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ABSTRACT. The constructive solution of the strong Stielt-
jes moment problem can be linked with positive Perron-Cara-
théodory continued fractions (PC-fractions) which are contra-
dictions of positive Thron continued fractions (T-fractions).
Their approximants are two-point Padé approximants for a
related function. The multi-point moment problem similarly
leads to positive multi-point Padé continued fractions (MP-
fraction) and positive extended multi-point Padé continued
fractions (EMP-fraction) whose approximants are multi-point
Padé approximants. These relationships are explored also in
the situation where the positivity condition is dropped.

1. Introduction. MP-fractions, multi-point Padé continued frac-
tions, have similar relationship to multi-point Padé approximants as
(general) T-fractions (Thron continued fractions) have to two-point
Padé approximants. An MP-fraction is normally the even contrac-
tion of an EMP-fraction (extended MP-fraction) just as a (modified)
T-fraction is the even contraction of a (modified) PC-fraction (Perron-
Carathéodory continued fraction). The odd contraction of an EMP-
fraction is normally equivalent to an MP-fraction, just as the odd con-
traction of a PC-fraction is basically a T-fraction (more precisely, an
M-fraction).

Positive T-fractions and positive PC-fractions are related to two-point
Padé approximants arising from strong (or two-point) Stieltjes moment
problems. In this note we discuss EMP-fractions associated with multi-
point Padé approximants arising from rational (or multi-point) Stieltjes
moment problems.
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For information on the above relationship in the two-point situation
we refer to [2, 19, 20, 23] and references found therein. For earlier
work on the corresponding relationship in the multi-point situation, see
[5, 8, 10, 11, 13, 16, 17].

General information on (multi-point) Padé approximation can be
found, e.g., in [1, 4, 9, 10, 13 15].

2. Orthogonal rational functions. Let {αk}∞k=1 be a sequence of
not necessarily distinct points on the real axis. We define the functions
ωn by

ω0 = 1, ωn(z) = (z − ζ1) · · · (z − αn), n = 1, 2, . . . ,

and the spaces Ln and L by

Ln = span
{
1
ω0
,
1
ω1
, · · · , 1

ωn

}
, L =

∞⋃
n=0

Ln.

The elements of Ln are exactly the functions f(z) = p(z)/ωn(z),
p ∈ Πn, where Πn denotes the space of polynomials of degree at most
n.

Let µ be a probability measure on (−∞,∞) such that all the functions
in the product space L · L are absolutely integrable. (A more general
situation can be considered where the measure is replaced by a linear
functional. See, for example, [3, 6, 7, 10].) The measure µ induces an
inner product 〈·, ·〉 on L defined by

〈f, g〉 =
∫ ∞

−∞
f(t)g(t) dµ(t), f, g ∈ L.

Let {ϕn}∞n=0 be the essentially unique orthonormal sequence corre-
sponding to the basis {1/ωn}∞n=0. Each ϕn can be expressed in the
form

ϕn(z) =
pn(z)
ωn(z)

, pn ∈ Πn.

By the defining property of ϕn, we have

pn(αn) 
= 0, n = 1, 2, . . . .
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The sequence {ϕn} is called regular if
deg p1 = 1, pn(αn−1) 
= 0, n = 2, 3, . . . .

It will be assumed throughout this paper that the sequence {ϕn} is
regular.

In several parts of this paper, we shall be especially interested in the
following situation, which may be considered as an analog of the two-
point Stieltjes situation. We assume the existence of real numbers α
and β such that

(2.1) α2m ≤ α < β ≤ α2m−1 ≤ 0, m = 1, 2, . . . ,

and we furthermore assume that the support of the measure µ is
contained in [0,∞), i.e.,

(2.2) supp (µ) ⊂ [0,∞).

In this case the polynomial pn and hence the function ϕn have all their
zeros in (0,∞) and the sequence {ϕn} is regular. Whenever we deal
with this situation, we shall normalize the sign of ϕn such that

(2.3) p4m(x) > 0, p4m+1(x) > 0, p4m+2(x) < 0, p4m+3(x) < 0,

for x ∈ (−∞, 0). It follows from (2.7) (2.9) that ϕn(x) > 0 for
α < x < β.

Note that the two-point Stieltjes situation is obtained as the limiting
situation when α tends to ∞ along the negative axis and β = 0,
α2m = α, α2m−1 = 0 for all m.

For more information on orthogonal rational functions and associated
moment theory, we refer to [3, 6, 7, 10 12], cf. also [18]. For the rela-
tionship of this theory to the theory of multi-point Padé approximants,
see especially [4, 8, 9, 13, 16, 17, 24].

3. MP-fractions. When the sequence {ϕn} is regular, it satisfies a
recurrence relation of the form
(3.1)

ϕn(z) =
(
hn+

gn

z − αn

)
ϕn−1(z)+Fn

z − αn−2

z − αn
ϕn−2(z), n = 1, 2, . . . ,
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with initial conditions

ϕ0 = 1, ϕ−1 = 0.

(For simplicity, we have used the following convention: z − α0 means
1, z − α−1 means z.) The coefficients satisfy the inequalities

(3.2) Fn 
= 0, gn + hn(αn−1 − αn) 
= 0, n = 1, 2, . . . .

Proof of this result can be found in [10] and in [3] for the analogous
situation when all the points αk lie on the unit circle. See also [5 8].
In the special situation when the points αk arise by cyclic repetition of
a finite number of points, the recurrence formula was obtained in [16].

Let the functions ρn be defined by the same recurrence (3.1), i.e.,

(3.3)

ρn(z) =
(
hn+

gn

z − αn

)
ρn−1(z)+Fn

z − αn−2

z − αn
ρn−2(z), n = 1, 2, . . . ,

with initial conditions

(3.4) ρ0 = 1, ρ−1 = 1.

Then ρn and ϕn are canonical numerators and denominators of a
continued fraction

(3.5) 1 +
∞
K
n=1

θn

κn

where

(3.6)
θn = Fn

z − αn−2

z − αn
, n = 1, 2, . . .

κn = hn +
gn

z − αn
, n = 1, 2, . . . .

See [21, 22]. Continued fractions of this kind are called Multi-point
Padé continued fractions, or MP-fractions. The reason for this termi-
nology may be explained as follows. The sequence of approximants
{ρn/ϕn} determines a sequence of interpolation values at the table
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{∞, 0, α1, α1, α2, α2, α3, α3, . . . } such that {ρn/ϕn} is an [n/n] multi-
point Padé approximant of the corresponding Newton series. See [8]
and also [4, 9, 13, 17].

The sum κn = hn +
gn

z − αn
may be written in various ways:

hn +
gn

z − αn
=
xnζn(z) + ynτn(z)

z − αn
,

where {ζn, τn} is an arbitrary basis for the space Π1 and xn and yn are
constants. In particular, we find that if

(3.7) α2m 
= α2m−1, m = 1, 2, . . . ,

then we may write

κ2m = H2m +G2m
z − α2m−1

z − α2m
, m = 1, 2, . . . ,(3.8)

κ2m+1 = H2m+1
z − α2m

z − α2m+1
+G2m+1

z − α2m−1

z − α2m+1
, m = 0, 1, 2, . . . .

(3.9)

It follows from (3.2) that

(3.10) H2m 
= 0, m = 1, 2, . . . , G2m 
= 0, m = 0, 1, 2, . . . .

The representation (3.8) (3.9) is used in [8] and we shall make use
of it in later sections. We note that, by the formal substitution
(z−α2m+1)→ z, (z−α2m)→ 1 for m = 1, 2, . . . , we obtain recurrence
formulas for orthogonal Laurent polynomials. See [2], (where the
Laurent polynomials are not orthonormal but normalized such that
the left coefficient, i.e., Hn, is 1).

Now assume that (3.7) is replaced by the stronger condition

(3.11) α2p 
= α2q−1, p, q = 1, 2, . . . .

(Note that this is the case in the Stieltjes situation (2.1) (2.2)). We
may then use the basis {z − αn−2, z − αn−1} for Π1 for any n > 2 to
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express the elements κn. Thus we may write

θn =Wn
z − αn−2

z − αn
, n = 3, 4, . . .

θ2 =W2
1

z − α2
,

θ1 =W1
z

z − α1
,

κn =
Un(z − αn−2) + Vn(z − αn−1)

z − αn
, n = 3, 4, . . . ,

κ2 =
U2(z − α2) + V2(z − α1)

z − α2

κ1 =
U1(z − α1) + V1(z − α2)

z − α1
.

This representation is used in [11] except that θ1 is replaced by
W1/(z − α1). This has no influence on the recursion for {ϕn}, since
ϕ−1 = 0.

It should be pointed out that the functions ρk that were introduced
by (3.3) (3.4) are not the same as the associated functions as they were
defined in [11]. They are however closely related as we shall presently
show. In [11] the associated functions σn are defined by

σn(z) =
∫ ∞

−∞

ϕn(t)− ϕn(z)
t− z

dµ(t), n = 0, 1, 2, . . . .

The sequence {σn}∞n=0 satisfies the recursion

σn(z) = κnσn−1 + θnσn−2, n = 2, 3, . . . ,

σ1(z) = κ1σ0 +
W1

z − α1
σ−1,

with initial conditions

σ0 = 0, σ−1 = −1.

Thus the sequence {πn}∞n=0 with πn(z) = zσn(z) satisfies the recursion

πn = κnπn−1 + θnπn−2, n = 1, 2, . . .
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with initial conditions

π0 = 0, π−1 = −1.
It follows from this that

ρn = ϕn − πn, n = 0, 1, 2, . . . .

4. Positive MP-fractions. We shall in this section assume
that (3.11) holds. Note that in the Stieltjes situation described by
(2.1) (2.2), the sequence {ϕn} is regular and (3.11) is satisfied.
The coefficients Fn, Gn, Hn can be expressed in terms of Un, Vn,Wn

as follows:

Fn =Wn, n = 1, 2, . . .(4.1)
G1 = U1 + V1, G2m+1 = U2m+1, m = 1, 2, . . .(4.2)

G2 = V2, G2m = U2m(α2m−α2m−2)+V2m(α2m−α2m−1)
α2m−α2m−1

, m = 2, 3, . . .
(4.3)

H1 = −(α1U1 + α2V1), H2m+1 = V2m+1, m = 1, 2, . . .(4.4)

H2 = U2, H2m = U2m
α2m−1 − α2m−2

α2m−1 − α2m
, m = 2, 3, . . . .(4.5)

(This is found by direct comparison of the expressions for θn and κn.)

Furthermore, it follows from [11, Section 3] that, for n = 3, 4, . . . ,

(4.6)
Un =

pn(αn−1)
(αn−1 − αn−2)pn−1(αn−1)

,

Vn =
pn(αn−2)

(αn−2 − αn−1)pn−1(αn−2)
,

while

U2 =
p2(α1)

(α1 − α2)p1(α1)
, V2 =

c0,1p2(α2)p1(α1)2 + p2(α1)(α2 − α1)
(α2 − α1)c0,1p1(α1)2p1(α2)

,

(4.7)

U1 =
p1(α2)
(α2 − α1)

, V1 =
p1(α1)
(α1 − α2)

,(4.8)
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and

(4.9) Wn = − pn(αn−1)pn−2(αn−2)
pn−1(αn−1)pn−1(αn−2)

, n = 3, 4, . . . ,

with

W2 = − p2(α1)
p1(α2)2c0,1

(4.10)

W1 = c0,1p1(α1)(4.11)

(
where c0,1 =

∫ ∞

−∞

dµ(t)
t− α1

)
.

Now we assume that we are in the Stieltjes situation with the
normalization (2.3), so that (2.1) (2.3) holds and consequently (3.11)
is satisfied. We then find from (4.6) (4.11) together with (2.1) (2.3)
that

Un < 0, n = 1, 2, 3, . . .(4.12)
Vn > 0, n = 1, 2, 3, . . .(4.13)
Wn > 0, n = 1, 2, 3, . . . ,(4.14)

(See [11, Section 3]).

Theorem 4.1. In the Stieltjes situation with the normalization (2.3),
(i.e., when (2.1) (2.3) are satisfied), the following inequalities hold:

Fn > 0, n = 1, 2, 3, . . .(4.15)
G2m > 0, m = 1, 2, 3, . . . ,(4.16)

G2m+1 < 0, m = 0, 1, 2, 3, . . . ,(4.17)
H2m < 0, m = 1, 2, 3, . . .(4.18)

H2m+1 > 0, m = 1, 2, 3, . . . .(4.19)

Proof. First note that G1 = U1 + V1 = [p(α1) − p1(α2)]/(α1 − α2).
Because p1 has its zero in (0,∞), it follows from (2.3) that p1 is
decreasing in (−∞, 0). Hence G1 < 0. Furthermore, because p1(x) =
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H1 + G1x, we have for x0 ∈ (0,∞) the zero of p1 that 0 = p1(x0) =
H1 + G1x0, so that H1 = −G1x0 > 0. The rest of the inequalities
(4.15) and (4.17) (4.19) follow immediately from (4.1) (4.5) together
with (4.12) (4.14).

To prove the inequality (4.16) we note that, for m = 1, 2, . . . ,

ϕ2m(z) =
[
H2m+G2m

z − α2m−1

z − α2m

]
ϕ2m−1(z)+F2m

z − α2m−2

z − α2m
ϕm−2(z).

Taking the inner product with ϕ2m−2 gives

(4.20)

0 = G2m

〈z − α2m−1

z − α2m
ϕ2m−1, ϕ2m−2

〉
+F2m

〈z − α2m−2

z − α2m
ϕ2m−2, ϕ2m−2

〉

where the second term is positive. Again, using the recurrence for the
ϕn, we get for m = 0, 1, . . . ,

ϕ2m+1 =
[
H2m+1

z − α2m

z − α2m+1
+G2m+1

z − α2m−1

z − α2m+1

]
ϕ2m

+ F2m+1
z − α2m−1

z − α2m+1
ϕ2m−1

which can be written as

z − α2m+1

z − α2m
ϕ2m+1 =

[
H2m+1 +G2m+1

z − α2m−1

z − α2m

]
ϕ2m

+ F2m+1
z − α2m−1

z − α2m
ϕ2m−1.

We take the inner product with ϕ2m−2 so that, because ϕ2m+1 is

orthogonal to ϕ2m−2
z − α2m+1

z − α2m
, we get

(4.21)
0 = G2m+1

〈
z−α2m−1
z−α2m

ϕ2m, ϕ2m−2

〉
+ F2m+1

〈
z−α2m−1
z−α2m

ϕ2m−1, ϕ2m−2

〉
.

Next we note that

z − α2m−1

z − α2m
ϕ2m−2(z) =

(z − α2m−1)2p2m−2(z)
ω2m(z)

= g(z) +
(α2m − α2m−1)2p2m−2(α2m)

ω2m(z)
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with g ∈ L2m−1. Furthermore,

p2m(z) = p2m(α2m) + (z − α2m)h(z), h ∈ Π2m−1,

so that the orthonormal ϕ2m has leading coefficient p2m(α2m) with
respect to the basis {1/ωk}, and hence 〈1/ω2m, ϕ2m〉 = 1/p2m(α2m).
With these two observations we can conclude that

〈z − α2m−1

z − α2m
ϕ2m, ϕ2m−2

〉
=

〈z − α2m−1

z − α2m
ϕ2m−2, ϕ2m

〉

=
(α2m − α2m−1)2p2m−2(α2m)

p2m(α2m)
.

This is negative because of (2.3). On the other hand, because Fn > 0
and G2m+1 < 0, we can conclude from (4.20) and (4.21) that G2m > 0.
This proves (4.16).

We shall call an MP-fraction with elements given by (3.6), (3.8) (3.9)
which satisfy (4.16) (4.19) a positive MP-fraction. Thus, Theorem 4.1
states that in the Stieltjes situation (2.1) (2.2) with the normalization
(2.3), the corresponding MP-fraction is positive. The reason for calling
this a positive MP-fraction is because, in the two-point case, i.e., when
α2m = α → −∞ and α2m+1 = β → 0, it becomes, with proper
normalization, equivalent to a positive T-fraction. They play in the
multi-point case the same role as the positive T-fractions do in the
two-point case.

Remark 4.2. We remark that the two-point version of the formulas in
this paper do not coincide directly with the formulas given in [2]. This
is partly due to a different normalization, namely in [2] an equivalent
continued fraction is considered in which all the coefficients Hn were
chosen to be 1 (which is possible by (3.10)). More importantly, the
moments were defined differently in [2]. The nth moment there is
defined as the integral of (−x)n instead of xn. This implies, for
example, that the inequalities of [2] corresponding to our (4.15) (4.19)
indicate that these numbers are all positive instead of having the
present alternating sign. It also explains why in [2] the denominator
polynomialsQn(x) (which correspond to our ϕn(x)) are not orthogonal,
but instead the Qn(−x) are.



POSITIVITY OF CONTINUED FRACTIONS 619

5. EMP-fraction. We now turn to the general situation where
the elements of the MP-fraction can be written in the form (3.6),
(3.8) (3.9). We shall in this section assume that the sequence {ϕn}
is strongly regular, which means that in addition to (3.10) we also have

(5.1) G2m 
= 0, m = 1, 2, . . . , H2m+1 
= 0, m = 0, 1, 2, . . . .

Note in particular that a positive MP-fraction satisfies this condition.

In [8] we did not use orthonormal functions ϕn but orthogonal
functions normalized such that Hn = 1 for all n. This normalization
is not consistent with the sign normalization (2.3) used here in the
Stieltjes case, (cf. (4.18)). In the extension process that we are going
to outline we shall therefore treat the general situation given by (3.6),
(3.8) (3.9). The formulas we obtain will for Hn = 1 reduce to formulas
found in [8, Section 3].

We shall construct an extension

(5.2) 1 +
∞
K
n=1

an

bn

of the continued fraction (3.5) such that (3.5) is the even contraction
of (5.2). From general formulas (see, e.g., [21, 22]) we find that {an},
{bn} must satisfy the equations

b0 = κ0,

b2a1 = θ1,

b2na2n−1a2n−2

b2n−2
= −θn, n = 2, 3, . . .

a2 + b1b2 = κ1,

a2n + b2nb2n−1 + a2n−1
b2n

b2n−2
= κn, n = 2, 3, . . . .

These may in our situation (cf. (3.5), (3.8) (3.9)), be written in the
following form

(5.3) b2a1 =
F1z

z − α1
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b4ma4m−1a4m−2

b4m−2
= −F2m

z − α2m−2

z − α2m
,(5.4)

b4m+2a4m+1a4m

b4m
= −F2m+1

z − α2m−1

z − α2m+1
,(5.5)

(5.6) a2 + b1b2 =
H1

z − α1
+

G1z

z − α1
,

(5.7) a4m + b4mb4m−1 + a4m−1
b4m

b4m−2

= H2m +G2m
z − α2m−1

z − α2m
, m = 1, 2, . . .

(5.8) a4m+2 + b4m+2b4m+1 + a4m+1
b4m+2

b4m

= H2m+1
z − α2m

z − α2m+1
+G2m+1

z − α2m−1

z − α2m+1
, m = 0, 1, 2, . . . .

We define λn, µn by

(5.9) λ2n = Hn, n = 1, 2, . . .

(5.10) λ1 =
F1

G1
, λ2n+1 = −Fn+1

Gn+1
, n = 1, 2, . . .

(5.11) µ2 = G1, µ2n =
G1G2 · · ·Gn

H1H2 · · ·Hn−1
, n = 2, 3, . . .

(5.12)

µ1 = 1, µ2n+1 =
(Gn+1 + Fn+1/Hn)H1H2 · · ·Hn

G1G2 · · ·Gn+1
, n = 1, 2, 3, . . . .

With this notation we find the following solution of the system
(5.3) (5.8), cf. [8, Section 3],

(5.13) a4m = λ4m, m = 1, 2, . . .
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(5.14) a2 =
λ2

z − α1
, a4m+2 = λ4m+2

z − α2m

z − α2m+1
, m = 1, 2, . . .

(5.15) a4m−1 = λ4m−1
z − α2m−1

z − α2m
, m = 1, 2, . . .

(5.16) a1 =
λ1z

z − α1
, a4m+1 = λ4m+1

z − α2m−1

z − α2m+1
, m = 1, 2, . . .

(5.17) b4m = µ4m, m = 1, 2, . . .

(5.18) b4m+2 = µ4m+2, m = 0, 1, 2, . . .

(5.19) b4m−1 = µ4m−1
z − α2m−1

z − α2m
, m = 1, 2, . . .

(5.20) b1 =
z

z − α1
, b4m+1 = µ4m+1

z − α2m−1

z − α2m+1
, m = 1, 2, . . . .

The coefficients λn, µn satisfy the equality

(5.21) λ2n+1 + µ2nµ2n+1 = λ2n, n = 1, 2, . . . .

We conclude from (3.10) and (5.1) together with (5.9) (5.12) that

(5.22) λn 
= 0, µn 
= 0, n = 1, 2, . . . .

A continued fraction κ0+K∞
n=1an/bn where the elements are of the form

(5.13) (5.20) with the coefficients satisfying (5.21) is called an EMP-
fraction (Extended MP-fraction). We have seen that an MP-fraction
satisfying (3.10) and (5.1) is the even contraction of an EMP-fraction
satisfying (5.22).

6. Positive EMP-fractions. We now consider a positive MP-
fraction with elements given by (3.6), (3.8) (3.9). Recall that positivity
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means that (4.15) (4.19) are satisfied. The denominator sequence is
then strongly regular and, according to Section 5, there exists an EMP-
fraction with elements given by (5.9) (5.20) whose even contraction is
the MP-fraction.

Theorem 6.1. The coefficients of the EMP-fraction obtained by
extension of a positive MP-fraction satisfy the following inequalities:

(6.1) λ4m < 0, m = 1, 2, 3, . . . , λ4m+2 > 0, m = 0, 1, 2, . . .

(6.2)
λ1 < 0, λ4m−1 < 0, m = 1, 2, . . . , λ4m+1 > 0, m = 1, 2, . . .

(6.3) µ4m < 0, m = 1, 2, . . . , µ4m+2 < 0, m = 0, 1, 2, . . .

(6.4) µ4m−1 < 0, m = 1, 2, . . . , µ4m+1 > 0, m = 0, 1, 2, . . . .

Proof. These inequalities follow immediately from the defining for-
mulas (5.9) (5.12) together with (4.15) (4.19).

We shall call an EMP-fraction which satisfies (6.1) (6.3) a positive
EMP-fraction. Note that by (5.21) the inequalities (6.4) are automati-
cally satisfied. Thus Theorem 6.1 states that an EMP-fraction obtained
by extension of a positive MP-fraction is a positive EMP-fraction. We
note that, in the two-point case, i.e., when α2m = α → −∞ and
α2m+1 = β → 0, the positive EMP-fraction becomes, with proper nor-
malization, equivalent to a positive PC-fraction. They are multi-point
generalizations of PC-fractions.

7. Contractions of EMP-fractions. When the elements of an
EMP-fraction satisfy

µ2n 
= 0, n = 1, 2, . . . ,

we shall call the continued fraction e-regular. It follows easily from
the discussion in Section 5 that an e-regular EMP-fraction has an even
contraction which is an MP-fraction with elements

(7.1) F1 = λ1µ2, Fn = −λ2n−1λ2n−2
µ2n

µ2n−2
, n = 2, 3, . . .
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(7.2) G1 = µ2, Gn = λ2n−2
µ2n

µ2n−2
, n = 2, 3, . . .

(7.3) Hn = λ2n, n = 1, 2, . . .

In particular a positive EMP-fraction is e-regular, and thus the even
contraction exists.

Theorem 7.1. The even contraction of a positive EMP-fraction is
a positive MP-fraction.

Proof. The inequalities (4.15) (4.19) follow immediately from (6.1) (6.3)
and (7.1) (7.3).

When the elements of an EMP-fraction satisfy

µ2m+1 
= 0, n = 0, 1, 2, . . . ,

we shall call the EMP-fraction o-regular. An o-regular EMP-fraction
1 +K∞

n=1an/bn given by (5.13) (5.21) has the odd contraction

λ0 +
∞
K
n=1

ξn
ηn

where the elements are given by (see [21, 22])

λ0 = 1 + λ1,

ξn = −a2n−1a2n
b2n+1

b2n−1
, n = 1, 2, . . . ,

ηn = a2n+1 + b2nb2n+1 + a2n
b2n+1

b2n−1
, n = 1, 2, . . . .

Substituting from (5.13) (5.20), we get

ξ2m = Z2m
z − α2m−1

z − α2m+1
, m = 1, 2, . . .
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ξ2m+1 = Z2m+1
z − α2m

z − α2m+2
, m = 0, 1, 2 . . .

η2m = X2m
z − α2m−1

z − α2m+1
+ Y2m

z − α2m

z − α2m+1
, m = 1, 2, . . .

η2m+1 = X2m+1
z − α2m+1

z − α2m+2
+ Y2m+1

(z − α2m)(z − α2m+1)
(z − α2m−1)(z − α2m+2)

,

m = 0, 1, 2, . . . ,

where

(7.4) Zn = −λ2nλ2n−1
µ2n+1

µ2n−1
, n = 1, 2, . . .

(7.5) Xn = λ2n, n = 1, 2, . . .

(7.6) Yn = λ2n
µ2n+1

µ2n−1
, n = 1, 2, . . .

By a simple transformation, see [8, Section 6], this continued fraction is
seen to be equivalent to an MP-fraction λ0+K∞

n=1un/vn (corresponding
to the interpolation sequence {α2, α1, α4, α3, . . . }), where

u2m = Z2m
z − α2m−3

z − α2m−1
, m = 1, 2, . . .

u2m+1 = Z2m+1
z − α2m

z − α2m+2
, m = 0, 1, 2, . . .

v2m = X2m + Y2m
z − α2m

z − α2m−1
, m = 1, 2, . . .

v2m+1 = X2m+1
z − α2m−1

z − α2m+2
+ Y2m+1

z − α2m

z − α2m+2
, m = 1, 2, . . . .

A positive EMP-fraction is clearly o-regular, and thus the odd contrac-
tion exists.

Theorem 7.2. The odd contraction of a positive EMP-fraction
is equivalent to an MP fraction of the form λ0 + K∞

n=1un/vn and
λ0 − K∞

n=1un/vn is a positive MP-fraction.
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Proof. From (5.21), (6.1) (6.3) and (7.4) (7.6), we find that

Z1 < 0, Zn > 0, n = 2, 3, 4, . . .

X2 > 0, X2m < 0, m = 1, 2, . . .

X2m+1 > 0, m = 0, 1, 2, . . .

Y2m > 0, m = 1, 2, . . .

Y2m+1 < 0, m = 0, 1, 2, . . . .

So the theorem is proved.

Remark 7.3. A remark similar to the one given in Remark 4.2 is in
order here. The alternating sign for the Xn and Yn can be avoided if
the nth moment is defined with an additional factor (−1)n.
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7. , A rational moment problem on the unit circle, Methods Appl. Anal.
4 (3) (1997), 283 310.

8. , Continued fractions and orthogonal rational functions, in Orthogonal
functions, moment theory and continued fractions: Theory and applications (W.B.
Jones and A.S. Ranga, eds.), Lecture Notes in Pure and Appl. Math., vol. 199,
Dekker, New York, 1998, pp. 69 100.

9. , Interpolation of Nevanlinna functions by rationals with poles on the
real line, in Orthgonal functions, moment theory and continued fractions: Theory
and applications (W.B. Jones and A.S. Ranga, eds.), Lecture Notes in Pure and
Appl. Math., vol. 199, Dekker, New York, 1998, pp. 101 110.

10. , Orthogonal rational functions, Cambridge Monographs Appl. Com-
put. Math., vol. 5, Cambridge Univ. Press, Cambridge, 1999.

11. , A rational Stieltjes moment problem, Appl. Math. Comput. 128
(2-3), (2002), 217 235.

12. , Determinacy of a rational moment problem, J. Comput. Appl. Math.
133 (1-2) (2000), 241 252.

13. , Monotonicity of multi-point Padé approximants, Comm. Anal. The-
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