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SZEGÖ POLYNOMIALS: QUADRATURE RULES
ON THE UNIT CIRCLE AND ON [−1, 1]
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Dedicated to Professor William B. Jones on the occasion of his 70th birthday

ABSTRACT. We consider some of the relations that exist
between real Szegö polynomials and certain para-orthogonal
polynomials defined on the unit circle, which are again re-
lated to certain orthogonal polynomials on [−1, 1] through the

transformation x = (z1/2+z−1/2)/2. Using these relations we
study the interpolatory quadrature rule based on the zeros of
polynomials which are linear combinations of the orthogonal
polynomials on [−1, 1]. In the case of any symmetric quadra-
ture rule on [−1, 1], its associated quadrature rule on the unit
circle is also given.

1. Introduction. Let dν(z) be a Borel measure on the unit circle,
i.e., ν(eiθ) is real, bounded, non-decreasing with infinitely many points
of increase in 0 ≤ θ ≤ 2π, and let µm =

∫
C

zmdν(z) be the associated
moments. Then µ−m = µm and

Tn =

∣∣∣∣∣∣∣∣

µ0 µ1 · · · µn−1

µ−1 µ0 · · · µn−2

...
...

. . .
...

µ−n+1 µ−n+2 · · · µ0

∣∣∣∣∣∣∣∣
> 0

= (−1)�n/2�

∣∣∣∣∣∣∣∣

µ−n+1 µ−n+2 · · · µ0

µ−n+2 µ−n+3 · · · µ1

...
...

. . .
...

µ0 µ1 · · · µn−1

∣∣∣∣∣∣∣∣
= (−1)�n/2�H(−n+1)

n ,

for n ≥ 1. Here �n/2� represents the integer part of n/2. In relation
to the above moments Tn are known as the Toeplitz determinants and
H(−n+1)

n are known as the Hankel determinants.
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We consider the Szegö polynomials {Sn} associated with the measure
dν(z) defined by

∫
C

Sn(z)Sm(z) dν(z) = 0, n 	= m.

These polynomials were introduced by Szegö (see, for example, [11]).
For a good reference for basic information on these polynomials we refer
to [12].

Since z = 1/z on the unit circle, the polynomials Sn can also be
defined by

(1.1)
∫

C

z−n+sSn(z)z dν(z) = 0, 0 ≤ s ≤ n − 1.

Hence the Szegö polynomials also satisfy the L-orthogonality property
on the unit circle in relation to z dν(z). Polynomials satisfying the
L-orthogonality property on the positive real axis were introduced
by Jones, Thron and Waadeland [8]. For more information on such
polynomials on the unit circle see for example [1, 3, 7].

It is well known that the Szegö polynomials (from here on assumed
to be in monic form) satisfy

Sn(z) =
1

H(−n+1)
n

∣∣∣∣∣∣∣∣∣∣

µ−n+1 µ−n+2 · · · µ1

µ−n+2 µ−n+3 · · · µ2

...
...

. . .
...

µ0 µ1 · · · µn

1 z · · · zn

∣∣∣∣∣∣∣∣∣∣
, n ≥ 1,

with S0 = 1. Furthermore,

Sn(0) = (−1)n
H(−n+2)

n

H(−n+1)
n

,

∫
C

Sn(z)z dν(z) =
H(−n+1)

n+1

H(−n+1)
n

,

for n ≥ 1. The Szegö polynomials also satisfy the system of recurrence
relations

(1.2)
Sn+1(z) = zSn(z) + an+1S

∗
n(z),(

1− |an+1|2
)
zSn(z) = Sn+1(z)− an+1S

∗
n+1(z),
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for n ≥ 0 (see, for example, [5]). Here S∗
n(z) = znSn(1/z), where only

the coefficients are conjugated, are the reciprocal polynomials. The
numbers an = Sn(0), n ≥ 1, which are less than one in modulus, are
known as the reflection coefficients of the Szegö polynomials.

The zeros of the Szegö polynomials are known to lie inside the open
unit disk, that is they have modulus less than one.

If Sn(0) 	= 0, n ≥ 1, then it follows from (1.2) that these polynomials
also satisfy the three term recurrence relation

Sn+1(z) = (z +
an+1

an
)Sn(z)− an+1

an

(
1− |an|2

)
zSn−1(z), n ≥ 1,

where S0(z) = 1 and S1(z) = z + a1.

In this manuscript we consider the Szegö polynomials with real re-
flection coefficients and consider the polynomials Sn(z) ± S∗

n(z) and
their relations to symmetric orthogonal polynomials within the interval
[−1, 1]. These relations, found by Delsarte and Genin in [4], were very
nicely explored by Zhedanov [13]. Zhedanov uses the information con-
tained in the relations associated with Sn(z)+S∗

n(z) (or Sn(z)−S∗
n(z))

to derive information about Sn from the corresponding orthogonal poly-
nomials and vice versa.

The principal aim of this paper is to study certain n-point in-
terpolatory quadrature rules based on the zeros of the polynomial∑r

j=0 λjPn−j(x), where {Pn} are the sequence of polynomials which
satisfy Pn(x) = z−n/2[Sn(z) + S∗

n(z)] with x = (z1/2 + z−1/2)/2.

2. Para-orthogonal polynomials. In [7] Jones, Nj̊astad and
Thron considered the polynomials Sn(z) + ωnS∗

n(z), where |ωn| = 1.
They called these para-orthogonal polynomials and showed that their
zeros are all distinct and lie on the unit circle. The proof is based on
the self inversive properties of these polynomials and the conditions

(2.1)
∫

C

z−n+s[Sn(z) + ωnS∗
n(z)] dν(z) = 0, 1 ≤ s ≤ n − 1.

Here, restricting ourselves to only real Szegö polynomials, we consider
the two special cases of monic para-orthogonal polynomials

R(1)
n (z) =

Sn(z)+S∗
n(z)

1 + Sn(0)
and (z − 1)R(2)

n (z) =
Sn+1(z)−S∗

n+1(z)
1− Sn+1(0)

,
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for n ≥ 1. The denominators in the fractions are chosen in order to
make the polynomials monic. Clearly,

2Sn(z) = (1 + an)R(1)
n (z) + (1− an)(z − 1)R(2)

n−1(z), n ≥ 1.

From (1.2), we can also derive

(2.2) 2zSn−1(z) = R(1)
n (z) + (z − 1)R(2)

n−1(z), n ≥ 1.

Furthermore,

Theorem 2.1. The monic polynomials R
(i)
n , i = 1, 2, satisfy

R
(i)
n+1(z) = (z + 1)R(i)

n (z)− 4α(i)
n+1zR

(i)
n−1(z), n ≥ 1,

with R
(i)
0 (z) = 1, R

(i)
1 (z) = z + 1 and

α
(1)
n+1 =

1
4
(1+an−1)(1− an) > 0, α

(2)
n+1 =

1
4
(1−an)(1 + an+1) > 0,

for n ≥ 1. Moreover these polynomials satisfy the L-orthogonality
relations ∫

C

z−n+sR(1)
n (z)

z

z − 1
dν(z) = 0, 0 ≤ s ≤ n − 1(2.3)

and ∫
C

z−n+sR(2)
n (z)(z − 1) dν(z) = 0, 0 ≤ s ≤ n − 1.(2.4)

The recurrence relations of {R(i)
n }, i = 1, 2, were first established in

Delsarte and Genin [4]. The proof of (2.3) and (2.4) can be found in
Bracciali at al. [2].

The reason for choosing the multiplier 4 in the recurrence relation
will become apparent after Theorem 2.2. The recurrence relations also
confirm the self inversive property znR

(i)
n (1/z) = R

(i)
n (z).

Extensive studies of the quadrature rules based on the zeros of para-
orthogonal polynomials Sn(z) + ωnS∗

n(z) were considered in [1, 3]. In
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these contributions the connection with quadrature rules on [−1, 1] have
also been treated using the Szegö transformation x = (z + z−1)/2. In
what follows, the transformation employed is the Delsarte and Genin
transformation (see [4] and also [13])

x = (z1/2 + z−1/2)/2.

First we give some information about the sequence of polynomials {Rn}
satisfying the recurrence relation

(2.5) Rn+1(z) = (z + 1)Rn(z)− 4αn+1zRn−1(z), n ≥ 1,

with R0(z) = 1, R1(z) = z + 1 and αn+1 > 0. We have the following
theorem given in Bracciali et al. [2].

Theorem 2.2. Let C be the open unit circle {z : z = eiθ, 0 < θ <
2π}. Let {Rn} be the sequence of monic polynomials generated by the
recurrence relation (2.5). Then the zeros of Rn are distinct (except for
a possible double zero at z = 1) and lie on C ∪ (0,∞). In particular,
if {αn+1} is a chain sequence, then all the zeros are distinct and lie on
C. In this case, there exists a positive measure dν(z) on the unit circle
such that ∫

C

z−n+sRn(z)
z

z − 1
dν(z) = 0, 0 ≤ s ≤ n − 1.

The polynomials P
(1)
n (x) = (4z)−n/2R

(1)
n (z) and P

(2)
n (x) =

(4z)−n/2R
(2)
n (z) satisfy the recurrence relations

(2.6) P
(i)
n+1(x) = xP (i)

n (x)− α
(i)
n+1P

(i)
n−1(x), n ≥ 1,

and are orthogonal polynomials on [−1, 1] in relations to the measures
dφ(1)(x) = −dν(z) and dφ(2)(x) = −(1− x2)dν(z), respectively. Hence
we can state the following theorem, which was also given in Bracciali
et al. [2].

Theorem 2.3. Let dφ(1)(x) and dφ(2)(x) be two positive measures
on [−1, 1] such that

dφ(2)(x) = (1− x2)dφ(1)(x).
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Let the respective monic orthogonal polynomials P
(1)
n and P

(2)
n associ-

ated with these measures satisfy

P
(i)
n+1(x) = xP (i)

n (x)− α
(i)
n+1P

(i)
n−1(x), n ≥ 1.

Let
2zSn−1(z) = R(1)

n (z) + (z − 1)R(2)
n−1(z), n ≥ 1,

where R
(1)
n (z) = (4z)n/2P

(1)
n (x(z)) and R

(2)
n (z) = (4z)n/2P

(2)
n (x(z)).

Then Sn are the monic Szegö polynomials associated with the measure
dν(z) = −dφ(1)(x(z)). Furthermore, the reflection coefficients an =
Sn(0) can be generated by

an = 1− 4α(1)
n+1

1 + an−1
or an+1 = −1 +

4α(2)
n+1

1− an
, n ≥ 1.

Given explicitly, for all n ≥ 1,

a2n−1 = 2
α

(2)
2n−1α

(2)
2n−3 · · ·α(2)

3 µ
(2)
0

α
(1)
2n−1α

(1)
2n−3 · · ·α(1)

3 µ
(1)
0

− 1, a2n = 2
α

(2)
2n α

(2)
2n−2 · · ·α(2)

2

α
(1)
2n α

(1)
2n−2 · · ·α(1)

2

− 1.

Here µ
(i)
0 , i = 1, 2, are the respective moments of order zero.

3. Quadrature rules. Let us consider the interpolatory quadrature
rule based on the zeros of the polynomial

Pn[λ0, λ1, · · · , λr;x] =
r∑

j=0

λj P
(1)
n−j(x),

where λ0 = 1, λj ∈ R for j = 1, 2, · · · , r and r ≤ n. We assume that
the parameters λj are chosen such that the zeros of Pn[λ0, λ1, · · · , λr;x]
are all real, distinct and lie within (−1, 1).

For example, if r = 1 then all the zeros of Pn[λ0, λ1;x] are real,
distinct and at least n− 1 of them lie within (−1, 1). Since λ0 = 1, the
necessary and sufficient condition for all the zeros to be inside (−1, 1)
is −P

(1)
n (1)/P (1)

n−1(1) < λ1 < −P
(1)
n (−1)/P (1)

n−1(−1).

If r = 2, then from Pn[λ0, λ1, λ2;x] = (x + λ1)P
(1)
n−1(x) − (α(1)

n −
λ2)P

(1)
n−2(x), all the zeros are real, distinct and at least n − 2 of them
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lie within (−1, 1), provided that α
(1)
n > λ2. In addition if λ1 = 0, then

the condition α
(1)
n > λ2 ≥ 0 is sufficient for all the zeros to be within

(−1, 1).

For larger values of r, in general, it is difficult to study the polynomial
Pn[λ0, λ1, · · · , λr;x] as shown above and obtain a condition which
guarantees its zeros to be real, distinct and within (−1, 1). In section 5
we obtain conditions, that not only give the requirement on the zeros,
but also guarantee that the weights of the interpolatory quadrature
rule based on these zeros are all positive.

Let xn,k, k = 1, 2, · · · , n be the zeros of Pn[λ0, λ1, · · · , λr;x], assumed
to be real, distinct and in decreasing order. Then the interpolatory
quadrature rule on these zeros,

(3.1)
∫ 1

−1

f(x) dφ(1)(x) =
n∑

k=1

ωn,kf(xn,k),

holds for f ∈ P2n−r−1. The weights ωn,k of this quadrature rule can
be given by

(3.2) ωn,k =
On[λ0, λ1, · · · , λr;xn,k]
P ′

n[λ0, λ1, · · · , λr;xn,k]
,

where On[λ0, λ1, · · · , λr;x] =
∑r

j=0 λjOn−j(x), with On(x) =∫ 1

−1
(x − t)−1[P (1)

n (x)− P
(1)
n (t)] dφ(1)(t).

The polynomials On, which are known as the associated polynomials
of the orthogonal polynomials P

(1)
n , satisfy the same recurrence relation

On+1(x) = xOn(x)− α
(1)
n+1On−1(x), n ≥ 1;

however, with the initial conditions O0(z) = 0 and O1(z) = µ
(1)
0 =∫ 1

−1
dφ(1)(x).

Now we consider the symmetric quadrature rule

(3.3)
∫ 1

−1

f(x) dφ(1)(x) =
n∑

k=1

ω̂n,kf(x̂n,k),

obtained when x̂n,k are distinct zeros of Pn[λ0, 0, λ2, · · · , 0, λ2l;x]. Here
2l ≤ n and λ2j−1 = 0 for j = 1, 2, · · · , l. Clearly, x̂n,k = −x̂n,n+1−k
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and ω̂n,k = ω̂n,n+1−k and that the quadrature rule holds when f ∈
P2n−2l−1.

Theorem 3.1. Let dν(z) = −dφ(1)(x(z)), and let zn,k =
{
x̂n,k +

i
√
1− x̂2

n,k

}2. Then the quadrature rule (3.3) holds for f ∈ P2n−2l−1

if and only if the quadrature rule
∫

C

F (z) dν(z) =
n∑

k=1

ω̂n,kF (zn,k),

holds for F (z) ∈ Span {z−n+l+1, z−n+l+2, · · · , zn−l−2, zn−l−1}.

Proof. The nodes zn,k are the zeros of the polynomial
(4z)n/2Pn[λ0, 0, λ2, · · · , 0, λ2l;x(z)]. We first show that (3.3) holds for
f ∈ P2n−2l−1 if and only if

∫ 1

−1

{
x + i

√
1− x2

}2s+1 dφ(1)(x)
2i
√
1− x2

=
n∑

k=1

{
x̂n,k + i

√
1− x̂2

n,k

}2s+1 ω̂n,k

2i
√
1− x̂2

n,k

,

for−n+l ≤ s ≤ n−l−1. The quadrature rule (3.3), which is symmetric,
is satisfied for any function f = p + g, where p is an even polynomial
of degree less than or equal to 2n − 2l − 2 and g is any odd function.

We consider the function fs(x) = 1
i
√

1−x2

{
x + i

√
1− x2

}2s+1
. Using

the binomial expansion we can write

fs(x) = gs(x) + p2s(x),

for s ≥ 0 and since {x + i
√
1− x2}{x − i

√
1− x2} = 1,

f−s−1(x) = gs(x)− p2s(x),

for s ≥ 0. Here,

gs(x) =
x√

x2 − 1

s∑
j=0

(
2s + 1
2j

)
(x2 − 1)jx2s−2j ,
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which is an odd function and

p2s(x) =
s∑

j=0

(
2s + 1
2j + 1

)
(x2 − 1)jx2s−2j ,

which is an even polynomial of degree 2s with leading coefficient equal
to 22s. Thus (3.3) implies (3.4).

On the other hand, since p2s(x) = [fs(x)− f−s−1(x)] /2, s =
0, 1, · · · , n − l − 1, form a basis for all even polynomials of degree less
than or equal to 2n − 2l − 2, (3.4) also implies (3.3).

Now the substitution 2x = z1/2 + z−1/2 in (3.4) leads to

∫
C

zs z

z − 1
[−dφ(1)(x(z))] =

n∑
k=1

ω̂n,k
zn,k

zn,k − 1
zs
n,k,

for s = −n + l,−n + l + 1, · · · , n − l − 2, n − l − 1. Hence the ob-
servation that if F (z) ∈ Span {z−n+l+1, z−n+l+2, · · · , zn−l−2, zn−l−1}
then (1− z−1)F (z) ∈ Span{z−n+l, z−n+l+2, · · · , zn−l−2, zn−l−1} con-
cludes the proof of the theorem.

The case l = 0 in this theorem shows the connection between the
n-point Gaussian quadrature rule defined on (−1, 1) and the n-point
Szegö quadrature rule.

As a first example of an application of the above theorem, we immedi-
ately obtain from the Gauss-Chebyshev rule, the following quadrature
rule ∫ 2π

0

F (eiθ) dθ =
2π
n

n∑
k=1

F (ei 2k−1
n π),

which holds for

F (z) ∈ Span {z−n+1, z−n+2, · · · , zn−2, zn−1}.

This quadrature rule has also been given in [6] with some numerical
results.

As another example we consider the Chebyshev-Fejér rule, which is
exact for f ∈ P2n−2l−1, where l = �n/2�, the integer part of n/2. From
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this we obtain the quadrature rule

∫ 2π

0

F (eiθ) sin(θ/2) dθ =
n∑

k=1

ω̂n,kF (ei(2k−1/n)π),

where

ω̂n,k =
4
n


1− 2

�n/2�∑
m=1

cos[(m(2k − 1)/n)π]
4m2 − 1


 ,

which holds for F (z)∈Span {z−n+�n/2�+1, z−n+�n/2�+2, · · · , zn−�n/2�−2,
zn−�n/2�−1}.

4. Further considerations on quadrature rules. Recall that
P

(1)
n (x) = (4z)−n/2R

(1)
n (z), where x = (z1/2 + z−1/2)/2 = cos(θ/2) and

R
(1)
n (z) = [Sn(z) + S∗

n(z)]/[1 + Sn(0)]. Since Sn are polynomials with
real coefficients, we can also write

P (1)
n (x) =

2−(n−1)

1 + Sn(0)
Re [z−n/2Sn(z)], n ≥ 1,

where z = eiθ and x = cos(θ/2).

We now consider the polynomials S̃n that satisfy the recurrence
relation

S̃n+1(z) = zS̃n(z)− an+1S̃
∗
n(z), n ≥ 0.

with S̃0(z) = 1. Clearly, S̃n(0) = −an, n ≥ 1. S̃n are known
as the associated polynomials of the Szegö polynomials Sn, where
Sn(0) = −S̃n(0) = an for n ≥ 1. Like the polynomials Sn, the zeros of
S̃n also lie inside the open unit disk.

Now if we consider the polynomials, P̃
(2)
n (x) = (4z)−n/2R̃

(2)
n (z) =

(4z)−n/2(z − 1)−1[S̃n+1(z) − S̃∗
n+1(z)]/[1 − S̃n+1(0)], then a compari-

son of the corresponding recurrence relations confirms that On(x) =
µ

(1)
0 P̃

(2)
n−1(x) for n ≥ 1. Consequently, we can also write

On(x) =
2−(n−1)µ

(1)
0

1 + Sn(0)
Im [z−n/2S̃n(z)]

sin(θ/2)
, n ≥ 1,

where z = eiθ and x = cos(θ/2).
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We now define the sequence of polynomials {Qk,n}n
k=0 by the recur-

rence relation

Qk,n(z) = zQk−1,n(z) + zan+1−kQ
∗
k−1,n(z), k = 1, 2, · · · , n,

with Q0,n(z) = Q∗
0,n(z) = 1. Thus Qk,n, which is monic and of degree

k, satisfy

(4.1) Q∗
k,n(z) = Q∗

k−1,n(z) + an+1−kQk−1,n(z), k = 1, 2, · · · , n

and we obtain the following lemma.

Lemma 1. For |z| ≤ 1 we have

(4.2) 0 < 1−|an+1−k| ≤
∣∣∣∣∣

Q∗
k,n(z)

Q∗
k−1,n(z)

∣∣∣∣∣ ≤ 1+|an+1−k|, k = 1, 2, · · · , n

and that the zeros of Qk,n, k = 1, 2, · · · , n, lie inside the open unit disk.
Moreover, for any k such that 1 ≤ k ≤ n,

Qk,n(z)Sn−k(z) + Q∗
k,n(z)S

∗
n−k(z) = Sn(z) + S∗

n(z)

and

Qk,n(z)S̃n−k(z)− Q∗
k,n(z)S̃

∗
n−k(z) = S̃n(z)− S̃∗

n(z).

Proof. From (4.1), clearly 0 < 1 − |an| ≤
∣∣Q∗

1,n(z)
∣∣ ≤ 1 + |an| and

hence the zero of Q1,n is inside the unit disk. Now suppose that for
some k, 1 < k ≤ n, that the zeros of Qk−1,n lie within the open unit
disk. Hence from (4.1),

Q∗
k,n(z)

Q∗
k−1,n(z)

= 1 + an+1−k
Qk−1,n(z)
Q∗

k−1,n(z)
,

where
∣∣∣Qk−1,n(z)/Q∗

k−1,n(z)
∣∣∣ ≤ 1 for |z| ≤ 1. Thus Q∗

k,n(z)/Q
∗
k−1,n(z)

satisfies (4.2) and consequently the zeros of Qk,n are inside the open
unit disk.
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The remaining results of the above lemma follow from the applications
of the recurrence relations of Sn, S̃n and Qk,n.

The results given by the above lemma are similar to that of
Peherstorfer [9, Lemma 3] and some subsequent results in that pa-
per. The main difference is in the way the recurrence relation for Qk,n

is chosen. In our case, different to [9], multiplication by z occurs in
both terms in the righthand side.

As a consequence of Lemma 1, since Qk,nSn−k and Qk,nS̃n−k are
polynomials of degree n with real coefficients, we can also write

P (1)
n (x) =

2−(n−1)

1 + Sn(0)
Re [z−n/2Qk,n(z)Sn−k(z)], n ≥ 1,

and

On(x) =
2−(n−1)µ

(1)
0

1 + Sn(0)
Im [z−n/2Qk,n(z)S̃n−k(z)]

sin(θ/2)
, n ≥ 1,

for 0 ≤ k ≤ n. Furthermore,

Pn[λ0, λ1,· · ·, λr;x]=
r∑

j=0

λj
2−(n−j−1)

1+Sn−j(0)
Re [z−

(n−j)
2 Qkj ,n−j(z)Sn−j−kj

(z)]

and

On[λ0, λ1,· · ·, λr;x]=
r∑

j=0

λj
2−(n−j−1)µ

(1)
0

1+Sn−j(0)
Im [z−

(n−j)
2 Qkj ,n−j(z)S̃n−j−kj

(z)]
sin( θ

2 )
,

where 0 ≤ kj ≤ n − j. In particular, letting kj = r − j, we obtain

Pn[λ0, λ1, · · · , λr;x] = 2−(n−1) Re [z−n/2qr(z)Sn−r(z)]

and

On[λ0, λ1, · · · , λr;x] =
2−(n−1)µ

(1)
0

sin(θ/2)
Im [z−n/2qr(z)S̃n−r(z)],

where

qr(z) =
r∑

j=0

λj 2jzj/2

1 + an−j
Qr−j,n−j(z).
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5. Positive quadrature rules. We now give some conditions that
ensure for the quadrature rule (3.1) the following well desired property.

(5.1)
1 > xn,1 > xn,2 > · · · > xn,n > −1

and ωn,k > 0, 1 ≤ k ≤ n.

The nodes xn,k belonging to the interval of integration (−1, 1) is
desirable because it is not practical to assume that the integrand f
be defined outside this interval. The weights ωn,k being positive has
the following nice implication due to Pólya [10]. Since (3.1) is an
interpolating quadrature rule for any n, the positiveness of the weights
guarantees that

n∑
k=1

ωn,kf(xn,k) −→
∫ 1

−1

f(x) dφ(1)(x),

for all continuous functions.

Now it is easily verified (see for example Lemma 1 of [9]) that the
weights ωn,k of the quadrature rule (3.1) are positive if the n zeros
of Pn[λ0, λ1, · · · , λr;x] and the n − 1 zeros of On[λ0, λ1, · · · , λr;x]
interlace.

We show that the zeros of Pn[λ0, λ1, · · · , λr;x] are inside (−1, 1) and
that the above interlacing property holds if the zeros of the 2r-th degree
polynomial q̃2r(w) = qr(w2) are inside the open unit disk. In order to
show this, we use the following lemma.

Lemma 2. Let m ∈ N and l ∈ Z with 2|l| ≤ m. Assume that the
real polynomial sm(z) of degree m has all its zeros in the open unit disk
|z| < 1. Then for x = cos(θ) and z = eiθ,

• the polynomial p1(x) = Re [z−lsm(z)] has m − l simple zeros
x

(1)
j = cos(θ(1)

j ) in (−1, 1),

• the polynomial p2(x) = Im [z−lsm(z)]/ sin(θ) has m − l − 1 zeros
x

(2)
j = cos(θ(2)

j ) in (−1, 1);

• the zeros of p1(x) and p2(x) interlace, i.e., 0 < θ
(1)
1 < θ

(2)
1 < θ

(1)
2 <

· · · < θ
(2)
m−l−1 < θ

(1)
m−l < π.
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This lemma was stated and proved in Peherstorfer [9]. We state a
modification of this lemma which leads to symmetric polynomials in
the real line.

Lemma 3. Let sn(z) be a real polynomial of degree n with all its
zeros in the open unit disk |z| < 1. Then for x = cos(θ/2) and z = eiθ,

• p1(x) = Re [z−n/2sn(z)] is a real and symmetric polynomial of
degree n that has all its zeros simple and inside (−1, 1);

• p2(x) = Im [z−n/2sn(z)]/ sin(θ/2) is a real and symmetric polyno-
mial of degree n − 1 that has all its zeros simple and inside (−1, 1);

• the zeros of p1(x) and p2(x) interlace.

Proof. It is easy to verify that both p1 and p2 are real and symmetric
polynomials. Let 2l ∈ Z such that 2|l| ≤ n. Then Re [z−lsn(z)]
(respectively Im [z−lsn(z)]) has a zero at z = eiα, α ∈ [0, 2π), if and
only if

zn−2l sn(z)
s∗n(z)

= −1 (respectively + 1).

Note that, different to Lemma 2, we also allow l to be a half integer.
Now the above results is equivalent to

arg zn−2l + arg
sn(z)
s∗n(z)

= (2k − 1)π (respectively 2kπ),

for k = 0, 1, . . . . Since [arg sn(eiα)/s∗n(eiα)] increases from 0 to 2nπ as
α varies from 0 to 2π, both Re [z−lsn(z)] and Im [z−lsn(z)] have 2n−2l
zeros in [0, 2π) and their zeros interlace. Hence if we take l = n/2, we
obtain precisely the results of the lemma.

We now consider the function sn(z) = qr(z)Sn−r(z). This can be
considered as a polynomial of degree m = 2n in w = z1/2 = eiθ/2.
Then

sn(w2) = qr(w2)Sn−r(w2) = q̃2r(w)Sn−r(w2).

Suppose that the zeros of q̃2r(w), which is a polynomial of degree 2r in
w, are inside the open unit disk. Which means, all the zeros of sn(w2),
which is a polynomial of degree m = 2n in w, are inside the open unit
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disk. Consequently, from Lemma 2, with l = m/2 and x = cos(θ/2),
the polynomial Pn[λ0, λ1, · · · , λr;x] = 2−(n−1)Re [z−n/2qr(z)Sn−r(z)]
has m − l = n zeros xn,j = cos(θ(1)

j /2) in (−1, 1) and the polynomial
p2(x) = Im [z−n/2qr(z)Sn−r(z)]/ sin(θ/2) has m − l − 1 = n − 1
zeros cos(θ(2)

j /2) in (−1, 1). Moreover, these zeros interlace, i.e., 0 <

(1/2)θ(1)
1 < (1/2)θ(2)

1 < (1/2)θ(1)
2 < · · · < (1/2)θ(2)

n−1 < (1/2)θ(1)
n < π.

When λ2j−1 = 0, j = 1, 2, · · · , i.e., when we consider the symmetric
quadrature rule (3.3), then the above results can be obtained from
Lemma 3.

Now from Re {a}Re {b}+ Im {a}Im {b} = Re {a b}, when |z| = 1,

Re [z−n/2qr(z)Sn−r(z)] Re [z−n/2qr(z)S̃n−r(z)]

+ Im [z−n/2qr(z)Sn−r(z)] Im [z−n/2qr(z)S̃n−r(z)]

= |qr(z)|2Re [Sn−r(z)S̃n−r(z)]

= 2|qr(z)|2
n−r∏
j=1

(1− a2
j) > 0,

since qr(z) 	= 0 for |z| = 1. Considering the above relation at the zeros
xn,k of Pn[λ0, λ1, · · · , λr;x], i.e., at the points zn,k = eiθ

(1)
k , where

xn,k = cos(θ(1)
k /2), we obtain that the zeros of Pn[λ0, λ1, · · · , λr;x]

and the zeros of On[λ0, λ1, · · · , λr;x] interlace. Thus we can state the
following theorem.

Theorem 5.1. If q̃2r(w) =
∑r

j=0(1 + an−j)−1λj2jwjQr−j,n−j(w2),
which is a polynomial of degree 2r in w = z1/2 with real coefficients,
has all its zeros inside the open unit disk then (5.1) holds for the nodes
and weights of the quadrature rule (3.1).

Pursuing even further the ideas presented in [9], we obtain the
following results which provide some sufficient conditions for (5.1) to
hold.

Theorem 5.2. Let λj ∈ R, j = 0, 1, · · · , r, and let j0 = 0 < j1 <
· · · < jr̂ be those indices for which λjv

	= 0 for v = 0, 1, · · · r̂. Define
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Λ0 = 1 and

Λj = 2j |λj | |1 + an|
|1 + an−j |

∏r−j−1
k=0 (1 + |an−j−k|)∏r−1

k=0(1− |an−k|)
,

for j = 1, 2, · · · , r. Then (5.1) holds if
∑r

j=1 Λj < 1.

In particular, (5.1) holds if Λjv
≥ 2Λjv+1 for v = 0, 1, · · · , r̂ − 2 and

Λjr̂−1 > Λjr̂
.

Proof. Consider the polynomial q̃2r(w) =
∑r

j=0
λj2

jwj

1+an−j
Qr−j,n−j(w2),

which is real and of degree exactly 2r in w. Hence,

q̃∗2r(w) =
r∑

j=0

λj2jwj

1 + an−j
w2r−2jQr−j,n−j(1/w2)

=
r∑

j=0

λj2jwj

1 + an−j
Q∗

r−j,n−j(w
2).

Clearly the zeros of q̃2r(w) are in |w| < 1 is equivalent to saying that
the zeros of q̃∗2r(w) are in |w| > 1. Suppose that there is a zero ζ of
q̃∗2r(w) inside |w| < 1. We show that this contradicts

∑r
j=1 Λj < 1. We

have

q̃∗2r(ζ) =
r∑

j=0

λj2jζj

1 + an−j
Q∗

r−j,n−j(ζ
2) = 0.

Since Q∗
r,n(z) has no zeros inside |z| < 1, we can write

1 = |λ0| =
∣∣∣∣∣∣

r∑
j=1

λj2jζj 1 + an

1 + an−j

Q∗
r−j,n−j(ζ

2)
Q∗

r,n(ζ2)

∣∣∣∣∣∣ .

Hence the application of the first part of Lemma 1 gives 1 ≤ ∑r
j=1 Λj ,

which is a contradiction to the criteria given by the theorem. Thus if
Λ0 >

∑r
j=1 Λj holds then all the zeros of q̃2r(w) are inside |w| < 1 and

consequently the nodes and weights of the quadrature rule (3.1) satisfy
(5.1).

Now the proof of the remaining results of the theorem follows since
Λjv

≥ Λjv+1 for v = 0, 1, · · · , r̂ − 2 and Λjr̂−1 > Λjr̂
, is a sufficient

condition for Λ0 >
∑r

j=1 Λj to hold.
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Since the symmetric quadrature rule (3.3) is a special case of the
quadrature rule (3.1), application of the above theorem to (3.3) gives

Corollary 5.2.1. Let

Λ̂j = 22j |λ2j | |1+an|
|1+an−2j |

∏2l−2j−1
k=0 (1+ |an−2j−k|)∏2l−1

k=0 (1− |an−k|)
, j = 1, 2, · · · , l.

Then the nodes and weights of the symmetric quadrature rule (3.3)
satisfy

(5.2) −1 < x̂n,k < 1 and ω̂n,k > 0,

for 1 ≤ k ≤ n, if
∑l

j=1 Λ̂j < 1.
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