And so finally the right side of (6.4) equals

cT/ Tryx(wr)|A" dX = wk (1) by Theorem 6.1
R
= wK(l).

While this is nice, there is still, because of the choice of the orthonor-
mal basis, too much ambiguity in the choice of the distributions. We
want something even more canonical. We can achieve that by recasting
the Plancherel formula and its distributions into an orbital mode. That
is the content of the next section.

7. Orbital formulation of the Penney distributions. We wish
to reformulate the results of the last section into an orbital configuration
for two reasons. First of all, since there is an orbital presentation of
G, there should be one for Gk and the Penney distributions. Second,
we have indicated that there is still a certain degree of “ambiguity of
choices” in the definition of the Penney distributions (see (6.2) and
(6.3)). An orbital formulation could clean that up. Thus the two
specific problems we shall concentrate on in this section are:

1. Give an orbital description of the Penney distributions;

2. Give an orbital characterization of the spectrum Gk and multi-
plicity-free condition.

We shall settle the first and obtain a partial solution for the second.
Problem 2 is treated in much greater detail in [2].

We take our cue from the data in Section 4 and the list of facts in
Section 1. The orbital parameters for G k should be the allowable
G-orbits that meet £-. Moreover, given ¢ € A(G) N &~ and the
corresponding representation mg, then, presuming it occurs in 7, its
Penney distribution (which is unique up to scalar by Theorem 3.1)
should be given by

By :f —
KNB\K
The only ambiguity would be the relatively trivial normalization of
the invariant measure. The problem is that my = b — Indg¢x¢ is
holomorphically induced and b is a subalgebra of the complexification
gc, not of g. How do we realize the distribution 84? The answer: Use
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the exact same formula, interpreting B as a complex polarizing group.
We make that precise in Theorem 7.1 below.

Suppose a representation 7, , appears in the spectrum of 7. Then
v = v for some A and the pair (A, o) satisfy one of the conditions in
the set (6.1). Let 6 € Ay, 6 = (0,A), and let £ € A(K) correspond to
o. Then ¢ = €+ 0 € A(G) is aligned. We may construct a positive
polarization for ¢ as in section 4, and then

Ty =Tp =b — Indg¢X¢.

We shall prove below (in Proposition 7.2) that there exists n € N such
that ¢y = n-¢ € &+, (This is the partial answer to (2) mentioned
above.) If we also conjugate b by n, then, writing by = n - b, we have

mp g, = b1 —Indg, X4, ¢ €AG)NE.

Changing notation slightly, we can state the main result of the section

Theorem 7.1. Let ¢ € A(G) NeL, and suppose the representation of
G corresponding to the orbit G - ¢ occurs in the spectrum of 7. Suppose
b is a positive complex polarization for ¢ satisfying the Pukanszky
condition, and the admuissibility condition: b N n. is a positive Gy-
invariant polarization for 0 = ¢|,. Then Ty =b — Indg¢X¢ realizes the
representation and the corresponding Penney distribution is given by

(7.1) By f— §, fems.
KNB\K

Remarks. 1. The holomorphically induced representation 7y acts by
right translation in the space Hy = H, of Borel functions satisfying

f:G—C
(7.2) f969) = Xg(94)f(9), 9o €Gy, gE€G
(7.3) X+ f=—ip(X)f, Xeb

/ |f1? dg < oo, D =exp(bnb)
D\G
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(see [17]). The complexified group G, = K. X N, is defined in an
obvious manner. We interpret B as the analytic subgroup of G. with
Lie algebra b.

2. The admissibility condition on the polarization is probably redun-
dant; but that is not established in [11].

3. In [15] we demanded that HB be closed. Since K is compact,
that is automatic here. But I would like to take this opportunity to
correct an error in [15]. In fact, it may not be true that one can find a
real polarization such that HB is closed. Without that, the implication
f€C>®(G,H) = flg € C>*(H,H N B) may be false. However, that
does not affect the main results of [15] since one can in fact build into
the induction argument the convergence of the integral in part (iii) of
[15, Theorem 5.1].

Proof of Theorem 7.1. If ¢ € &+, then X4|kns = 1. Hence, because
of (7.2) and (7.3), the integral in (7.1) makes sense. It is well known
(see [20]) that the functions in H7® are smooth. Therefore, the integral
converges and the distribution 34 is well-defined as an element of ’H;oo.
But by the nature of the integral, it is also clear that 34 is K-invariant.
An application of Theorem 3.1 proves that it must be the Penney
distribution corresponding to mg. ]

Remark. The intersection K N B is no bigger than Ky, but it may be
smaller. To see that, note that if we start with an aligned functional ¢g
in the orbit of ¢, then any polarization by for ¢y will be totally complex
in the Levi part. In particular K N By = K,. Then, let n = n(v,0)
be the unique element conjugating ¢g to ¢. It is not difficult to check
that

KNB = (Ky),.
Very often this group is trivial. But it can also be large. For example,
the trivial representation ¢ = 1 is in KT for any A # 0, since the
constant polynomial on V is always K-invariant. In other words, the
functionals ¢ = (0, ) lie in &+ N 2A(G), and in this case Ky = K and
K NB = K. This is an instance in which the Penney distribution
reduces to a point evaluation. Although the representations 7y = mx o
constitute only a “small” portion of the spectrum of 7, they are generic.
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This concludes the discussion of problem 1. Here is what we have to
say regarding problem 2.

Proposition 7.2. Suppose the representation g, ¢ € AU(G), appears
in the spectrum of T. Then G - ¢ NE+ £ 2.

Proof. Of course, it is no loss of generality to assume ¢ = & + 6,
6 = (0, ), is aligned. To say that 74 occurs in the spectrum of 7 is
to say, by Section 5, that 6¢ = 0_¢ € Spec®,. Thus the statement of
the proposition comes down to

0 ¢ € Spec 7y => N-(E+0\) Nt £ 2.

It is a straightforward computation to verify this fact when K = U(r).
(Indeed in that case the implication is valid in both directions.) Now
we can rewrite the condition N - (€ +6,) N€+ # @. It says exactly that
there is a vector v € V such that

(7.4) £(X) = %)\[X vu],  VXet

(The right side of (7.4) is an un-normalized moment map py : V —
A (0)(X) = (A/2)[X - v,v], see [21] and [22]. But we shall not
pursue that here.)

Now we know the precise spectrum of J|y(y). It consists of the
irreducible representations of U(r) acting on the spaces of homogeneous
polynomials of degree m (in v or ¥ depending on sgn(A)), m > 0. Let
us write 7, for those representations and §2,, for the corresponding
coadjoint orbits in u(r)*. Therefore, if K C U(r) and o_¢ € SpecHa|x,
then o_¢ € Specm,|k for some m > 0. Let p : u(r)* — €* denote the
canonical projection. According to Heckman’s result [8], we must have

(7.5) —&=p(a), some a € Qy,.

Furthermore, referring back to the facts on u(r)*

must exist a vector v € V satisfying

, we see that there

(7.6) —a(X) = %)\[X w0, X eulr).
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The proof is concluded by combining (7.5) and (7.6).

Notes. 1. The proof of Proposition 7.2 is valid for any semidirect
product G = K x N, when N is a (2r + 1)-dimensional Heisenberg
group and K C U(r), independent of whether (G, K) is a Gelfand pair.

2. Proposition 7.2 is also proven in [2, Theorem 4.3], but from the
perspective of the moment map.

The concluding comments are the following. According to the facts
in Section 4 and Examples 1-2 in Section 5, the condition that should
characterize a Gelfand pair, i.e., the multiplicity-free situation, is

G-¢pNt-=K-¢, all¢cAG)Nntt.

In fact, these examples and the nilpotent theory [4, 13] strongly
suggest that this condition is equivalent to bounded finite multiplicity.
Indeed, the equivalence of these three properties, i.e., Gelfand pair,
finite bounded multiplicity, and multiplicity-free, is proven in [2] when
K C U(r) is of full rank. Further evidence is offered in [2] to suggest
that the equivalences are true without the rank condition. Finally, as
Example 3 in Section 5 shows, the converse of Proposition 7.2 is not
true in general, but I believe it is true generically for Gelfand pairs.
Evidence for that belief is also supplied in [2].
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