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ABSTRACT. Most of the known continued fraction ex-
pansions of special functions are limit periodic. This means
that the classical approximants Sn(0) are normally not the
best ones to use for approximations. In this paper we sug-
gest a number of approximants Sn(wn) which converge faster.
The estimation of the improvement and bounds for the error
|f − Sn(wn)| (which we still call the truncation error) are
mainly obtained by means of Thron’s parabola sequence the-
orem and the oval sequence theorem.

1. Introduction. A number of special functions have nice, well-
known continued fraction expansions K(an/1), such as, for instance,

arctan z where a1 := z, an+1 :=
n2z2

4n2 − 1
for n ≥ 1,

(1.1)

tan z where a1 := z, an+1 := − z2

4n2 − 1
for n ≥ 1,(1.2)

the incomplete gamma function

(1.3)
Γ(a, z)

where a1 :=
e−zza

1+z−a
, an+1 :=

−n(n− a)
(2n−1+z− va)(2n+1+z−a)

,

and the complementary error function

(1.4) erfc (z) where a1 :=
e−z2

2z
, an+1 :=

n

2z2
.
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410 L. LORENTZEN

(For these and more examples, see for instance [16, pp. 560 597].)
It is known that these expansions converge locally uniformly to the
corresponding functions in Z1 := {z ∈ C; | arg(1+ z2)| < π}, Z2 := C,
Z3 := {z ∈ C; | arg z| < π} as long as (a − z) is not a positive, odd
integer, and Z4 := {z ∈ C; Re z > 0}, respectively. As often happens,
these expansions have regularly varying coefficients in the sense that
an → a ∈ Ĉ := C∪{∞}, monotonically, at least, in the first four cases.
We distinguish between the four types:

• Type 1: a ∈A1 := {a ∈ C; | arg(a+1/4)| < π}. (1.1) is of this type.

• Type 2: a = 0. (1.2) is of this type.

• Type 3: a = −1
4 . (1.3) is of this type.

• Type 4: a = ∞. (1.4) is of this type.

The elliptic case a < −1
4 is left out, since our continued fractions

normally diverge in this situation.

The purpose of this paper is to show how one can approximate
functions by means of their continued fraction expansions. We want
the approximations

• to have small pointwise errors,

• to be computed by easy, fast and stable algorithms,

• to have reliable and tight truncation error bounds.

In addition, we want to have bounds for the roundoff errors, but that
is beyond the scope of this paper.

The approximation we consider is based on “modified” approximants.
The truncation error bounds are of the a priori type. Our main
tools are Thron’s parabola sequence theorem and the oval sequence
theorem. These are presented in Section 2 along with the basic ideas.
In Section 3 we describe how we can obtain truncation error bounds,
and Section 4 gives some bounds which work for Stieltjes fractions
in general. Section 5 contains some technical details. In Section 6
we suggest a number of ways to construct approximations from limit
periodic continued fraction expansions, and in Sections 7 10 we give
some numerical illustrations and examples of truncation error bounds
for the five continued fractions (1.1) (1.4). Since the purpose is to
demonstrate general techniques, we are not concerned with functional
relationships which may enlarge the z-domain for our approximations.
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Section 11 contains some concluding remarks.

Throughout this paper we consider convergent continued fractions
K(an/1) which satisfy the conditions of Thron’s parabola sequence
theorem, see Section 2. In particular this implies that the values of
K(an/1) and all its tails and critical tails, see Section 2, are finite.
The ideas can be generalized to more general continued fractions. (See
Section 5.) The computation of the approximants is done using Maple
with 40 digits of precision.

2. The tool box. It is standard to write the approximants

(2.1) Sn(wn) :=
a1

1 +
a2

1 + · · ·+
an

1 + wn

of the continued fraction
(2.2)

K(an/1) :=
a1

1 +
a2

1 +
a3

1 + . . .
=

a1

1 +
a2

1 +
a3

1 + . . .

; an ∈ C \ {0}

as compositions of linear fractional transformations

(2.3) Sn(wn) = s1 ◦ s2 ◦ · · · ◦ sn(wn); sk(w) :=
ak

bk + w

in w. It is easy to prove that

(2.4) Sn(w) =
An +An−1w

Bn +Bn−1w

where An and Bn, the canonical numerators and denominators, are
solutions of the recurrence relation

(2.5) Xn = Xn−1 + anXn−2 for n = 1, 2, 3, . . .

with A−1 = 1, A0 = 0, B−1 = 0 and B0 = 1. Clearly, Sn(wn) is formed
by replacing the value f (n) of the nth tail

(2.6) K∞
m=n+1(am/1) :=

an+1

1 +
an+2

1 +
an+3

1 + . . .
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of K(an/1) by wn. Since K(an/1) = Sn(K∞
m=n+1(am/1)), it follows

that each one of its tails converges if and only if K(an/1) converges.
(We allow convergence to ∞.)

It was already suggested by Sylvester [17] in 1869 that Sn(wn)
normally approximates f rather well when wn is chosen close to f (n).
This is an important point. In computing approximants, it is always a
trade-off between rounding errors and truncation errors. To minimize
rounding errors, we want the computation to be stable and n to be
small. To minimize truncation errors, we want n to be large. In
addition we want the computation to be fast, which again means n
small. So reducing n without loss of accuracy is a very good thing, and
this is what we obtain when wn is chosen close enough to f (n).

But we gain more! In addition to the

• convergence acceleration

we also obtain

• more stable computation and

• better truncation error bounds.

Indeed, in some cases we really need to use modifications in order to
find a priori truncation error bounds which are useful at all.

Another point in favor of modifications is that given wn, the work of
computing Sn(wn) is essentially equivalent to computing the classical
approximant Sn(0). Indeed, we may set xn := wn, instead of xn := 0,
and then use the backwards algorithm

xk−1 := sk(xk) = ak/(1 + xk) for k = n, n− 1, . . . , 1

as usual. This returns x0 = Sn(wn). Hence, it pays off to put in a little
effort up front to find good values for wn. Then a combination of a
priori truncation error bounds and a priori rounding error bounds gives
the size of n needed to obtain the wanted accuracy. The extreme case
where f (n) is known, leads to the extreme “convergence acceleration”
f = Sn(f (n)).

For convenience we shall let S(n)
k (wn+k) denote the approximants of

(2.6). Then sn ◦ S(n)
k (wn+k) = S

(n−1)
k+1 (wn+k) and Sn ◦ S(n)

k (wn+k) =
Sn+k(wn+k).
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We say that {Vn}∞n=0; ∅ �= Vn ⊂ Ĉ (proper subset) is a sequence of
value sets for K(an/1) if sn(Vn) ⊆ Vn−1 for all n ∈ N. This leads to
the nested sets Sn(Vn) ⊆ Sn−1(Vn−1) ⊆ V0 which were the basis for
Thron’s celebrated parabola sequence theorem:

Thron’s parabola sequence theorem [19]. Let 0 < gn < 1 for
n ≥ 1 and −(π/2) < α < (π/2) be given, and let

(2.7)

Pα,n := {a ∈ C; |a| − Re (a e−i2α)
≤ 2gn−1(1− gn) cos2 α} for n ≥ 2,

Vα,n := {w ∈ C; Re (w e−iα) ≥ −gn cosα} for n ≥ 1,
Wα,n := Vα,n ∪ {∞} for n ≥ 1.

Further, let K(an/1) have an ∈ Pα,n for all n ≥ 2. Then the following
hold.

A. {Vα,n} and {Wα,n} are sequences of value sets for K(an/1) for
appropriately chosen Vα,0 and Wα,0 (for instance, Vα,0 := a1/(1+Vα,1),
Wα,0 := a1/(1 +Wα,1)).

B. The radius of the circular disk Sn(Wα,n) is bounded by

(2.8) Tn :=
|a1|

2(1− g1) cosα
∏n

ν=2

(
1 + gν−1(1−gν)(1−kν+dν−1) cos2 α

|aν |

)

where

(2.9) dn :=
Gn∑n−1

k=0 Gk

; Gk :=
k∏

ν=1

1− gν

gν

and

(2.10) kn :=
|an| − Re (an e

−2iα)
2gn−1(1− gn) cos2 α

.

C. If K(an/1) converges, then its value f ∈ Vα,0 and its tail values
f (n) ∈ Vα,n for all n. In particular this means that all f (n) and f are
finite.
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D. The Euclidean distance between the boundary ∂Vα,n of Vα,n and
the critical tail sequence

(2.11) −hn := S−1
n (∞) = − Bn

Bn−1
= −1− an

1 +
an−1

1 + · · ·+
a2

1

satisfies dist (−hn, ∂Vα,n) ≥ gndn cosα for n ≥ 1.

Remarks 2.1.

1. Thron had another formulation for Pα,n: an ∈ Pα,n if and only if

(2.12) an = e2iαk̂ngn−1(1− gn)(un + ivn) cos2 α, un, vn ∈ R

where v2
n ≤ 4un+4 and 0 ≤ k̂n ≤ 1. (We have shifted the numbering of

gn.) Thron then proved that the bound Tn in (2.8) holds with kn = k̂n.
We shall prove that Tn still is a bound for the radius of Sn(Wα,n) if kn

is given by (2.10).

Let an, 0 �= an ∈ Pα,n, be given, where Pα,n is given by (2.7). Let
first vn �= 0 or vn = 0 with un < 0. Then an can be written as in (2.12)
for some 0 < k̂n ≤ 1, where

v2
n = 4un + 4

and

cn = e2iαgn−1(1− gn)(un + ivn) cos2 α

is the point of intersection between the parabola ∂Pα,n and the ray
from the origin through an. This follows since Pα,n is a convex set.
Indeed,

|an| − Re (ane
−2iα) = k̂n{|cn| − Re (cne

−2iα)}
= k̂ngn−1(1− gn){(un + 2)− un} cos2 α

which shows that k̂n = kn as given by (2.10). In particular, 0 < kn ≤ 1.

Next, let vn = 0 and un > 0. Then an lies on the axis of the parabola
∂Pα,n, and kn given by (2.10) is equal to 0. The expression (2.12) for
an can then be written an = k̂nĉn where ĉn = e2iαgn−1(1−gn)x̂n cos2 α
for an arbitrarily large x̂n > 0. Thron’s bound works for all x̂n > 0.
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Hence limx̂n→∞ Tn must also work, that is, we can use kn = k̂n = 0 in
the formula for Tn.

What we gain by our formulation of Thron’s parabola sequence
theorem is an optimal choice for kn to give a minimal value for Tn.
(See also [15].)

2. If Tn → 0, then the nestedness Sn(Wα,n) ⊆ Sn−1(Wα,n−1) shows
that Sn(wn) converges uniformly with respect to wn ∈ Wα,n to its value
f . From (2.8) we see that Tn → 0 if

∑
gν−1(1−gν)(1−kν+dν−1)/|aν | =

∞. If lim sup kn < 1, then Tn → 0 if
∑

gν−1(1 − gν)/|aν | = ∞. In
particular, lim sup kn < 1 if arg an = 2α from some n on.

3. 2Tn is an upper bound for |f − Sn(wn)| whenever ak ∈ Pα,k for
2 ≤ k ≤ n and wn ∈ Wα,n.

4. We emphasize again that if 0 �= an ∈ Pα,n for all n ≥ 2, then
hn �= ∞ for all n ≥ 1 and Sn(wn) �= ∞ when wn ∈ Wα,n. Moreover, if
Tn → 0, then K(an/1) converges, and all f (n) �= ∞ and f �= ∞.

The oval sequence theorem (OST) [16, p. 145] is similar to Thron’s
parabola sequence theorem, but the value sets Vn are circular disks
instead of half planes Vα,n. (There is an unfortunate misprint in [16,
p. 146]. The first factor, 2R0, in the truncation error bound (5.4.17)
should be replaced by 2Rn. If we use wn = Cn, we can even replace
it by Rn as we do in this paper. We have also replaced |w0| + R0 by
|a1|/(|1 + w1| −R1) which is a better bound for |f |.)

The oval sequence theorem. Let wn ∈ C and 0 ≤ Rn < |1 + wn|
be given for n = 1, 2, 3, . . . such that

(2.13)
En := {a ∈ C; |a(1 + wn)− wn−1(|1 + wn|2 −R2

n)|+ |a|Rn

≤ Rn−1(|1 + wn|2 −R2
n)} �= ∅ for n = 2, 3, 4, . . . .

Let, further, K(an/1) be a continued fraction with an ∈ En for all
n ≥ 2. Then the following hold.

A. Vn := {w ∈ C; |w − wn| ≤ Rn} for n = 0, 1, 2, . . . is a sequence
of value sets for K(an/1) for appropriately chosen V0.

B. |Sn+m(w)−Sn(wn)| ≤ Qn := |a1|
|1+w1|−R1

· Rn

|1+wn|
∏n−1

k=1 Mk for n ≥ 1
and m ≥ 0 when w ∈ Vn+m, where Mk := maxu∈Vk

|u/(1 + u)|.
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Proof. A. Let w ∈ Vn. Then w = wn + r eiθ for some r ∈ [0, Rn] and
θ ∈ R. We need to show that | an

1+w − wn−1| ≤ Rn−1. We have∣∣∣∣ an

1 + w
− wn−1

∣∣∣∣ =
∣∣∣∣an − wn−1(1 + wn + r eiθ)

1 + wn + r eiθ

∣∣∣∣
≤ |an − wn−1(1 + wn)|+ |wn−1|Rn

|1 + wn| −Rn
≤ Rn−1

where the last inequality follows from the fact that an ∈ En.

B. Clearly,

|Sn+m(w)−Sn(wn)| ≤ |S(n)
m (w)−wn| ·max

u∈Vn

|Sn
′(u)| ≤ Rn ·max

u∈Vn

|Sn
′(u)|

where

S′
n(u) = {s1 ◦ s2 ◦ · · · ◦ sn}′(u)

=
n∏

k=1

−ak

(1 + uk)2
=

n∏
k=1

−uk−1

1 + uk
=

−u0

1 + u

n−1∏
k=1

−uk

1 + uk

where um := sm+1 ◦ sm+2 ◦ · · · ◦ sn(u) ∈ Vm for m = 0, 1, 2, . . . , n − 1
and un := u. Since |u0| = |a1/(1 + u1)| ≤ |a1|/(|1 + w1| − R1), this
proves the assertion.

We shall apply these two theorems in the following way:

• Given K(an/1) with 0 �= an ∈ Pα,n for n ≥ 2 for a fixed α ∈
(−π/2, π/2), where Tn → 0.

• Choose approximants Sn(wn), i.e., choose wn, with wn ∈ Vα,n.

• Let wn be the center of Vn and choose Rn such that an ∈ En for all
n ≥ 2.

• Then |f (n) − wn| ≤ Rn and |f − Sn(wn)| ≤ Qn for n ≥ 1.

• To prove that an ∈ En we shall compare an to ân := wn−1(1 + wn),
see Remark 2.2.2 below. Therefore we try to make |an− ân| small when
we choose {wn}.
To measure the improvement obtained by using Sn(wn) instead of Sn(0)
to approximate our finite function values f , we shall use the ratio

(2.14) Φn(wn, u) :=
f − Sn(wn)
f − Sn(u)

=
hn + u

hn + wn
· f

(n) − wn

f (n) − u
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with u := 0. This expression for Φn is easily derived from the fact that
f = Sn(f (n)). The factor hn/(hn + wn) is normally bounded (but not
always, as we shall see).

Remarks 2.2. 1. OST, as given in [16, p. 145], also gives convergence
criteria for K(an/1), but we shall not use them here. As described
above, we apply Thron’s parabola sequence theorem to prove conver-
gence of K(an/1). That K(an/1) converges to the “right value” is a
consequence of the correspondence, [11, p. 176], [16, p. 271].

2. For given values of wn and Rn, the sets En are bounded by
Cartesian ovals, symmetric about the axis z = t e2iαn , v1,n ≤ t ≤ v2,n,
where 2αn := arg ân, ân := wn−1(1 + wn), and

v1,n := (|wn−1| −Rn−1)(|1 + wn|+ εnRn),
v2,n := (|wn−1|+Rn−1)(|1 + wn| −Rn),

where εn := 1 if Rn−1 ≤ |wn−1| and εn := −1, otherwise [16, formulas
(4.4.19), (4.4.20)]. If, in particular, rn := Rn−1|1 + wn| − Rn|wn−1| −
RnRn−1 > 0, then the circular disk Dn := {a ∈ C; |a − ân| ≤ rn} is
contained in En, where ân := wn−1(1 +wn). It is often easier to check
if an ∈ Dn.

3. The linear fractional transformation t(u) := u/(1 + u) maps the
circular disk Vk onto a circular disk with center ck and radius ρk given
by

ck := 1− 1 + wk

|1 + wk|2 −R2
k

and ρk :=
Rk

|1 + wk|2 −R2
k

.

Hence

Mk = |ck|+ ρk =
|wk + |wk|2 −R2

k|+Rk

|1 + wk|2 −R2
k

.

If wk > 0 and wk(1 + wk) ≥ R2
k, this reduces to Mk = (wk +

Rk)/(1 + wk + Rk), and if wk < 0 and 1 + wk > 0, then Mk =
(|wk|+Rk)/(1− |wk| −Rk).

Notation. We shall use the notation introduced so far throughout the
paper. That is,

• Zk for k = 1, . . . , 4 denotes the convergence sets for (1.1) (1.4).
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• A1 := {a ∈ C; | arg(a+ 1/4)| < π}.
• Sn, sn, S

(m)
n are the linear fractional transformations, and Sn(wn)

are the approximants of K(an/1).

• An and Bn are the canonical numerators and denominators of
K(an/1).

• f, f (n) are the values of K(an/1) and its tails, and hn :=
−S−1

n (∞) gives its critical tail sequence {−hn}.
• α, gn, dn, Pα,n, Vα,n,Wα,n, Tn are as given in Thron’s parabola
sequence theorem.

• En, Vn, Rn, Mn, Qn are as given in OST.

• ân, Dn, rn, Φn(wn, u) are as given in Remark 2.2.2 and formula
(2.14).

In addition, we shall use

• ∆n := |1 + wn| − |wn−1| and ∆ := lim infn→∞ ∆n.

• ψn = O(ϕn) as n → ∞ to mean that lim supn→∞ |ψn/ϕn| < ∞.

• ψn ∼ ϕn as n → ∞ to mean that limn→∞ ψn/ϕn = 1.

• δn := supm≥n |am − âm|.

3. Truncation error bounds. It goes without saying that finding
useful wn and estimating their effect Φn(wn, 0) is easier than to come
up with good, reliable truncation error bounds. It is also a question of
what we mean by “good” error bounds. Should they be small, or easy
to compute, or valid for a large z-region? It may be hard to achieve
all this in one go. In practice it is useful to have different bounds for
different purposes.

3.1. The bounds 2Tn and Qn. The bound

(3.1)
|f−Sn(wn)| ≤ 2Tn

when wn∈ Wα,n and ak∈ Pα,k for all k ≥ 2

from Thron’s parabola sequence theorem works for all z ∈ Zi in our
examples. Normally it is not hard to determine what {gn} and α to use
for a given continued fraction expansion. Hence this bound is simple
to use. It takes some effort to compute, but in Section 3.3 we show
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how the product may be replaced by a power at a low cost of accuracy
under proper conditions. Hence 2Tn is a very nice bound.

The drawback is that it is not small, although it was obtained by very
careful estimation. Since Tn is a bound for the radius of Sn(Wα,n), it is
valid also if wn is chosen far away from f (n). One might say that Vα,n is
too large to give good truncation error bounds in general. In particular,
the bound does not pick up the convergence acceleration we obtain by
using good modifying factors wn in our approximants Sn(wn).

This is compensated for in OST, where Vn may be chosen small.
Hence the bound

(3.2) |f − Sn(wn)| ≤ Qn when ak ∈ Ek for all k ≥ 2

is normally much smaller. Indeed, since we aim at Rn → 0, we normally
get Qn/Tn → 0. The bound Qn reduces to the well known result below
when we set wn := 0 and Rn := gn for all n.

Theorem 3.1. Let |an| ≤ gn−1(1 − gn) for all n ≥ 2, where
0 < gn < 1 for all n. Then K(an/1) converges, |f (n)| ≤ gn for n ≥ 1
and

(3.3) |f − Sn(0)| ≤ |a1|
1− g1

gn

n−1∏
k=1

gk

1− gk
for n ≥ 2.

Also the product in Qn can be replaced by a power under proper
conditions. But both in (3.2) and (3.3) the hard part remains: finding
values for Rn = gn that work for a given continued fraction. In
Section 4 we shall see some techniques for picking Rn. It turns out
that the closer our choice of wn is to the actual tail value f (n), the
easier it normally is to come up with useful values for Rn, and thus to
find good error bounds.

3.2. A useful trick. We want Rn to be small to make Mk small,
but it has to be large enough to include an in En for all n ≥ 2. This can
sometimes only be achieved from some larger n on. Then the following
formulas may be useful:
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Lemma 3.2.

(3.4)

f − Sn(wn) =
(fN−1 − fN )hN

(hN + f (N))(hN + S
(N)
n−N (wn))

(f (N) − S
(N)
n−N (wn))

=
(fN−1 − fN )(1 + f (N+1))(1 + S

(N+1)
n−N−1(wn))

hN (hN+1 + f (N+1))(hN+1 + S
(N+1)
n−N−1(wn))

· (f (N) − S
(N)
n−N (wn))

for n > N .

Here hN and hN+1 are given by (2.11), and fN−1 := SN−1(0) and
fN := SN (0) can be computed, at least for reasonably small N . If
an ∈ En for n ≥ N + 2, then S

(N+1)
n−N−1(wn) and f (N+1) are elements

in VN+1. Moreover, OST gives a bound for |f (N) − S
(N)
n−N (wn)|. This

gives us a bound for the second expression in (3.4). If we also know
that aN+1 ∈ EN+1, then also f (N) and S

(N)
n−N (wn) are elements in VN ,

and we can use the first expression in (3.4).

Proof of Lemma 3.2. The first expression for f − Sn(wn) follows,
since f = SN (f (N)) and Sn(wn) = SN (S(N)

n−N (wn)) where SN (w) =
(AN +AN−1w)/(BN +BN−1w) and hN = BN/BN−1.

The second expression follows from the first one since

hN =
aN+1

hN+1 − 1
, f (N) =

aN+1

1 + f (N+1)

and
S(N)

m (w) =
aN+1

1 + S
(N+1)
m−1 (w)

.

For N = 1 we have h1 = 1, f0 = 0 and f1 = a1, and thus

(3.5)

|f − Sn(wn)| ≤ |a1| ·H2
2 · |a2|

|1 + w2| −R2
· Rn

|1 + wn|
n−1∏
k=2

Mk for n ≥ 2
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if an ∈ En for n ≥ 3, where

(3.6) Hk := max
u∈Vk

|(1 + u)/(hk + u)|.

Similarly, since h2 = 1+ a2, f1 = a1 and f2 = a1/(1+ a2), N = 2 gives

(3.7)

|f − Sn(wn)| ≤ |a1a2|
|1 + a2|2 ·H2

3 · |a3|
|1 + w3| −R3

· Rn

|1 + wn|
n−1∏
k=3

Mk for n ≥ 3

if an ∈ En for n ≥ 4. More generally

|f − Sn(wn)| ≤
∣∣∣∣fN−1 − fN

hN

∣∣∣∣ ·H2
N+1 ·

|aN+1|
|1 + wN+1| −RN+1

· Rn

|1 + wn|
n−1∏

k=N+1

Mk

for n ≥ N + 1 if an ∈ En for n ≥ N + 2.

Formula (3.4) is also useful if we know that an ∈ Pα,n for n ≥ N +2,
where Pα,n is as in Thron’s parabola sequence theorem. Then f (N+1) ∈
Vα,N+1 and S

(N+1)
n−N−1(wn) ∈ Vα,N+1 if wn ∈ Vα,n. Therefore,

(3.8) |f − Sn(wn)| ≤
∣∣∣∣fN−1 − fN

hN

∣∣∣∣ · H̃2
N+1|aN+1|

2(1− gN+1) cosα

/ n∏
ν=N+2

M̃ν

for n ≥ N + 2, where

H̃ν := sup
u∈Vα,ν

|(1 + u)/(hν + u)|(3.9)

and

M̃ν := 1 +
1

|aν |
(
gν−1(1−gν)(1−kν + dν−1) cos2 α

)
.

(3.10)
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Remarks 3.1.

1. We may want to choose N larger than necessary to get the bound
smaller.

2. By the same kind of argument as in Remark 2.2.3 we find that

Hk = max
u∈Vk

∣∣∣∣ 1 + u

hk + u

∣∣∣∣ = (|hk + wk)(1 + wk)−R2
k|+ |hk − 1|Rk

|hk + wk|2 −R2
k

≤ |1 + wk|+Rk

|hk + wk| −Rk

with equality if hk < 1 and (hk + wk)(1 + wk) > R2
k. If hk ≥ 1,

hk + wk + Rk > 0 and (hk + wk)(1 + wk) ≥ R2
k, then Hk reduces to

(1 + wk +Rk)/(hk + wk +Rk).

3. Similarly, we find that

H̃k = sup
u∈Vα,k

∣∣∣∣ 1 + u

hk + u

∣∣∣∣ = |ck|+ ρk

where

ck := 1 +
(1− hk)e−iα

2Re (hke−iα − gk) cosα
, ρk :=

|1− hk|
2Re (hke−iα − gk) cosα

since −hk �∈ Vα,k, and so tk(u) := (1 + u)/(hk + u) maps Wα,k :=
Vα,k ∪ {∞} onto a circular disk with center at ck and radius ρk.

4. Since

hN =
BN

BN−1
and fN−1 − fN =

∏N
k=1(−ak)
BNBN−1

,

it follows from the second expression in (3.4) that

|f − Sn(wn)| ≤
∣∣∣ N∏

k=1

(−ak)
∣∣∣ · Ĥ2

N+1|f (N) − S
(N)
n−N (wn)|

when an ∈ En for n ≥ N + 2, where

Ĥk = max
u∈Vk

|(1 + u)/(Bk +Bk−1u)| = |Bk−1| ·Hk.
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3.3. Simplifications and other ideas.

1. The product
∏n−1

k=N+1 Mk in Qn involves a lot of computation
and makes it harder to determine in advance what n to use in Sn(wn)
to reach the wanted accuracy, something we need in order to estimate
the roundoff error a priori. However, we often have that Mk decreases
monotonically with k. In such cases we may replace this product by a
power of MN+1 (or by MN+1MN+2 . . .MN+m−1M

n−1−N−m
N+m for some

m ∈ N). A similar trick can be used to simplify the product in Tn.

2. The bound

(3.11)
|hn + ζ| ≥ dist (−hn, ∂Vα,n) + dist (ζ, ∂Vα,n)

≥ dngn cosα+Re (ζe−iα) + gn

≥ dngn cosα for ζ ∈ Vα,n

from Thron’s parabola sequence theorem, can be used to simplify the
first expression in (3.4) for large N . Since hN = 1 + aN+1/hN+1, it
gives

(3.12)

|f − Sn(wn)| ≤ (1 + |aN+1|/dN+1gN+1 cosα)|fN−1 − fN |
(dNgN cosα)2

· |aN+1|
|1 + wN+1| −RN+1

· Rn

|1 + wn|
n−1∏

k=N+1

Mk

for n ≥ N + 1 if ak ∈ Ek for k ≥ N + 2, ak ∈ Pα,k for 2 ≤ k ≤ n,
wN ∈ Vα,N and wn ∈ Vα,n. This simplification may be useful if ak ∈ Ek

only for large indices.

3. Probably a better idea is to combine Thron’s parabola sequence
theorem with (3.11) and the bound |f (n) − wn| ≤ Rn from OST:

(3.13)

|f − Sn(wn)| = |Φn(wn,∞)| · |f − Sn(∞)|
≤ |Φn(wn,∞)| · 2Tn

=
∣∣∣∣f (n) − wn

hn + wn

∣∣∣∣ · 2Tn

≤ 2RnTn

|hn + wn| ≤
2RnTn

dngn cosα+Re(wne−iα) + gn

when ak ∈ Pα,k for k ≥ 2, wn ∈ Vα,n and ak ∈ Ek for all k ≥ n+ 2.
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4. Yet another bound can be obtained by using Thron and Waade-
land’s bounds [20] for |Φn(w, 0)| which work under special conditions
for K(an/1) of type 1 or 3. Then

(3.14) |f − Sn(w)| = |Φn(w, 0)| · |f − Sn(0)| ≤ |Φn(w, 0)| · 2Tn.

We shall mainly examine bounds of the types (3.1), (3.2) combined
with (3.4) and (3.13) in this paper.

4. General truncation error bounds for Stieltjes fractions.
The continued fractions K(an/1) in our examples (1.1), (1.2), (1.4)
and (1.5) are of Stieltjes type. In particular this means that arg an is
independent of n for n ≥ 2. For such continued fractions the bound
from Thron’s parabola sequence theorem can be made smaller and
simpler. Clearly we may choose 2α := arg an for n ≥ 2 except if
an < 0, in which case we choose α := 0. Assume that 2α = arg an

for n ≥ 2. Then kn = 0, and we may choose gn = g for all n. Any
g ∈ (0, 1) may be used. Used in (2.9) this gives

dn =
Gn(1−G)
1−Gn

=
G− 1

1− 1/Gn
where G :=

1− g

g
.

Since kν = 0, this gives

gν−1(1− gν)(1− kν + dν−1) = g(1− g)
G− 1/Gν−1

1− 1/Gν−1

= (1− g)2
1− 1/Gν

1− 1/Gν−1
→ 1

as g → 0. Hence we can use the bound

(4.1) |f − Sn(wn)| ≤ 2Tn :=
|a1|
cosα

/ n∏
ν=2

(
1 +

cos2 α
|aν |

)

for Re (wne
−iα) ≥ 0 and n ≥ 2 when arg an = 2α for all n ≥ 2 and

|α| < π/2. In particular this works for wn = 0. Notice also that
gndn = g(G−1)/(1−1/Gn) → 0 as g → 1. This means that the bound
(3.13) takes the form

(4.2) |f − Sn(wn)| ≤ 2RnTn

1 + Re (wne−iα)
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if α = 1
2 arg an ∈ [(π/2), (π/2)] and ak ∈ Ek for all k > n, where 2Tn

is given by (4.1).

If an < 0 we have α = 0 and cosα = 1. For this case we have
an ∈ P0,n if and only if |an| ≤ gn−1(1 − gn), and we are normally
better off using Theorem 3.1. The problem of finding suitable gn = Rn

is treated in the next section.

Gragg and Warner [3] derived the bound

(4.3) |f − Sn(0)| ≤ 2|a1|
cosα

n∏
ν=2

√
1 + 4|aν |/ cos2 α − 1√
1 + 4|aν |/ cos2 α + 1

for n ≥ 1

for continued fractions of K(an/1) with arg an = 2α for n ≥ 2 and
|α| < π/2. (They had a slightly different form, but setting ζ := e−iα

in their expression, brings it over to (4.3).) The factor in front of the
product in (4.3) is twice the size of the corresponding factor in (4.1).
On the other hand, (4.3) probably wins in the long run since

1
1 + 1/µ

>

√
1 + 4µ − 1√
1 + 4µ + 1

for all µ > 0.

But keep in mind that (4.3) only works for classical approximants Sn(0).

5. The choice of Rn. OST is designed to estimate the effect of
choosing wn close to f (n). Since f (n) ∈ Vn, we have |f (n) − wn| ≤ Rn.
However, the radii Rn have to be chosen or guessed in advance. If ∆n

is positive and not too small, the following rather coarse lemma is of
help to guess suitable values for Rn.

Lemma 5.1.

A. If ∆n > 0, Rn ≤ Rn−1, 0 < Rn ≤ 1
2∆n and |an − ân| ≤ 1

2∆nRn

for a fixed n ∈ N, then an ∈ Dn ⊆ En.

B. Let K(an/1) and {wn} be such that all ∆n > 0 and

(5.1) Rn := sup
m≥n

2|am − âm|
∆m

satisfies Rn ≤ 1
2∆n for all n ∈ N, and set R0 := R1. Then an ∈ En

for all n ∈ N.
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C. Let Rn be as in part B with Rn ≤ 1
2∆n for n > n0. If there exists

an α ∈ (−π/2, π/2) such that an ∈ Pα,n and Vn ∩Vα,n �= ∅ from some
n on, and limn→∞ Tn = 0, then K(an/1) converges, |f (n) − wn| ≤ Rn

for n > n0, and |f (n) − wn| ≤ Rn+1 for n = n0. If, moreover,
lim inf ∆n > 0, then f (n) − wn = O(δn) as n → ∞.

Proof. A. We have

rn := Rn−1|1 + wn| −Rn|wn−1| −RnRn−1

≥ Rn(∆n −Rn) ≥ 1
2
∆nRn > 0.

By Remark 2.2.2 it therefore suffices to prove that |an−ân| ≤ rn, which
clearly holds under our conditions.

B. Since |an − ân| ≤ 1
2∆nRn where Rn ≤ Rn−1, the result follows

from part A.

C. Without loss of generality (we may look at a tail of K(an/1))
we may assume that the conditions hold for all n > n0 = 0, and set
R0 := R1. Since Tn → 0, we know that K(an/1) converges to some
f ∈ Vα,0 and Sn(un) → f uniformly with respect to un ∈ Vα,n. Since
an ∈ Pα,n ∩En for all n, we have Sn(Vα,n ∩Vn) ⊆ Sn−1(Vα,n−1∩Vn−1)
for all n, and thus f (n) ∈ Vα,n ∩Vn for all n. That is, |f (n) −wn| ≤ Rn.

If ∆ := lim inf ∆n > 0, it is evident from (5.1) that Rn = O(δn).

Remarks 5.1.

1. If ∆n > 0 is small, then Rn ≤ 1
2∆n is a severe restriction.

By Remark 2.2.2 it is clear that we only need 1
2∆nRn ≤ rn, i.e.,

(2Rn−1 −Rn)|1+wn|−Rn|wn−1|−2RnRn−1 ≥ 0 when Rn is given by
(5.1) to conclude that an ∈ En.

2. If 1
2∆nRn �≤ rn, then one may try to choose {Rn} which converges

monotonically, but slower than (5.1), to 0.

3. If |an − ân|/∆n decreases monotonically towards 0, then (5.1)
reduces to Rn := 2|an − ân|/∆n.

In [5, Theorem 4.1] the conditions on ∆n were modified by means of a
sequence {tn} of positive numbers to be freely chosen. It was sufficient
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that

∆̃n :=
|1 + wn|

tn
− |wn−1|

tn−1

(or more generally

∆̃n :=
|bn + wn|

tn
− |wn−1|

tn−1

for continued fractions K(an/bn) ) satisfied conditions as above to
obtain expressions for Rn. However, this just amounts to using an
equivalence transformation [11, p. 31], [16, p. 72] on K(an/1) or
K(an/bn). That is, if {ρn}∞n=0 is a sequence of nonzero numbers with
ρ0 := 1, then K(ρn−1ρnan/ρnbn) has the same classical approximants
as K(an/bn). Moreover, if K(an/bn) converges and has tail values f (n),
then K(ρn−1ρnan/ρnbn) converges and has tail values ρnf

(n). We say
that K(ρn−1ρnan/ρnbn) is equivalent to K(an/bn). This equivalence
transformation has some nice consequences:

• Thron’s parabola sequence theorem and OST can be formulated
for continued fractions K(an/bn). The multiple parabola theorem [10,
Theorem 5.2] and [5, Theorem 4.1] show examples of how these versions
may look.

• ∆̃n is what we get for K(ρn−1ρnan/ρnbn) with |ρn| := 1/tn.

The trick with the introduction of tn is still important, though. It shows
that one should choose an equivalent form of the continued fraction with
care. For most of the ideas in this paper we want {an} and {bn} to
converge monotonically in Ĉ. Still, for our particular examples, already
{an} in K(an/1) has this property.

6. Choosing {wn} for limit periodic continued fractions. As
always we assume that the continued fraction has the form K(an/1)
where an → a ∈ Ĉ, and that it converges to a finite value. Let us first
examine the effect Φn(wn, 0) of some different choices of wn for our
four types of continued fractions:

Type 1. a ∈ A1. Then K(an/1) converges, f (n) → w := (q − 1)/2
where q :=

√
1 + 4a with Re q > 0, and thus ∆n → ∆ > 0 if wn → w.

(See for instance [4].) Moreover, hn → 1 + w, and thus hn/(hn + wn)
is bounded and Φn(wn, 0) = O(δn) if wn → w. (See (2.14).)
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Type 2. a = 0. K(an/1) converges also in this case, f (n) → 0 and
hn → 1, [4]. Hence, Φn(wn, 0) = O(δn/f

(n)) = O(δn/an+1) if wn → 0.

Type 3. a = −1
4 . This is a trickier case. K(an/1) may diverge, but if

an ∈ Pα,n (for fixed α) from some n on, then K(an/1) converges to a
value f , f (n) → −1

2 , hn → 1
2 , [14], and Sn(wn) → f for every sequence

wn ∈ Wα,n by Thron’s parabola sequence theorem. It is clear that
then gn → 1

2 , so dist (−hn, ∂Wα,n) ≥ dngn cosα ∼ 1
2dn cosα. Hence

hn/(hn +f (n)) = O(d−1
n ) and Φn(wn, 0) = O(Rn/dn) if {Rn} is chosen

such that also an ∈ En from some n on. This means in particular that
Rn → 0 and wn → −1

2 are necessary to get Φn(wn, 0) → 0, and thus
∆n → ∆ = 0.

Type 4. a = ∞. Again K(an/1) may converge or diverge, but if
an ∈ Pα,n from some n on and Tn → 0, then K(an/1) converges
to some f ∈ Ĉ and Sn(wn) → f for every wn ∈ Wα,n. Also here
dist (−hn, ∂Wα,n) ≥ dngn cosα, but gn does not have to approach 1

2

as n → ∞. Hence Φn(wn, 0) = O(Rn/dngnf
(n)). If Rn stays bounded

as n → ∞, then Φn(wn, 0) = O(Rn/dngnwn).

We shall suggest a number of choices for wn, and see how these affect
the approximants of K(an/1) of our four types. For more information
on these methods for choosing {wn}, we refer to [13].

6.1. The fixed point method. This method is very easy and
efficient for continued fractions of type 1.

Type 1. The idea is that, since an → a, we may replace the nth tail
by the value of the periodic continued fraction K(a/1), that is,

(6.1)

wn := w :=
a

1 +
a

1 +
a

1 + . . .
=

q − 1
2

; q :=
√
1 + 4a, Re q > 0.

Then ân = w(1 + w) = a, and thus this simple device gives an
improvement of the order Φn(w, 0) = O(δn) as n → ∞, where δn :=
supm≥n |am − a|.

Type 2. If a = 0, then (6.1) gives w = 0, and we are back to
the classical approximants. This actually means that the classical
approximants Sn(0) are rather good for this type of continued fractions.

Type 3. If a = −1
4 , then (6.1) gives w = −1

2 , and it seems
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plausible that approximants Sn(−1
2 ) should do well. However, since

Sn(−hn) = ∞, we do not want w to be too close to −hn → −1
2 . A

second problem is that hn/(hn +wn) → ∞ in this case. Still, it follows
from results by Thron and Waadeland [20] that

(6.2)
f − Sn(−1

2 )
f − Sn(0)

=
{O(n2−µ) if |an + 1

4 | ≤ cn−µ for all n for µ > 2
O(nrn) if |an + 1

4 | ≤ crn for all n for 0<r<1,

where c is a positive constant.

Type 4. In this case (6.1) does not make sense. The choice Sn(∞)
brings back the classical approximants Sn(∞) = Sn−1(0).

6.2. The square root modification. The idea here is strongly
related to (6.1), only this time we choose

(6.3)

wn :=
an+1

1 +
an+1

1 + . . .
=

qn − 1
2

; qn :=
√
1 + 4an+1, Re qn ≥ 0

if an+1 is not negative and < −1
4 . This was suggested by Gill [2] for

the case an → 0. However,

(6.4) ân+1 := wn(1 + wn+1) = an+1 + wn(wn+1 − wn),

so (an+1 − ân+1) → 0 if wn(wn+1 − wn) → 0. Hence we expect this
modification to do well in several cases, in particular if an → a in a
monotone fashion. Indeed, (6.3) was applied successfully to a continued
fraction expansion K(an/1) of the incomplete gamma function where
an → ∞, [6], [7]. For continued fractions of our type 1, (6.3) gives
that Φn(wn, 0) = O(supm≥n |qm+1 − qm|), and for type 2 we get
Φn(wn, 0) = O(supm≥n |(qm+1 − qm)(qm − 1)/an+1|).
An alternative version of this modification is

wn :=
an+1

1 +
an+2

1 + · · ·+
an+k

1 +
an+1

1 +
an+2

1 + · · ·+
an+k

1 +

+
an+1

1 + · · ·+
for some k ∈ N, but we shall not pursue this idea in this paper.
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6.3. The improvement machine. The idea here is based on the
following lemma:

Lemma 6.1 [9]. Let (f (n) − wn) → 0. Then

f (n+1) − wn+1

f (n) − wn
→ t if and only if

an+1 − ân+1

an − ân
→ t.

This was used in [8] in the following way. Let (f (n) − wn) → 0 and
(an+1 − ân+1)/(an − ân) → t. Then

an+1 − ân+1

f (n) − wn
∼ 1 + wn+1 + twn,

and thus
f (n) − wn ∼ an+1 − ân+1

1 + wn+1 + twn
.

This means that if we have chosen {wn} such that (f (n) − wn) → 0,
then

(6.5) w(1)
n := wn +

an+1 − ân+1

1 + wn+1 + twn

is an even better choice when the limit t exists. Indeed, if (hn +
wn)/(hn + w

(1)
n ) → 1, which is normally the case, then

(6.6) Φn(w(1)
n , wn) =

f − Sn(w
(1)
n )

f − Sn(wn)
=

hn + wn

hn + w
(1)
n

· f
(n) − w

(1)
n

f (n) − wn
→ 0.

This idea was applied successfully to a number of continued fraction
expansions of ratios of hypergeometric functions, [12].

6.4. Asymptotic expansion. Here the idea is to choose a sequence
{µj(n)}∞j=ν of functions of n such that µj+1(n)/µj(n) → 0 as n → ∞
for every j, and to match coefficients cj such that

(6.7) wn := ŵ(N)
n :=

N∑
j=ν

cjµj(n)
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gives an − â
(N)
n = O(µM (n)) for â

(N)
n := ŵ

(N)
n−1(1 + ŵ

(N)
n ) and M as

large as practical or possible. Evidently this will only work if {an} is of
a suitable form. The square root modification (6.3) suggests the choice
µj(n) := qj

n if qn → 0, Type 3, and µj(n) = q−j
n if qn → ∞, Type 4,

since (6.3) then gives the first two terms of the expansion in these cases.

We can also choose simpler expressions for µj(n), inspired by qn.
For instance, if qn = O(n−1/2) or qn = O(n1/2) as n → ∞, then
µj(n) := n−j/2 is a possible choice. Then (6.7) takes the form

(6.8) ŵ(N)
n wn :=

N∑
j=ν

cjn
−j/2.

The fact that

(6.9) (n− 1)−j/2

= n−j/2

{
1 +

j

2n
+

j(j + 2)
8n2

+ · · ·+ j(j + 2) · · · (j + 2k)
(k + 1)!2k+1nk+1

+ . . .

}
for j ≥ 0, n ∈ N, k ∈ N helps to determine the coefficients cj .

6.5. Linear approximation. This is a totally different idea.
In short it relies on Waadeland’s idea from 1986 [21]. He regarded
K(an/1) as a function of its elements an. For K(an/1) of Type 1 or 3
he then got the linear approximation

(6.10) F (a, a, a, . . . ) +
∞∑

n=1

∂F (a, a, a, . . . )
∂an

(an − a)

to its value f , where F (a, a, a, . . . ) is the value w = (q − 1)/2 of the
periodic continued fraction K(an/1) and

∂F

∂an
=

f

an

n−1∏
j=1

−f (j)

1 + f (j)

which evaluated at (a, a, a, . . . ) is just

∂F (a, a, a, . . . )
∂an

=
w

a

( −w
1 + w

)n−1

;

w :=
q − 1
2

, q :=
√
1 + 4a, Re q ≥ 0.
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Hence

(6.11) wn := w +
n+N∑

k=n+1

( −w
1 + w

)k−n−1
ak − a

1 + w

is a possible choice. This choice was investigated for Gauss continued
fractions in [22].

Remarks 6.6. We shall see that the various modifications work
very well, in particular for slowly converging continued fractions. The
problem is to derive a priori truncation error bounds which reflect the
improvement obtained. To illustrate how this may be done, we shall
concentrate on a few of these modifications.

7. Example 1: The arctangent function. The continued fraction
K(an/1) in (1.1) converges to arctan z for z ∈ Z1 ∪ {±i}. The cases
z = 0 and z = ±i are trivial, since arctan z = z for these values of z.
So in this section we shall see how different choices for wn perform for
z ∈ Z1 \ {0}.

7.1. Choice of wn. We observe that

an+1 = n2z2/(4n2 − 1) → a = z2/4 as n → ∞,

so the fixed point modification is

(7.1) wn = w = (q − 1)/2 where q =
√
1 + z2 with Re q > 0,

and the square root modification is

(7.2)
wn = w = (qn − 1)/2

where qn =
√
1 + z2 + z2/(4n2 − 1) with Re qn > 0.

If we apply the improvement machine to wn = w given by (7.1), we get
t = 1, and thus

(7.3) w(1)
n := w +

an+1 − a

1 + 2w
=

q − 1
2

+
z2/4q
4n2 − 1

.
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We can repeat this trick and apply the improvement machine on (7.3).
The limit t is still 1, and so

(7.4)

w(2)
n := w(1)

n +
an+1 − â

(1)
n+1

1 + w
(1)
n + w

(1)
n+1

=
q − 1
2

+
z2(q − 1)(2n+ 1− (q + 1)/8q)

(2n+ 1)2[2q2(4n2 + 4n− 3) + z2]
,

where â
(1)
n+1 := w

(1)
n (1 + w

(1)
n+1), is a possible choice. We can do this

repeatedly to improve the approximation f ≈ Sn(w
(k)
n ).

The improvement machine applied to (7.2) also gives t = 1, and thus
the modification

(7.5) w̃(2)
n := wn +

an+1 − ân+1

1 + wn + wn+1
=

(qn − 1)qn

qn + qn+1

which really has a very nice closed form.

A different approach is to expand an in a series
∑

cjµ
−j
n . In view of

(7.3) it seems reasonable to try µn := q(2n−1). This gives for instance

(7.6)

ŵ(4)
n :=

4∑
j=0

cjµ
−j
n =

q − 1
2

+
qz2

4µ2
n

− qz2

2µ3
n

− 9q4 − 34q2 + 25
16µ4

n

q

=
q − 1
2

+ qz2 4(µn − 1)2 − 9z2 + 12
16µ4

n

.

Finally, the linear approximation in (6.11) gives for instance

(7.7)

wn := w +
an+1 − a

1 + w
− w(an+2 − a)

(1 + w)2
+

w2(an+3 − a)
(1 + w)3

=
q − 1
2

+
z2/2

(q + 1)(4n2 − 1)
− q − 1

(q + 1)2
z2/2

4(n+ 1)2 − 1

+
(q − 1)2

(q + 1)3
z2/2

4(n+ 2)2 − 1
.
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7.2. The improvement Φn(wn, 0). Since an → a monotonically,
we find that
(7.8)

Φn(wn, 0) =
{O(an+1 − a) = O(n−2) if wn := w = (q − 1)/2,
O(an+1 − an) = O(n−3) if wn := (qn − 1)/2.

Since an − â
(1)
n ∼ z2(1 − 1/q)/16n3 for â

(1)
n := w

(1)
n−1(1 + w

(1)
n ), the

choices (7.3) and (7.4) give

(7.9) Φn(w(1)
n , 0) = O(n−3), Φn(w(2)

n , 0) = O(n−4),

respectively. The improvement using (7.5) is similarly of the order
Φn(w̃

(2)
n , 0) = O(n−4).

To estimate the effect of the choice (7.6), we observe that an+1 −
â
(4)
n+1 = O(n−5) and decreases monotonically in absolute value, at least

from some n on, and thus Φn(ŵ
(4)
n , 0) = O(n−5). Finally, the linear

approximation (7.7) gives Φn(wn, 0) = O(n−2) as n → ∞. Increasing
N will still give Φn(wn, 0) = O(n−2), but with lim supn2|Φn(wn, 0)|
smaller.

7.3. Tables of approximants. In the two tables below we have
computed Sn(wn) for z = 1, i.e., arctan z = π/4, for the various
modifications wn. The quantity m(k) is the smallest natural number
for which Sn(wn) is correct, after rounding, with k decimals for all
n ≥ m(k).

z = 1. arctan z = 0.78539816339744830961566084581987572 . . .

n wn = 0 wn = (q − 1)/2 wn = (qn − 1)/2 (7.3)
1 1.0000. . . 0.828427. . . 0.79128784. . . 0.78986923. . .
2 0.7500. . . 0.783611. . . 0.78524116. . . 0.78525453. . .
3 0.7916. . . 0.785533. . . 0.78540726. . . 0.78540681. . .
4 0.7843. . . 0.785385. . . 0.78539745. . . 0.78539747. . .
5 0.7855. . . 0.785399. . . 0.78539822. . . 0.78539822. . .

m(6) 9 6 5 5
m(35) 46 40 38 38
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n (7.5) (7.4) (7.6) (7.7)

1 0.7863101667. . . 0.7860773121. . . 0.7760582401. . . 0.78496161. . .

2 0.7853818831. . . 0.7853835353. . . 0.7853246655. . . 0.78540709. . .

3 0.7853989151. . . 0.7853988690. . . 0.7854001013. . . 0.78539768. . .

4 0.7853981141. . . 0.7853981162. . . 0.7853980804. . . 0.78539820. . .

5 0.7853981673. . . 0.7853981671. . . 0.7853981681. . . 0.78539815. . .

m(6) 4 4 4 3

m(35) 35 35 34 37

The effect of the modifications is not so good here, since K(an/1)
converges quite fast for z = 1, also in the classical sense. We get a
different picture for z := 0.01+ 2i, which lies closer to the boundary of
Z1.

z = 0.01 + 2i. arctan z = 1.567463153946 · · ·+ 0.5492839233 . . . i

n wn = 0 wn = (q − 1)/2 wn = (qn − 1)/2
1 0.01 + 2.00 . . . i 1.727 · · ·+ 0.997 . . . i 1.5575 · · ·+ 0.7481 . . . i
2 2.20 · · · − 5.99 . . . i 1.595 · · ·+ 0.462 . . . i 1.5911 · · ·+ 0.5297 . . . i
3 0.01 · · ·+ 0.09 . . . i 1.532 · · ·+ 0.559 . . . i 1.1558 · · ·+ 0.5465 . . . i
4 0.03 · · ·+ 2.07 . . . i 1.582 · · ·+ 0.562 . . . i 1.5687 · · ·+ 0.5533 . . . i
5 0.40 · · · − 5.60 . . . i 1.569 · · ·+ 0.537 . . . i 1.5689 · · ·+ 0.5475 . . . i

m(6) >> 1000 320 72

n (7.3) (7.5) (7.4)

1 1.5412 · · · + 0.7279 . . . i 1.5257 · · · + 0.6365 . . . i 1.5215 · · · + 0.6247 . . . i

2 1.5910 · · · + 0.5311 . . . i 1.5792 · · · + 0.5474 . . . i 1.5789 · · · + 0.5479 . . . i

3 1.5583 · · · + 0.5464 . . . i 1.5653 · · · + 0.5469 . . . i 1.5654 · · · + 0.5469 . . . i

4 1.5686 · · · + 0.5533 . . . i 1.5671 · · · + 0.5504 . . . i 1.5671 · · · + 0.5503 . . . i

5 1.5689 · · · + 0.5476 . . . i 1.5679 · · · + 0.5491 . . . i 1.5679 · · · + 0.5491 . . . i

m(6) 72 30 30
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n (7.6) (7.7)
1 −1.84953 · · · − 0.25433 . . . i 1.5816 · · ·+ 0.5410 . . . i
2 1.54943 · · ·+ 0.89921 . . . i 1.5684 · · ·+ 0.5389 . . . i
3 1.56647 · · ·+ 0.55273 . . . i 1.5603 · · ·+ 0.5522 . . . i
4 1.56815 · · ·+ 0.54898 . . . i 1.5720 · · ·+ 0.5527 . . . i
5 1.56726 · · ·+ 0.54916 . . . i 1.5679 · · ·+ 0.5449 . . . i

m(6) 15 317

The effect is now quite spectacular! Indeed, Sn(0) approximates
arctan(0.01 + 2i) rather poorly, even for quite large n. We have for
instance

S995(0) = 1.57598778 · · ·+ 0.54395517 . . . i
S996(0) = 1.55868637 · · ·+ 0.54461720 . . . i
S997(0) = 1.56776338 · · ·+ 0.55919115 . . . i
S998(0) = 1.57584063 · · ·+ 0.54404631 . . . i
S999(0) = 1.55883632 · · ·+ 0.54469776 . . . i
S1000(0) = 1.56775974 · · ·+ 0.55902097 . . . i

which means that even m(1) > 1000. The moral is: do not use Sn(0) to
approximate the value of a continued fraction of type 1 if a is close to
the boundary of A1. Indeed, since it does not cost any extra to compute
Sn(w) instead of Sn(0), one should never use Sn(0) to approximate the
value of K(an/1) of type 1.

7.4. The Gragg Warner bound and Thron’s parabola se-
quence bound. K(an/1) is a Stieltjes fraction. For classical ap-
proximants we may choose between the Gragg Warner bound (4.3) or
Thron’s parabola sequence bound 2Tn given by (4.1). In both cases
we choose α = arg z if | arg z| < π/2. If z2 < 0 we choose α = 0. We
demonstrate the effect for the case | arg z| < π/2. The Gragg Warner
bound gives

|f − Sn(0)| ≤ 2Z
n−1∏
ν=1

Kν where Z :=
|z|

cosα
=

|z|2
Re z

(7.10)
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and

Kν := 1− 2

1 +
√
1 + 4ν2Z2

4ν2−1

→ K := 1− 2
1 +

√
1 + Z2

as ν → ∞.

For z = 1 we get Z = 1, K1 = 0.20871, K2 = 0.17952 and K =
0.171573. Hence, if we replace Kν by K2 for ν > 2, we get

(7.11) |f − Sn(0)| ≤ 0.41742 · 0.17952n−2 for z = 1, n ≥ 2.

For z = 0.01 + 2i we get Z = 400.01, K1 = 0.995679, K2 = 0.995170,
K3 = 0.995082 and K = 0.99501 which does not look very promising.
If we replace Kν by K3 for ν > 3, we get

(7.12) |f − Sn(0)| ≤ 792.716 · 0.995082n−3 for z = 0.01 + 2i, n ≥ 3.

Thron’s parabola sequence bound (4.1) is a bound for |f − Sn(wn)|
for every wn with Re(wne

−iα) ≥ 0, and thus also for our modifying
factors wn and for wn = 0. It gives

|f − Sn(wn)| ≤ 2Tn = Z
/ n−1∏

ν=1

Lν where Z :=
|z|2
Re z

(7.13)

and

Lν := 1 +
4ν2 − 1
ν2Z2

−→ L := 1 +
4
Z2

as ν → ∞.

For z = 1 we get Z = 1, L1 = 4, L2 = 19/4 and L = 5, and thus for
instance

(7.14) |f − Sn(wn)| ≤ 1
4

(
4
19

)n−2

for z = 1, n ≥ 2, Rewn ≥ 0.

For z = 0.01 + 2i we get L = 1.000025, L1 = 1.000019, L2 = 1.000023,
so we can for instance use

(7.15)
|f − Sn(wn)| ≤ 400.00/1.000023n−2

for z = 0.01 + 2i, n ≥ 2, Re
(
wn

z

|z|
)

≥ 0.



438 L. LORENTZEN

The tables below show how this compares to the actual truncation
errors.

z = 1.

n |f − Sn(0)| (7.11) (7.14)
5 3.17 · 10−7 1.34 · 10−2 2.33 · 10−3

10 3.63 · 10−19 2.50 · 10−4 9.65 · 10−7

20 < 10−40 8.72 · 10−14 1.65 · 10−13

40 << 10−40 1.05 · 10−28 4.83 · 10−27

z = 0.01 + 2i.

n |f − Sn(0)| (7.12) (7.15)
10 2.139 . . . 765.8 400
50 4.574 . . . 628.8 400
100 1.535 . . . 491.4 399
1000 0.0974 . . . 5.8 391

7.5. Error bounds for the fixed point modification. The fixed
point modification uses wn := w := (q − 1)/2 where q =

√
1 + z2 with

Re q > 0.

7.5.1. Bounds based on Qn. The choice (5.1) for Rn gives

(7.16)
Rn+1 :=

2|z2/4|
(4n2 − 1)∆

=
C

4n2 − 1

where C :=
|z2|

|q + 1| − |q − 1| for n ≥ 1

where z2 = q2 − 1. We have to check that an ∈ En in (2.13) with this
choice of Rn in order to use the bound Qn in OST.

Case 1. z ∈ R \ {0}. Then an > 0 for n ≥ 2, q > 1 and C = z2/2.
Hence it follows from Remark 2.2.2 that an+1 ∈ En+1 if

(w −Rn)(1 + w +Rn+1) ≤ an+1 ≤ (w +Rn)(1 + w −Rn+1),
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which is equivalent to

−12n2 − 8(q − 2)n− (q − 2)2 ≤ 0 ≤ 4n2 + 8qn− q(q + 4).

The left inequality holds trivially for n ≥ 2, and the right inequality
holds if also n ≥ q(

√
2 + 4/q − 1). Clearly n ≥ q(

√
2 + 4/q − 1) for

all n ≥ 2 if q ≤ 2; i.e., if |z| ≤ √
3, and thus an ∈ En for all n ≥ 3 for

these values of z. Hence, in view of Remarks 2.2.3 and 3.1.2, we have
by (3.5) that

(7.17)

|f − Sn+1(w)| ≤
(

1 + w +R2

1 + w + a2 +R2

)2
a2|z|

1 + w −R2

· Rn+1

1 + w

n∏
k=2

w +Rk

1 + w +Rk

=
2|z|3
4− q

(
q + 2
3q

)2 ( q−1
q+1 )

n

4n2 − 1

n−1∏
k=1

(
1 +

2
4k2 + q − 2

)

for n ≥ 2 and 0 < z2 ≤ 3. For z = 1 we get in particular that

(7.18) |f − Sn+1(w)| ≤ 0.00453231
4n2 − 1

· 0.181262n−2 for n ≥ 2.

Case 2. Otherwise. According to Lemma 5.1 we have that an ∈ En

for n > N if Rn+1 is given by (7.16) for all n > N and

C

4N2 − 1
≤ ∆

2
; i.e.,

|q2 − 1|
(|q + 1| − |q − 1|)2 ≤ N2 − 1

4
.

This condition is probably more restrictive than necessary, but it is easy
to check. For instance, it works for N := 1 if 5|z2| ≤ 3(|z2 + 1| + 1);
that is, if z2 ∈ U1, where U1 is a closed, bounded, simply connected
domain with 0 ∈ U1, whose boundary ∂U1 intersects the real axis at
the two points −3/4 and 3, and where {z2 : |z2| ≤ 3/4} ⊂ U1 ⊂ {z2 :
|z2| ≤ 3}. (The condition is sharp for z2 > 0.) By (3.5) we thus have

(7.19) |f − Sn+1(w)| ≤ |a1|H2
2 |a2|

|1 + w|(|1 + w| −R2)
· |z

2|/(2∆)
4n2 − 1

n−1∏
k=1

Mk+1
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for n ≥ 2 and z2 ∈ U1, where

H2 =
|a2(1 + w) + |1 + w|2 −R2

2|+ |a2|R2

|1 + a2 + w|2 −R2
2

by Remark 3.1.2. Similarly, N = 2 works if C/15 ≤ ∆/2; that is,
34|z2| ≤ 30(|z2 + 1| + 1), which means that z2 belongs to a larger
closed domain U2 of similar shape, with the points −15/16 and 15 on
the boundary. By (3.7) this gives

(7.20)

|f−Sn+1(w)| ≤ |a1a2a3|H2
3

|1 + a2|2|1 + w|(|1 + w| −R3)
· |z

2|/(2∆)
4n2 − 1

n−1∏
k=2

Mk+1

for n ≥ 1 and z2 ∈ U2 where

H3 =
||1 + w|2 + a3

1+a2
(1 + w)−R3|2 + | a3

1+a2
|R3

|1 + w + a3
1+a2

|2 −R2
3

.

The efficiency of these bounds also depends on

(7.21) Mk =
|w + |w2| −R2

k|+Rk

|1 + w|2 −R2
k

which converges to M := |w|/|1 + w| < 1. If M is close to 1, we may
well have Mk > 1 even for quite large k.

For z = 0.01+2i we get z2 = −3.9999+0.04i, |1+w| = 1.00290335354
and |w| = 0.997129979. Hence |z2|/∆2 ≤ 4N2 − 1 only for N ≥ 174.
It therefore makes sense to be more careful. By Remark 5.1.1 we have
an+1 ∈ En+1 if

(2Rn −Rn+1)|1 + w| −Rn+1|w| − 2RnRn+1 ≥ 0,

which holds with our choice (7.16) for Rn if

(4n2 + 8n− 5)|1 + w| − (4n2 − 8n+ 3)|w| ≥ 2C = |z2|/∆.

If this holds for n = N , then it holds for all n ≥ N . For z = 0.01 + 2i
this is all right for N = 42, which possibly also is on the large side.
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It takes some computation to find that |h43 + w| = 1.005787273 and
|f41 − f42| = 4.91352, so that by (3.4) and Remark 3.1.2

(7.22)

|f−Sn+1(w)| ≤ |f41 − f42|(|1 + w|+R43)2

|h42|(|h43 + w| −R43)2
|f (42) − S

(42)
n−41(w)|

≤ 1.81480416 ·Rn+1

n∏
k=43

Mk for n ≥ 42, z = 0.01 + 2i,

where Mk is given by (7.21) with Rk+1 = 344.8/(4k2 − 1) as given by
(7.16). (We may get better bounds by increasing N .)

A natural choice for a slower converging sequence {Rn} is Rn :=
Ĉ/(2n−1)λ for some constants Ĉ > 0 and 1 ≤ λ < 2 to be determined.
Then |an+1 − a| ≤ rn+1, as given in Remark 2.2.2, if and only if

(7.23)
|z2|/4
4n2 − 1

≤ Ĉ|1 + w|
(2n− 1)λ

− Ĉ|w|
(2n+ 1)λ

− Ĉ2

(4n2 − 1)λ
.

With the simplest choice λ := 1, (7.23) holds for all n ≥ 1 and all
z ∈ Z1 when Ĉ := |z2/2|/(|1 +w|+ |w|). Hence the bound Qn in OST
based on the choice

(7.24) Rk := Ĉ/(2k − 1)

works for all z ∈ Z1. With N = 1 we get from OST that

(7.25)
|f − Sn(w)| ≤ |z|

|1 + w| − Ĉ
· Ĉ

|1 + w|(2n− 1)

n−1∏
k=1

Mk

for n ≥ 1, z ∈ Z1,

where Mk still is given by (7.21), but this time with Rk given by (7.24).
For z = 0.01 + 2i it gives

(7.26) |f−Sn(w)| ≤ 688.856
2n− 1

n−1∏
k=1

Mk for z = 0.01 + 2i, n ≥ 1.

However, as seen from the table below comparing the various error
bounds, this bound is almost useless, although it gives a better bound
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than Thron’s parabola sequence bound (7.15) in the previous subsec-
tion. But it helps to increase N . From (3.7) and Remark 3.1.2 we get
for instance

(7.27) |f−Sn(w)| ≤ 1.825418
2n− 1

n−1∏
k=3

Mk for z = 0.01 + 2i, n ≥ 3.

Larger N in (3.4) will give even better bounds.

7.5.2. Bounds based on (3.13). We assume that | arg z| < π/2. Then
arg an = 2α for n ≥ 2 when α := arg z. By (4.2) it follows therefore
that

|f − Sn(w)| ≤ 2RnTn

1 + Re (we−iα)

where 2Tn is given by (4.1) as in (7.13). The advantage of this
bound is that we only need ak ∈ Ek for all k > n to conclude that
|f (n) − w| ≤ Rn, and we do not have to compute hN or fN for large
Ns. It improves the bound from Thron’s parabola sequence theorem
if Rn/(1 + Re (

√
1 + z2e−iα)) < 1 which at least happens from some n

on, since this positive expression tends to 0. So let N ∈ N be such that
an+1 ∈ En+1 for n > N with Rn+1 given by (7.16) for n ≥ N . Then

(7.28)

|f − Sn+1(w)| ≤ |z2|/(2∆)
4n2 − 1

· Z

1 + Re(
√
1 + z2 e−iα)

n∏
ν=1

(
1 +

4ν2 − 1
ν2Z2

)−1

for n ≥ N where Z = |z|/ cosα as in (7.13). For z2 ∈ U1 this holds for
n ≥ N = 1, whereas z = 0.01 + 2i requires n ≥ N = 42 as seen above.

The tables below show the values of these bounds compared to the
actual error for z = 1 and z = 0.01 + 2i for various values of n.
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z = 1.

n f − Sn(w) (7.18) (7.28)
3 −1.4 · 10−4 7.6 · 10−4 7.3 · 10−4

4 1.3 · 10−5 6.4 · 10−5 6.4 · 10−5

5 −1.0 · 10−6 6.4 · 10−6 7.2 · 10−6

20 2.9 · 10−19 5.0 · 10−18 1.0 · 10−17

z = 0.01 + 2i.

n |f − Sn(w)| (7.22) (7.26) (7.27) (7.28)
43 1.13 · 10−4 4.6 · 10−2 1.5 · 104 1.51 · 10−1 3.0
44 1.08 · 10−4 4.4 · 10−2 1.4 · 104 1.48 · 10−1 3.4
45 1.02 · 10−4 4.4 · 10−2 1.4 · 104 1.46 · 10−1 3.2
100 2.17 · 10−5 1.2 · 10−2 6.9 · 103 7.11 · 10−2 6.5 · 10−1

500 5.9 · 10−8 1.5 · 10−4 3.1 · 102 3.16 · 10−3 5.2 · 10−2

1000 3.9 · 10−11 2.3 · 10−6 1.2 · 101 1.25 · 10−4 1.3 · 10−2

7.6. Error bounds for the modification (7.6). To illustrate what
happens for sharper (and more complicated) choices for wn, we choose
to consider ŵ(4)

n given by (7.6). It gives

ε
(4)
n+1 := an+1 − â

(4)
n+1 =

z2/(z2 + 1)
(4n2 − 1)4

·
{
36q2 − 52

q
n3 +

153q4 − 378q2 + 33
8q2

n2

− 9q4 + 62q2 + 25
8q3

n− 9q6 + 189q4 + 939q2 − 625
256q4

}

since q2 − 1 = z2. Thron’s parabola sequence bound 2Tn in (4.1) is
independent of wn, so there is no need to repeat the analysis of this
bound. We shall concentrate on the OST-bound Qn in combination
with (3.4), and the bound (3.13) which combines 2Tn with estimates
from OST.
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7.6.1. Bounds based on Qn. Lemma 5.1 leads us to expect that
Rn = O(ε(4)n ) works. So, inspired by (7.16) we first try

(7.29) Rn := 2|ε(4)n |/∆(4)
n .

Then it follows from Remark 5.1.1 that an+1 ∈ En+1 for n ≥ N if

(7.30)

2|ε(4)n |
∆(4)

n

|1+ ŵ
(4)
n+1| −

(
1+

2|ŵ(4)
n |

∆(4)
n+1

)
|ε(4)n+1| −

4|ε(4)n ε
(4)
n+1|

∆(4)
n ∆(4)

n+1

≥ 0 for n ≥ N,

where ∆(4)
n := |1 + ŵ

(4)
n | − |ŵ(4)

n−1|. If (7.30) holds for N := 2, then
an ∈ En for all n ≥ 3, and by (3.5) we have

(7.31)

|f − Sn(ŵ(4)
n )| ≤ |z|(|1 + ŵ

(4)
2 |+R2)2

(|1 + a2 + ŵ
(4)
2 | −R2)2

· |a2|
|1 + ŵ

(4)
2 | −R2

· Rn

|1 + ŵ
(4)
n |

n−1∏
k=2

M
(4)
k

for n ≥ 2, where M
(4)
k has the obvious meaning. Straightforward

computation shows that (7.30) holds with N := 2 for z = 1. Hence
(7.31) gives an error bound for z = 1 and n ≥ 2. A slight improvement
is obtained by increasing N . For N = 3 we get, for instance, by (3.7)
that
(7.32)

|f − Sn(ŵ(4)
n )| ≤ |z3/3|(|1 + ŵ

(4)
3 |+R3)2

(|1 + 3z2

5 + (1 + z2

3 )ŵ(4)
3 | − |1 + z2

3 |R3)2

· |4z2/15|
|1 + ŵ

(4)
3 | −R3

· Rn

|1 + ŵ
(4)
n |

n−1∏
k=3

M
(4)
k for n ≥ 3

when (7.30) holds for N = 3, which of course also is the case for z = 1.

For z = 0.01+ 2i we find that (7.30) holds for n ≥ 5. Hence an ∈ En

for n ≥ 6, and

(7.33)

|f − Sn(ŵ(4)
n )| ≤ |f4 − f5|(|1 + ŵ

(4)
6 |+R6)2

|h5|(|h6 + ŵ
(4)
6 | −R6)2

· |a6|
|1 + ŵ

(4)
6 | −R6

· Rn

|1 + ŵ
(4)
n |

n−1∏
k=6

M
(4)
k
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for n ≥ 6, where Rk = 2|ε(4)k |/∆(4)
k , Mk is given by (7.21) and

∣∣∣∣f4 − f5

h5

∣∣∣∣ = |a1a2a3a4a5|
|1 + a2 + a3 + a4 + a5 + a2a4 + a2a5 + a3a5|2

=
64|z|9

|105 + 350z2/3 + 43z4|2 .

That is,

(7.34)
|f − Sn(ŵ(4)

n )| ≤ 0.2427 · Rn

|1 + ŵ
(4)
n |

n−1∏
k=6

M
(4)
k

for z = 0.01 + 2i, n ≥ 6.

These error bounds work very well. (See the tables below.) But they
require a technique to find an N which guarantees that an+1 ∈ En+1

for all n > N for a given z ∈ Z1. Here we have found such an N by
testing (7.30).

A less accurate bound which makes it easier to find such an N can
be found if we accept that Rn → 0 slower than O(ε(4)n+1). Indeed, if we
can find {Rn} and N ∈ N such that

(7.35) |ε(4)n+1| ≤ Rn|1 + ŵ
(4)
n+1| −Rn+1|ŵ(4)

n | −RnRn+1 for n > N

for all z ∈ Z1, then there is no need for further checking.

7.6.2. Bounds based on (3.13). For | arg z| < π/2 we get as in (7.28)
that

(7.36) |f − Sn+1(ŵ
(4)
n+1)| ≤

Rn+1 · 2Tn+1

1 + Re (
√
1 + z2 e−iα)

if |f (n+1) − ŵ
(4)
n+1| ≤ Rn+1 and Re (ŵ(4)

n+1e
−iα) ≥ 0.

Let En be given by (2.13) with Rn as given by (7.29) and ŵ
(4)
n by

(7.6). Then we have already found that an+1 ∈ En+1 for all n ≥ 2 if
z = 1, and that an+1 ∈ En+1 for all n ≥ 5 if z = 0.01 + 2i. It is also
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straightforward to see that Re (ŵ(4)
n e−iα) ≥ 0 for these values of n. We

therefore find that
(7.37)

|f−Sn+1(ŵ
(4)
n+1)| ≤

2|ε(4)n+1|
∆(4)

n+1

· |z|/ cosα
1 + Re (

√
1 + z2 e−iα)

n+1∏
k=2

(
1 +

cos2 α
|ak|

)−1

for n ≥ 2 and n ≥ 5, respectively.

The tables below show the actual error |f − Sn(ŵ
(4)
n )| and our error

bounds for some values of n at the two points z = 1 and z = 0.01+ 2i.

z = 1.

n |f − Sn(ŵ
(4)
n )| (7.31) (7.32) (7.33) (7.37)

3 1.9 · 10−6 5.9 · 10−5 4.9 · 10−5 1.3 · 10−4

4 8.2 · 10−8 1.5 · 10−6 1.2 · 10−6 2.3 · 10−6

5 4.8 · 10−9 6.4 · 10−8 5.3 · 10−8 9.0 · 10−8

20 1.6 · 10−23 9.5 · 10−23 7.9 · 10−23 7.5 · 10−23 8.0 · 10−22

z = 0.01 + 2i.

n |f − Sn(ŵ
(4)
n )| (7.34) (7.37)

6 8.69 · 10−5 2.48 · 10−2 25.9
7 3.85 · 10−5 8.10 · 10−3 7.0
8 1.91 · 10−5 3.36 · 10−3 2.7

100 2.91 · 10−11 2.89 · 10−9 1.7 · 10−6

500 9.07 · 10−16 8.82 · 10−14 6.8 · 10−11

8. Example 2: The tangent function. The continued fraction
K(an/1) in (1.2) converges to tan z for all z ∈ C. It is of type 2, indeed
an+1 = −z2/(4n2 − 1) which approaches 0 rather fast. Hence Sn(0)
is really a fixed point modification, and we expect Sn(0) to converge
reasonably fast unless |z| is large.
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8.1. Truncation error bounds forSn(0).

8.1.1. The Craviotto-Jones-Thron bound. By a value set method
similar to OST, Craviotto, Jones and Thron [1] proved that

(8.1) |f − Sn(0)| ≤ ρ3
n/|B̂n−1|2

|hn|(|hn| − ρ2
n)

for n ≥ k + 1

where hn is given by (2.11), ρn := |z|/(2n−1), B̂k is given recursively by
B̂k = (−1)k+1(2k − 1)B̂k−1/z + B̂k−2 for k = 1, 2, 3, . . . with B̂0 := 1
and B̂−1 := 0, and k ≥ 0 is chosen such that |z2| ≤ 4k − 2 and
ρn + 1/ρn−1 ≥ 2 for n ≥ k + 1. This bound is quite sharp, as they
showed for an example with z = 2eiπ/4, but it is awkward to compute.

8.1.2. The bound based on Qn. If we use OST with wn = 0 for all n
and Rn := 2|an| for n ≥ 1, then we get that if |an+1| ≤ Rn(1− Rn+1)
for n > N , then by (3.4)

(8.2)

|f − Sn(0)| ≤ |fN−1 − fN |
|hN | ·H2

N+1

· |aN+1| · 2|an|
1− 2|aN+1|

n−1∏
k=N+1

Mk for n ≥ N + 1

where Mk = Rk/(1−Rk) by Remark 2.2.3 and

(8.3) HN+1 =
|hN+1 − 4|aN+1|2|+ 2|hN+1 − 1| · |aN+1|

|hN+1|2 − 4|aN+1|2

by Remark 3.1.2. Here |an+1| ≤ Rn(1 − Rn+1) if and only if |z2| ≤
n2+2n−5/4; that is, we can use any N ∈ N with N ≥ √|z|2 + 9/4−2.

To compare with the bounds in [1], we set z = 2eiπ/4 which means
that z2 = 4i and N ≥ 1

2 works. If we use N = 2 in (8.2), we get (in
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view of Remark 3.1.4) that

(8.4)

|f−Sn(0)| ≤ |a1a2|
{ |B3 − 4B2|a3|2|+ 2|a3|2

|B3|2 − 4|B2a3|2
}2 2|a3an|

1− 2|a3|

·
n−1∏
k=3

Rk

1−Rk

≤ 0.963256 |an|
n−1∏
k=3

2|ak|/(1−2|ak|) for n ≥ 3, z = 2eiπ/4,

where B2 := 1 + a2 and B3 := 1 + a2 + a3. Indeed, the first bound in
(8.4) holds for all |z2| ≤ 55/4, i.e., |z| ≤ √

55/2. If we instead increase
N to N := 3, we get

(8.5)

|f − Sn(0)| ≤ |a1a2a3|
{ |B4 − 4B3|a4|2|+ 2|1 + a2| · |a4|2

|B4|2 − 4|a4B3|2
}2

· 2|a4an|
1− 2|a4|

n−1∏
k=4

Mk

where B3 := 1+ a2 + a3 and B4 := 1+ a2 + a3 + a4 + a2a4 which holds
for |z2| ≤ 91/4. In particular

(8.6)
|f − Sn(0)| ≤ 0.05867966 |an|

n−1∏
k=4

2|ak|/(1− 2|ak|)

for n ≥ 4, z = 2eiπ/4,

and so on.

The table below shows how these bounds compare to the bound in
[1]:
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z = 2eiπ/4.

n |f − Sn(0)| (8.1) (8.4) (8.6)
3 2.23 · 10−2 3.20 · 10−2 2.57 · 10−1

6 1.55 · 10−6 1.84 · 10−6 1.92 · 10−3 1.02 · 10−4

9 6.17 · 10−12 6.90 · 10−12 1.66 · 10−7 8.84 · 10−9

12 2.56 · 10−18 3.87 · 10−18 1.47 · 10−12 7.86 · 10−14

15 4.80 · 10−25 5.13 · 10−24 12.59 · 10−18 1.38 · 10−19

This is not at all impressive, but one should take into consideration
the kind of work involved in computing the different bounds. The
computation of (8.1) requires the recursive computation of B̂n. (The
value of hn is then given by hn = ρnB̂n/B̂n−1.)

Another matter is that, for z = x + iy, we have tan z = (tanx +
tan(iy))/(1 − tanx tan(iy)). Hence it is probably just as easy to
compute tan z for z ∈ R and z ∈ iR. We may therefore concentrate
on z ∈ R and z ∈ iR, which means that an ∈ R for all n ≥ 2. In
particular an > 0 if z ∈ iR, and then the a posteriori bound

|f − Sn(0)| ≤ |Sn+1(0)− Sn(0)|

which follows from [11, p. 87], [16, p. 97] is much easier to compute
than (8.1), even if it is used as an a priori bound.

In the rest of this example we shall look at the two values z = 1 and
z = 15i. For z = 1 the bounds (8.4) and (8.5) take the forms

(8.7) |f − Sn(0)| ≤ 0.122258
4n2 − 8n+ 3

·
n−2∏
k=2

2
4k2 − 3

for z = 1, n ≥ 3

and

(8.8) |f − Sn(0)| ≤ 4.4515 · 10−4

4n2 − 8n+ 3
·

n−2∏
k=3

2
4k2 − 3

for z = 1, n ≥ 4,

respectively.
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For z = 15i we have Rk = 2|ak| > 1 for k < 12, and |an+1| ≤
2|an|(1 − 2|an+1|) only for n ≥ 15. This means that (8.2) only holds
with N ≥ 14. It requires some computation to find

h15 = 1 +
a15

1 +
a14

1 + · · ·+
a2

1
,

so we rather turn to the bounds (4.1) or (4.3) with α = 0. That is,

(8.9) |f − Sn(0)| ≤ 2Tn = 15
n−1∏
ν=1

225
224 + 4ν2

for z = 15i, n ≥ 1

and
(8.10 )

|f − Sn(0)| ≤ 30
n−1∏
ν=1

√
1 + 900/(4ν2 − 1)− 1√
1 + 900/(4ν2 − 1) + 1

for z = 15i, n ≥ 1.

8.1.3. The bound based on (3.13). Since an+1 ∈ En+1 for n ≥ 14
when z = 15i and Rn = 2|an|, we get from (4.2) that

(8.11 )
|f − Sn+1(0)| ≤ 2Rn+1Tn+1

= 15 · 450
4n2 − 1

n∏
ν=1

225
224 + 4ν2

for z = 15i, n ≥ 14.

Compared to (8.9) the term Rn+1 gives a positive effect since Rn+1 < 1
for n ≥ 11.

Combining Qn with the Gragg-Warner bound (8.10) gives similarly

(8.12)
|f − Sn+1(0)| ≤ 30

450
4n2 − 1

n∏
ν=1

√
1 + 900/(4ν2 − 1)− 1√
1 + 900/(4ν2 − 1) + 1

for z = 15i, n ≥ 14

which improves (8.10) for these values of n.

The tables below show how these bounds compare to the actual
truncation error.
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z = 1.

n | − Sn(0)| (8.7) (8.8)
3 1.85 · 10−3 8.15 · 10−3

6 2.25 · 10−9 3.78 · 10−7 8.93 · 10−9

9 1.44 · 10−16 4.44 · 10−13 1.05 · 10−14

12 1.32 · 10−24 5.82 · 10−20 1.38 · 10−21

15 2.79 · 10−33 1.55 · 10−27 3.66 · 10−29

z = 15i.

n |f − Sn(0)| (8.9) (8.10) (8.11) (8.12)
3 1.64 14.48 20.66
6 0.12 9.72 4.31
9 5.90 · 10−3 3.30 0.29
12 9.97 · 10−5 0.49 6.88 · 10−3

15 6.72 · 10−7 7.39 · 10−4 6.28 · 10−5 4.24 · 10−4 3.61 · 10−5

30 1.43 · 10−22 2.16 · 10−17 4.16 · 10−20 2.89 · 10−18 5.57 · 10−21

8.2. Choice of wn. The improvement Φn(wn, 0). The square
root modification takes the form

(8.13) wn := (qn − 1)/2 where qn =
√
1− z2/(n2 − 1/4) .

Gill [2] proved that if maxm≥n |wm − wm+1| ≤ εn|wn+1| for all n ≥ 1,
where 0 ≤ εn ≤ 1 and 0 < |wm| < σn for m ≥ n ≥ 1, then
|Φn(wn, 0)| ≤ σnεn/(1− 5σn)2. For our continued fraction we can use
σn = |wn| = |qn − 1|/2 = O(an+1) and εn = |qn − qn+1|/|qn+1 − 1| =
O((an+1−an+2)/an+2), and thus Φn(wn, 0) = O(an−an+1) = O(n−3).
This is also what we get from (2.14) and (6.4):

(8.14)
Φn(wn, 0) = O((an − ân)/wn) = O(wn−1 − wn)

= O(an − an+1) = O(n−3).

This holds true for every z ∈ C, and in particular for z ∈ R and z ∈ iR.



452 L. LORENTZEN

The improvement machine applied to this wn gives t = 1, and

(8.15) w̃(2)
n = (qn − 1)qn/(qn + qn+1).

The improvement is now of the order Φn(w̃
(2)
n , 0) = O(n−4).

Finally, the asymptotic expansion should probably be done in powers
of (qn − 1). However, to keep the computation of wn simpler, we shall
rather use a polynomial in 1/n. This gives for instance

(8.16)

ŵ(7)
n :=

7∑
j=2

cjn
−j

= − z2

4n2
− z2(1 + z2)

16n4
+

z4

8n5

− z2(1 + 14z2 + 2z4)
64n6

+
z4(11 + 5z2)

32n7

which gives an improvement Φn(ŵ
(7)
n , 0) = O((an−â(7)

n )/an) = O(n−8).

The tables below show Sn(wn) for z = 1 and z = 15i for the various
choices of wn. The values for Sn(wn) are just truncated, with no
rounding.

z = 1. tan z = 1.557407724654902230506974807458360173087

n wn=0 wn=(qn−1)/2 (8.15) (8.16)
1 1.0000000 1.01587301587
2 1.5000000 1.560373755 1.5572005678 1.55554048555
3 1.5555555 1.557434164 1.5574071043 1.55740148064
4 1.5573770 1.557407913 1.5574077225 1.55740770406
5 1.5574074 1.557407725 1.5574077246 1.55740772459

m(40) 18 16 15 16
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z = 15i. tan z = 0.9999999999998128475406232140209232087469i

n wn=0 wn=(qn−1)/2 (8.15) (8.16)
3 2.63736263i 1.087640589i 1.0155773319i 0.18872854i
6 0.88135751i 0.994032636i 0.9994064402i 1.01188070i
9 1.00590032i 1.000174372i 1.0000110822i 1.0000110822i
12 0.99990034i 0.999998035i 0.9999999152i 0.9999999152i
15 1.00000067i 1.000000009i 1.0000000002i 0.99999998i

m(35) 40 38 37 38

8.3. Error bounds for the square root modification. We
clearly see that there is not much to gain by changing to modified
approximants for our K(an/1). The classical approximants converge
almost as fast as the modified ones, and the truncation error bounds
(8.4) and (8.5) are reasonably good and easy to compute, in particular
if we replace the product of Mk for k ≥ 6 by powers of M6 for instance.
For completeness we shall still derive some bounds for |f − Sn(wn)|,
where wn is given by (8.13), since the techniques can easily be adapted
to other continued fractions of type 2.

8.3.1. Bounds based on Qn. In view of Lemma 5.1, we try the choice

(8.17)

Rn+1 :=
2|εn+1|
∆n+1

=
2|wn − wn+1| · |wn|
|1 + wn+1| − |wn| =

|qn − qn+1| · |qn − 1|
|qn+1 + 1| − |qn − 1|

where qn =
√
1− z2/(n2 − 1/4). Let first z2 > 0 and n ≥ √

z2 + 1/4,
which for instance holds for n ≥ 2 and |z| ≤ √

15/2 or for n ≥ 3 and
|z| ≤ √

35/2. Then an < 0, 0 ≤ qn < 1, {qn} increases monotonically
to 1 and

(8.18) Rn+1 = (qn+1 − qn)(1− qn)/(qn+1 + qn).

Clearly (1 − qn) decreases monotonically, (qn+1 + qn) increases mono-
tonically and

qn+1 − qn =
q2
n+1 − q2

n

qn+1 + qn
=

16z2

(2n− 1)(2n+ 1)(2n+ 3)(qn+1 + qn)
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decreases monotonically, so Rn+1 decreases monotonically. Hence, by
Lemma 5.1, an+1 ∈ En+1 if Rn+1 ≤ ∆n+1/2 = (qn+1 + qn)/4; that is,
if

4(qn+1 − qn)(1− qn) ≤ (qn+1 + qn)2

which always holds for z ∈ R with |z| ≤ √
15/2 and n ≥ 2 or for

|z| ≤ √
35/2 and n ≥ 3. Hence we get from (3.7) that

(8.19)

|f−Sn(wn)| ≤ |z3/3|
(1−z2/3)2

H2
3

|2z2/15|
q3 + 1− 2R3

· 2Rn

qn+1

n−1∏
k=3

Mk for n ≥ 3

for −√
35/2 ≤ z ≤ √

35/2, where Rk is given by (8.18), qk =√
1− 4z2/(4k2 − 1), wn = (qn − 1)/2, and by Remarks 2.2.3 and 3.1.2

(8.20)

Mk =
|wk|+Rk

1− |wk| −Rk
=

1− qk + 2Rk

1 + qk − 2Rk
→ 0,

H3 =
|( a3

1+a2
+ q3+1

2 ) q3+1
2 −R2

3|+ | a3
1+a2

|R3

| a3
1+a2

+ q3+1
2 |2 −R2

3

.

For z = 1 this gives in particular H3 < 0.907179 and
(8.21 )

|f−Sn(wn)| ≤ 0.0853895· Rn

1+qn

n−1∏
k=3

Mk ≤ 0.0853895· Rn

1+qn
·0.03757n−3

for n ≥ 3. Since

Rn

1 + qn
=

(qn − qn−1)(1− qn−1)
(qn + qn−1)(1 + qn)

=
(q2

n − q2
n−1)(1− q2

n−1)
(qn + qn−1)2(1 + qn)(1 + qn−1)

where qn =
√
1− 4z2/(4n2 − 1) > 1− 4z2/(4n2 − 1), we have

(8.22)

Rn

1 + qn
≤ 1(

2− 8z2

(2n−3)(2n+1)

)2(
2− 4z2

(2n−3)(2n−1)

)2

· 64z4

(2n− 3)2(2n− 1)2(2n+ 1)
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which for z = 1 gives the simpler bound

(8.23)

|f−Sn(wn)| ≤ 0.34156 · (2n− 3)2(2n+ 1)
(4n2− 4n− 7)2(4n2− 8n+ 1)2

· 0.03757n−3.

For z = iy with y ∈ R, we have an > 0 for n ≥ 2, and thus qn > 1,
{qn} decreases monotonically to 1, and

(8.24) Rn+1 =
(qn − qn+1)(qn − 1)
2− (qn − qn+1)

when qn−qn+1 < 2. Since (qn−qn+1) → 0, (qn−qn+1) is certainly < 2
from some n on. Let n satisfy qn − qn+1 < 2. Then {Rn+1} decreases
if (qn − qn+1) decreases, which absolutely seems to be the case, but it
has to be checked. Let f(n) := 4y2/(4n2 − 1) so that qn =

√
1 + f(n).

Then (qn − qn+1) decreases if d
dn (

√
1 + f(n) − √

1 + f(n+ 1)) < 0;
that is, if

f ′(n)
√
1 + f(n+ 1)− f ′(n+ 1)

√
1 + f(n) < 0

where f ′(n) = −32y2n/(4n2 − 1)2. Hence (qn − qn+1) decreases if

n2

(4n2 − 1)4

(
1 +

4y2

4n2 + 8n+ 3

)
>

(n+ 1)2

(4n2 + 8n+ 3)4

(
1 +

4y2

4n2 − 1

)
n2(2n+ 3)3(4n2 + 8n+ 3 + 4y2) > (n+ 1)2(2n− 1)3(4n2 − 1 + 4y2)

which holds for all y ∈ R if n2(2n + 3)3 > (n + 1)(2n − 1)3 which is
easy to verify for all n ≥ 0. Hence an+1 ∈ En+1 if qn − qn+1 < 2
and Rn+1 ≤ ∆n+1/2. Since (qn − qn+1) is decreasing, we have
(qn − qn+1) < 2 for n ≥ N if qN − qN+1 < 2. Straightforward
computation shows that this holds if and only if

4y2 < (4N2 − 1)(4N2 + 8N + 3).

Hence we have for instance that qn − qn+1 < 2 for n ≥ 2 for |y| <
5
√
21/2 and for n ≥ 3 for |y| < 21

√
5/2. Moreover, Rn+1 ≤ ∆n+1/2 if

(qn − qn+1)qn ≤ 1 + (qn − qn+1)2/4,
i.e., q2

n ≤ 1 + (qn + qn+1)2/4,

i.e., y2 ≤ (2n− 1)(2n+ 1)(2n+ 3)2

4(4n+ 7)
.
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Hence (8.19) still holds for n ≥ 3 when z = iy with

|y| ≤ min
{
21
√
5

2
,

√
5 · 7 · 92

4 · 19
}

=
3
2

√
35
19

≈ 6.1,

where Rk is given by (8.17) and qk, wk and Mk are as before.

For z = 15i we need n ≥ 6 to ensure that an+1 ∈ En+1, and thus
by (3.4)

(8.25)

|f−Sn(wn)| ≤ |fN−1 − fN |
|hN |

H2
N+1|aN+1|

|1 + wN+1| −RN+1

Rn

|1 + wn|
n−1∏

k=N+1

Mk

for n ≥ N + 1

where the bound improves slightly if we increase N ≥ 5. For instance,
N = 6 gives

(8.26) |f − Sn(wn)| ≤ 0.724648 · Rn

1 + wn

n−1∏
k=7

Mk for z = 15i, n ≥ 7

where Mk = (wk + Rk)/(1 + wk + Rk). This is not too bad. (See the
table below.)

8.3.2. Bounds based on (3.13). For 0 < z2 ≤ 15/4 we already know
that an ∈ En for n ≥ 3 when Rn is given by (8.17). Hence by (4.2)

(8.27) |f − Sn(wn)| ≤ 2RnTn

1 + wn
=

4|z|2n−1∏n−1
ν=1(|z|2 + 4ν2 − 1)

· Rn

1 + qn

for 0 < z2 < 15/4 and n ≥ 3, where Rn/(1 + qn) satisfies (8.22). For
z = 1 this gives in particular

(8.28)

|f−Sn(wn)| ≤ (2n− 3)2(2n+ 1)
(4n2− 4n−7)2(4n2− 8n+ 1)24n−3((n−1)!)2

for n ≥ 3.
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z = 1.

n |f − Sn(wn)| (8.7) for |f − Sn(0)| (8.23) (8.28)
3 2.64 · 10−5 8.15 · 10−3 4.44 · 10−4 3.23 · 10−4

4 1.88 · 10−7 5.37 · 10−4 1.59 · 10−6 3.42 · 10−6

5 4 · 10−10 1.81 · 10−5 1.32 · 10−8 4.72 · 10−8

For z2 < 0 we have an > 0 for all n ≥ 2. The choice (8.17) for Rn

reduces to (8.24), and we have already found that |f (n) −wn| ≤ Rn for
n ≥ 6 when z = 15i. Hence by (4.2) we have that

(8.29)

|f−Sn(wn)| ≤ 2RnTn

1 + wn
=

4|z|2n−1∏n−1
ν=1(|z|2 + 4ν2 − 1)

· Rn

1 + qn
for n ≥ 6,

that is,
(8.30)

|f−Sn(wn)| ≤ 152n+3

4n−3
· (2n− 3)2(2n+ 1)
(4n2−4n−903)(4n2−8n−447)2

∏n−1
ν=1(56 + ν2)

for n ≥ 6.

z = 15i.

n |f − Sn(wn)| (8.9) (8.26) (8.30)
3 8.76 · 10−2 14.48
6 5.97 · 10−3 9.72 1.01
9 1.74 · 10−4 3.30 1.21 · 10−2 4.96 · 10−3

12 1.97 · 10−6 0.49 1.33 · 10−4 7.66 · 10−5

15 9.00 · 10−9 7.39 · 10−4 6.01 · 10−7 4.86 · 10−7

9. Example 3: The incomplete gamma function. The
continued fractionK(an/1) in (1.3) converges to the incomplete gamma
function Γ(a, z) for z ∈ Z3, that is, for | arg z| < π, as long as (a − z)
is not a positive, odd integer. (Otherwise the continued fraction is not
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defined.) Hence we assume that a−z−1
2 �∈ N in this section. Since

(9.1)

an+1 =
−n(n− a)

(2n− 1 + z − a)(2n+ 1 + z − a)
= −1

4
+

εn+1

4

where εn+1 :=
4nz + (z − a)2 − 1

4n2 + 4(z − a)n+ (z − a)2 − 1
=

z

n
+O(n−2)

as n → ∞,

we expect that the continued fraction converges slowly except if | arg z|
is small or a ∈ N. In the latter case an+1 = 0 for n = a, and Γ(a, z)
reduces to a rational function in z with a finite continued fraction
expansion. Hence we also assume that a /∈ N in this section.

9.1. Choice of wn. The fixed point modification wn = −1
2 is not a

good idea here, since S−1
n (∞) → −1

2 . Since an → −1
4 in a monotone

way, the square root modification

(9.2) wn =
qn − 1

2
where qn =

√
1 + 4an+1 =

√
εn+1,

where εn+1 is given by (9.1) and Re qn > 0, may be a better idea. The
improvement machine in Section 6.3 applied to (9.2) gives t = 1 and

(9.3)

w(1)
n = wn +

an+1 − wn(1 + wn+1)
1 + wn+1 + wn

=
qn − 1

2
+

4an+1 − (qn − 1)(qn+1 + 1)
2(qn + qn+1)

=
qn(qn − 1)
qn + qn+1

.

For the asymptotic expansion (6.7), the choice µj(n) := q−j
n is probably

a good choice. We shall rather choose the simpler expression µj(n) =
n−j/2, and

(9.4 )

wn+1 = ŵ
(N)
n+1 :=

N∑
j=0

cjn
−j/2 for n ≥ 1, ŵ

(N)
1 := a2/(1 + ŵ

(N)
2 ).
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By means of a computer algebra package (here Maple), it is simple to
derive as many coefficients cn as one may wish. The first 11 ones are

c0 =
−1
2
, c1 =

√
z

2
, c2 =

−1
8
, c3 =

4(a+ z)2 − (4z + 1)2

64
√
z

,

c4 = −4(a+ z)2 − (4z + 1)2

128z
,

c5 =
−1

4096z3/2
(25− 48z − 264z2 + 48az − 104a2 − 576z3 + 384az2

+192a2z − 192a3z − 368z4 − 32a2z2 + 16a4),

c6 =
1

2048z2
(13− 16z− 72z2+16az− 56a2− 192z3 +128az2 +64a2z

−112z4 + 192az3 − 32a2z2 − 64a3z + 16a4),

c7 =
1

131072z5/2
(−1073+ 1000z− 484z2 − 1000az+4748a2− 5440z3

+1920az2 − 4160a2z − 13744z4 + 10560az3 + 864a2z2 + 4160a3z

−1840a4 − 14720z5 + 23040az4 − 1280a2z3 − 7680a3z2 + 640a4z

−5824z6+14720az5−8768a2z4−3840a3z3+4288a4z2−640a5z

+64a6),

c8 =
−1

8192z3
(−103+78z−15z2−78az+465a2−176z3+96az2−336a2z

−552z4 + 432az3+ 336a3z − 216a4 − 672z5 + 1152az4 − 192a2z3

−384a3z2+96a4z−240z6+672az5−528a2z4−64a3z3+240a4z2

−96a5z + 16a6),

c9 =
−1

16777216z7/2
(375733− 240352z + 19760z2 + 240352az

−1721744a2 + 34944z3 − 224000az2 + 1063552a2z − 409120z4

+108416az3 + 58944a2z2− 1063552a3z + 899808a4− 1358336z5

+1218560az4 − 379904a2z3 + 931840a3z2 − 412160a4z

−1858816z6+3078656az5−624384a2z4−336896a3z3−572160a4z2

+412160a5z−98560a6−1304576z7+3297280az6−1964032a2z5

−860160a3z4+960512a4z3−143360a5z2+14336a6z−371456z8
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+1304576az7 − 1467392a2z6 + 243712a3z5 + 609792a4z4

−387072a5z3 + 80896a6z2 − 14336a7z + 1280a8),

c10 =
1

524288z4
(23797− 13184z + 320z2 + 13184az − 110272a2

+2176z3 − 9984az2 + 59520a2z − 6112z4 + 1920az3 + 4800a2z2

−59520a3z + 62496a4 − 21504z5 + 22528az4 − 16384a2z3

+43008a3z2 − 27648a4z − 39424z6 + 70656az5 − 19968a2z4

−4096a3z3 − 26112a4z2 + 27648a5z − 8704a6 − 30720z7

+86016az6 − 67584a2z5 − 8192a3z4 + 30720a4z3 − 12288a5z2

+2048a6z − 7936z8 + 30720az7 − 41984a2z6 + 18432a3z5

+9728a4z4 − 14336a5z3 + 7168a6z2 − 2048a7z + 256a8).

If we let a := 1
2 , as we do in our numerical experiments, we get the first

13 coefficients

c0 = −1
2
, c1 =

√
z

2
, c2 = −1

8
, c3 = −1 + 3z

16
√
z, c4 =

1 + 3z
32

,

c5 =
5 + 16z + 23z2

256
√
z, c6 = −1 + 6z + 7z2

128
,

c7 = −15 + 69z + 115z2 + 91z3

2048
√
z, c8 =

4 + 27z + 84z2 + 60z3

2048
,

c9 =
99 + 1092z + 2254z2 + 2548z3 + 1451z4

65536
√
z,

c10 = −1 + 3z + 27z2 + 60z3 + 31z4

2048
,

c11 =
201− 1365z − 10626z2 − 5797z3 − 13059z4 − 14882z5

524288
√
z,

c12 =
8 + 93z − 40z2 + 504z3 + 1240z4 + 732z5

65536
.

The tables below show how the approximants Sn(wn) perform for z = 1,
where we expect them to converge relatively fast, and for z = −2+0.1i
which is close to the boundary of Z3. The values in the tables are just
truncated, with no rounding.
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z = 1. Γ( 1
2 , 1) = 0.278805585280661976499232611

n Sn(0) Sn(−1
2 ) Sn((qn−1)/2) (9.3)

3 0.2764 0.2846 0.27862 0.278810
6 0.27865 0.27908 0.278797 0.27880598
9 0.278788 0.278834 0.27880479 0.27880562
12 0.2788027 0.2788099 0.27880547 0.278805591
15 0.278805027 0.2788064 0.278805565 0.2788055863
30 0.2788055843 0.2788055865 0.278805585257 0.2788055852817

m(6) 18 15 13 6
m(35) 422 432 373 344

n Sn(−1
2 (1−

√
z
n )) Sn(−1

2 (1−
√

z
n+

1
4n )) (9.4) with N = 3

3 0.27828 0.27880584 0.27880584
6 0.278788 0.278805566 0.278805566
9 0.2788042 0.2788055840 0.27880558403
12 0.27880541 0.27880558515 0.27880558515
15 0.278805555 0.278805585263 0.278805585263
30 0.278805585249 0.278805585280654 0.278805585280654

m(6) 14 5 4
m(35) 373 273 273

n (9.4) with N = 12
3 0.2788103
6 0.2788055863
9 0.2788055852870
12 0.27880558528080
15 0.2788055852806684
30 0.278805585280661976625

m(6) 4
m(35) 157
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z = −2 + 0.1i. Γ( 1
2 ,−2 + 0.1i) = 1.25056710− 6.66810491i

n Sn(0) Sn(−1
2 ) Sn((qn − 1)/2)

3 2.049065− 12.1200i −0.192079− 8.3924i 1.423033− 6.980900i
10 −0.056675− 7.4533i 0.015170− 5.5030i 1.173930− 6.660657i
100 0.556692− 6.6339i 2.321004− 6.2896i 1.249460− 6.660389i
500 1.153556− 6.5586i 1.362853− 6.7757i 1.250984− 6.667677i
997 1.288672− 6.6522i 1.214746− 6.6870i 1.250619− 6.668206i
998 1.289878− 6.6557i 1.212170− 6.6803i 1.250609− 6.668210i
999 1.290753− 6.6593i 1.211335− 6.6768i 1.250599− 6.668214i

n (9.3) Sn(−1
2 (1−

√
z
n + 1

4n )) (9.4) with N = 3

3 1.3361990 − 6.72598506i 0.982045 − 7.477938i 1.22044278 − 7.129332i

10 1.2337356 − 6.67403715i 1.200983 − 6.531474i 1.23099422 − 6.649664i

100 1.2503563 − 6.66809019i 1.255394 − 6.667001i 1.25060741 − 6.667921i

500 1.2505624 − 6.66809956i 1.250689 − 6.668223i 1.25056932 − 6.667677i

997 1.2505679 − 6.66681044i 1.250546 − 6.668115i 1.25056718 − 6.668206i

998 1.2505680 − 6.66810462i 1.250545 − 6.668113i 1.25056716 − 6.668210i

999 1.2505680 − 6.66810465i 1.250545 − 6.668111i 1.25056714 − 6.668214i

m(4) 179 479 145

n (9.4) with N = 12
3 1.248929501067419799885850− 6.671402555508192973093313i
10 1.250567125006118886935756− 6.668104602095381387437780i
500 1.250567104272837837836407− 6.668104914779757974760128i
997 1.250567104272837836131794− 6.668104914779757974123697i
998 1.250567104272837836131815− 6.668104914779757974123431i
999 1.250567104272837836131859− 6.668104914779757974123171i
m(4) 5

These tables show that K(an/1) converges reasonably fast for z = 1,
but painfully slowly for z = −2 + 0.1i. As expected we do not gain
much by replacing Sn(0) by Sn(−1

2 ). But the choices (9.3) and (9.4)
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seem to be doing relatively well, in particular (9.4) with N = 12, as was
to be expected. The simple form of (9.3) is also an important point.
Hence it really makes sense to use modifying factors to make Sn(wn)
converge faster to Γ(a, z).

9.2. Truncation error bounds for Sn(0). This time K(an/1) is
not a Stieltjes fraction, and the Gragg Warner bound does not apply.
To be sure, K(an/1) is the even part of the Stieltjes fraction, if a < 1,

za−1e−z

1 +
(1− a)/z

1 +
1/z
1 +

(2− a)/z
1 +

2/z
1 +

(3− a)/z
1 + . . .

,

which is limit periodic with an → ∞. However, the point in this section
is to demonstrate how to treat K(an/1) where an → −1

4 , and to see
what we can expect to gain for such continued fractions. Hence, we
shall forget about this connection to Stieltjes fractions.

The choice for α in Thron’s parabola sequence theorem is not so
obvious in this case. However, (9.1) indicates that α := 1

2 arg z is a
possible choice. Then an+1 ∈ Pα,n+1 if

(9.5) |an+1| − Re (an+1|z|/z) ≤ gn(1− gn+1)(1 + cos arg z).

Let first a ∈ R and z > 0. Then an+1 ≥ −1
4 for all n ∈ N with

n ≥ n0(a, z) := max
{
1 + a− z

2
,
1− (z − a)2

4z

}
.

Hence an+1 ∈ P0,n+1 with gn = gn+1 = 1
2 for n ≥ n0(a, z). Note that

dn = 1/n and kn = 2(|an| − an) ≤ 4|an| in this case. If n0(a, z) ≤ 1,
we thus have by (2.8) that

(9.6)

|f − Sn(wn)| ≤ 2Tn = |a1|
/ n−1∏

ν=1

(
1 +

1− 4|aν+1|+ 1/ν
4|aν+1|

)

=
e−zza

|1 + z − a|
/ n−1∏

ν=1

(1 + 1/ν)|(2ν + z − a)2 − 1|
4ν|ν − a|

for n ≥ 1 whenever Rewn ≥ −1
2 . Now n0(a, z) ≤ 0 if (z − a) ≥ 1.

Moreover, if (z − a) < 1, then

n0(a, z) =
{
(1 + a− z)/2 if a+ z ≥ 1,
(1− (z − a)2)/4z if a+ z ≤ 1.
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Hence n0(a, z) ≤ 1 if either

z − a ≥ 1, or
a+ z ≥ 1 and |a− z| ≤ 1, or
a+ z ≤ 1 and 5− 4a ≤ 0, or
a+ z ≤ 1 and (z − a+ 2)2 > 5− 4a > 0.

This holds in particular for a = 1
2 and z = 1. Hence

(9.7)
|f − Sn(wn)| ≤ 2/e

3

/ n−1∏
ν=1

(ν + 1)((2ν + 1
2 )

2 − 1)
4ν2(ν − 1

2 )

for n ≥ 1, z = 1, a =
1
2

when Rewn ≥ −1
2 . A slightly smaller, but more complicated, bound

can be obtained by choosing gn more carefully.

Let us now turn to complex values of z. Then (9.5) holds with
gn = gn+1 = 1

2 and a < n if n ∈ N with

n(n− a)|z|
|(2n+ z − a)2 − 1| +Re

n(n− a)z
(2n+ z − a)2 − 1

≤ 1
4
(|z|+Re z)

which holds with a = 1
2 , z = −2 + 0.1i and n ≥ 3. That is, an ∈ Pα,n

with α := (arg z)/2 for n ≥ 4. By combining (3.4) with (3.11), as
done in (3.12), but using the bounds from Thron’s parabola sequence
theorem for |f (2) − S

(2)
n−2(wn)|, we then get

(9.8) |f − Sn(wn)| ≤ (1 + |a3|/d3g3 cosα)|f1 − f2| · |a3|
(d2g2 cosα)2(1− g2) cosα

/ n∏
ν=4

M̃ν ,

where g2 = g3 = 1
2 , dν = 1/ν, |f1−f2| = |a1a2|/|1+a2|, α = 1

2 arg z =
1
2 tan

−1(−0.05) ∈ (0, π/2) and

(9.9) M̃ν+1 = 1 +
1− kν+1 + 1/ν

4|aν+1| cos2 α where kν+1 ≤ 1.

Inserting this into (9.8) and replacing kν+1 by 1 then gives

(9.10) |f − Sn(wn)| ≤ 7.51948 · 109
/ n−1∏

ν=3

(
1 +

6.2383056 · 10−4

4ν|aν+1|
)
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for z = −2 + 0.1i, a = 1
2 , n ≥ 4.

A second expression can be obtained from (3.8), using Remark 3.1.3
to estimate H̃3.

9.3. Error bounds for the modification (9.4). We want to
involve the oval sequence theorem, so we want to find radii Rn such
that an ∈ En, at least from some n on. If an ∈ Pα,n with gn−1 = gn = 1

2
for n ≥ N +2, it seems reasonable to try Rn := |1/2+wn|. Then −1

2 is
a boundary point of Vn, and thus Mk = 1 in the oval sequence theorem.
The bound (3.12) then takes the form

|f − Sn(wn)| ≤ 4N2

cos3 α

{
cosα+ 2(N + 1)|aN+1|

}
· |aN+1| · |fN−1 − fN |Rn

(|1 + wN+1| −RN+1)|1 + wn|

for n ≥ N + 1 if this Rn works for n ≥ N + 1. However, we can do
much better.

In the following we let a = 1
2 . Then the modification (9.4) has

coefficients c0, c1, . . . , c12 as given in part 9.1. Moreover, an − â
(N)
n =

O(n−(N+1)/2) for â(N)
n := ŵ

(N)
n−1(1 + ŵ

(N)
n ), whereas

∆(N)
n := |1 + ŵ(N)

n | − |ŵ(N)
n−1| = O(n−1/2).

Hence, by Lemma 5.1 we expect that some Rn = O(n−N/2) will work
if N ≥ 2.

First let z = 1. For N = 3 we have

(9.11) ŵ
(3)
n+1 = −1

2
+

1
2
√
n
− 1

8n
− 1

4n3/2
.

It is straightforward to prove that 0 > ŵ
(3)
n > ŵ

(3)
n+1 > −1

2 , 0 <

an+1 − â
(3)
n+1 < an − â

(3)
n and

Rn :=
2|an − â

(3)
n |

∆(3)
n

≤ 1
2
∆(3)

n
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for n ≥ 4. Hence it follows from Lemma 5.1 that an ∈ En for n ≥ 5
with this radius Rn. Hence it follows from (3.12) with N = 3 that

(9.12)

|f − Sn(ŵ(3)
n )| ≤ 16(1 + 6|a3|)|f1 − f2| |a3|

|1 + ŵ
(3)
3 | −R3

· Rn

|1 + ŵ
(3)
n |

n−1∏
k=3

M
(3)
k

where we have used R3 := R4, dν = 1/ν and gν = 1
2 . Now,

|1 + ŵ
(3)
n | > 1

2 , |f1 − f2| = |a1a2|/|1 + a2|, and by Remark 2.2.3 we
have

M
(3)
k =

|ŵ(3)
k |+Rk

1 + ŵ
(3)
k −Rk

since −1
2 < ŵ

(3)
k < 0. Hence

(9.13) |f − Sn(ŵ(3)
n )| ≤ 0.438219Rn

n−1∏
k=3

−ŵ(3)
k +Rk

1 + ŵ
(3)
k −Rk

for z = 1, a = 1
2 and ŵ

(3)
n given by (9.11). Here M

(3)
k < 1, but

M
(3)
k → 1. Hence we also have the simpler bound

(9.14) |f − Sn(ŵ(3)
n )| ≤ 0.438219Rn = 0.856438

|an − â
(3)
n |

∆(3)
n

for n ≥ 4 for this situation. The table below shows the effect of the
various bounds for z = 1.

n |f − Sn(ŵ
(3)
n )| (9.7) (9.13) (9.14)

3 2.5 · 10−7 1.9 · 10−2 1.1 · 10−1 1.1 · 10−1

6 1.9 · 10−8 4.6 · 10−3 1.7 · 10−2 2.5 · 10−2

9 1.3 · 10−9 2.0 · 10−3 2.0 · 10−3 1.2 · 10−2

12 1.3 · 10−10 1.1 · 10−3 3.0 · 10−4 7.1 · 10−3

15 1.8 · 10−11 7.1 · 10−4 5.6 · 10−5 4.9 · 10−3

30 7.8 · 10−15 1.7 · 10−4 6.1 · 10−7 1.6 · 10−3



A PRIORI TRUNCATION ERROR BOUNDS 467

The situation gets more complicated when z is close to the boundary
of Z3 for this continued fraction. For z = −2 + 0.1i the quantity ∆(N)

n

is negative for n ≤ 52, even for large values of N .

10. Example 4: The error function. The continued fraction in
(1.4) converges to the complementary error function erfc (z) for z ∈ Z4,
where Z4 is the open right half plane where Re z > 0. Since an = O(n)
as n → ∞, we expect that the continued fraction converges slowly, in
particular for z close to the boundary of Z4.

10.1. Choice of wn. The fixed point modification does not make
sense in this case, but the square root modification still works. It gives

(10.1) wn =
qn − 1

2
where qn :=

√
1 + 2n/z2 , Re qn > 0.

The improvement machine gives t = 1, so also this time

(10.2) w(1)
n =

qn(qn − 1)
qn + qn+1

is a useful choice which can be improved by applying the machine
repeatedly.

As in the previous example, we shall use the asymptotic expansion
in

√
n instead of qn. This leads to modifications of the form

(10.3) ŵ(N)
n :=

√
n√
2 z

+
N∑

j=0

cjn
−j/2 for n ≥ 1.

Since an+1 = n/2z2 for n ≥ 1, the first coefficients cj in (10.3) are
given by

c−1=
1√
2 z

, c0= −1
2
, c1=

−1+z2

4
√
2 z

, c2=
1
8
, c3=

1+2z2−z4

32
√
2 z

,

c4 =
1− z2

16
, c5 =

5− 13z2 − 3z4 + z6

128
√
2 z

, c6 =
−5− 8z2 + 4z4

128
,

c7 =
−21−300z2+230z4+20z6−5z8

2048
√
2 z

, c8 =
−23+30z2+12z4−4z6

256
,
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c9 =
−399 + 1215z2 + 1750z4 − 770z6 − 35z8 + 7z10

8192
√
2 z

,

c10 =
53 + 304z2 − 180z4 − 32z6 + 8z8

1024
,

c11 =
869 + 34806z2− 29387z4− 14700z6 + 4515z8+ 126z10 − 21z12

65536
√
2 z

,

c12 =
1186− 1625z2 − 2120z4 + 800z6 + 80z8 − 16z10

4096
,

c13 =
39325−122101z2−440605z4+207823z6+51975z8

262144
√
2 z

−12243z10−231z12+33z14

262144
√
2 z

,

c14 =
−5165− 64344z239420z4 + 21760z6− 6000z8− 384z10 + 64z12

32768
,

c15 =
−334477−26968760z2+23047356z4+27283256z6−8847982z8

8388608
√
2 z

−1321320z10+252252z12+3432z14−429z16

8388608
√
2 z

.

The tables below illustrate the effect of the various modifications. We
have chosen the two values z = 1 which is well inside Z4, and z = 0.1+2i
which is closer to the boundary of Z4. Obviously there is a lot to be
gained by these modifications.

z = 1. erfc(1) = 0.1394027926403309882496163

n Sn(0) (10.1)
4 0.135534 0.13954
5 0.141492 0.13934
24 0.139401389 0.139402800
25 0.139403851 0.139402786
50 0.139402789 0.139402792630
51 0.139402795 0.139402792649

m(25) 434 238
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n (10.2) (10.3) with N = 15
4 0.1394066 0.13940266
5 0.1394011 0.139402803
24 0.13940279273 0.1394027926403309769
25 0.13940279257 0.1394027926403309942
50 0.13940279264038 26 true decimals
51 0.13940279264028 26 true decimals

m(25) 250 72

z=0.1+2i.

erfc(z) = −4.411870634783228645699940−15.38049238124456269078075549i

n Sn(0) (10.1)
3 −5.13593− 15.30575i −4.2140653562− 15.3224376370i
10 −4.84716− 15.81604i −4.4109453127− 15.3667487640i
100 −4.51276− 15.38294i −4.4117336325− 15.3804692715i
500 −4.41408− 15.37818i −4.4118700388− 15.3804929285i
1000 −4.41164− 15.38044i −4.4118706622− 15.3804923874i
m(5) 2210 369

n (10.2)
3 −4.4084646709− 15.4441032288i
10 −4.4113209516− 15.3800344500i
100 −4.4118701012− 15.3804924209i
997 −4.4118706337− 15.3804923818i
998 −4.4118706343− 15.3804923817i
m(5) 58
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n (10.3) with N = 12
3 −4.3629068370677 − 15.38226877i
10 −4.4118705713853718 − 15.3804917778090479i
100 −4.41187063478322852− 15.380492381244562617i
997 > 26 true decimals
998 > 26 true decimals
m(5) 9

10.2. Error bounds for Sn(0). The continued fraction (1.4)
for erfc(z) is a Stieltjes fraction. Since an+1 = n/2z2, we choose
α = − arg z ∈ (−π/2, π/2) in Thron’s parabola sequence theorem. The
bound (4.1) then takes the form

(10.4)

|f − Sn(wn)| ≤ |e−z2
/z|

2 cosα
/ n−1∏

ν=1

(
1 +

cos2 α
|aν+1|

)

=
|e−z2 |
2Re z

/ n−1∏
ν=1

(
1 +

2(Re z)2

ν

)

for Re(wnz/|z|) ≥ 0. In particular this gives

(10.5 )

|f−Sn(wn)| ≤
{
2e

n−1∏
ν=1

(
1 +

2
ν

)}−1

for z = 1, Rewn ≥ 0, n ≥ 2,

and for z = 0.1 + 2i and Re
(
wn

z
|z|

)
≥ 0 we get

(10.6) |f − Sn(wn)| ≤ 54.055
/ n−1∏

ν=1

(
1 +

0.02
ν

)
for n ≥ 2.

As a comparison, the Gragg-Warner bound (4.3) gives

(10.7) |f − Sn(0)| ≤ |e−z2 |
Re z

n−1∏
ν=1

√
1 + 2ν/(Re z)2 − 1√
1 + 2ν/(Re z)2 + 1

for n ≥ 2,
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which means that

(10.8) |f − Sn(0)| ≤ 1
e

n−1∏
ν=1

√
1 + 2ν − 1√
1 + 2ν + 1

for z = 1, n ≥ 2,

and

(10.9)

|f−Sn(0)| ≤ 108.11
n−1∏
ν=1

√
1 + 200ν − 1√
1 + 200ν + 1

for z = 0.1 + 2i, n ≥ 2.

In the table below we compare these bounds to the actual truncation
errors.

z = 1 z=0.1+2i
n |f−Sn(0)| (10.5) (10.8) |f−Sn(0)| (10.6) (10.9)

10 1.7·10−4 3.3 · 10−3 5.8 · 10−4 6.2 · 10−1 51.1 55.6
100 8.4·10−13 3.6 · 10−5 2.1 · 10−11 1.0 · 10−1 48.8 7.9
500 5.8·10−27 1.5 · 10−6 1.3 · 10−26 3.2 · 10−3 47.2 2.4
1000 < 10−35 3.7 · 10−7 5.6 · 10−38 2.3 · 10−4 46.6 1.7·10−2

10.3. Error bounds for (10.3). The first question is how many
terms do we want to use in the expression (10.3) for wn. The more
terms we choose, the better effect we have from the modification, and
the easier it normally is to find suitable radii Rn.

Let first z = 1. Then we expect everything to go through smoothly,
so we start with N = 3. Then

ŵ(3)
n =

√
n

2
− 1

2
+

1
8n

+
√
2

32n3/2
<

√
n

2
− 7

16
for n ≥ 1,

∆(3)
n = 1 +

√
n−√

n− 1
2

− 1
8n(n− 1)

−
√
2

32

·
(

1
(n− 1)3/2

− 1
n3/2

)
> 1 for n ≥ 2.

Moreover, |an − â
(3)
n |/∆(3)

n → 0 monotonically and

2|an − â
(3)
n |

∆(3)
n

≤ 2|an − â(3)
n | < 1

2
∆(3)

n for n ≥ 2.
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Hence, by Lemma 5.1 we may use Rn := 2|an − â
(3)
n | for n ≥ 2 in (3.5),

where

H2 =
1 + ŵ

(3)
2 +R2

1 + a2 + ŵ
(3)
2 + R2

by Remark 3.1.2. This gives

(10.10)

|f − Sn(ŵ(3)
n )| ≤ (1 + ŵ

(3)
2 +R2)2

( 3
2 + ŵ

(3)
2 +R2)2

· 1/(2e)

|1 + ŵ
(3)
2 | − 2|a2 − â

(3)
2 |

· |an − â
(3)
n |

|1 + ŵ
(3)
n |

n−1∏
ν=2

ŵ
(3)
ν + 2|aν − â

(3)
ν |

1 + ŵ
(3)
ν + 2|aν − â

(3)
ν |

≤ 0.5937 · |an − â
(3)
n |√

n/2 + 1/2

n−1∏
ν=2

(
1− 1√

ν
2 + 9

16 + 2
10

)

for n ≥ 2 and Rewn ≥ 0.

11. Concluding remarks. Which approximants to use and which
error bounds to use, depends to a large degree on the situation.

1. The better bounds one requires, the more computation it usually
takes to find them. To make a catalogue over truncation error bounds
for a given function, one may put in a considerable amount of work
to find good bounds. On the other hand, if the idea is to program a
computer to compute the function values to any accuracy required by
the user, it is a good idea to have bounds that are easy and fast to
compute by the machine.

2. It is important to find bounds that are valid for all, or almost all,
z of interest for a given function.

3. We want the computation to be fast. Evidently it is hard to
accelerate a continued fraction which already converges fast. But it is
easy, and much to be gained, by modifying the approximants of slowly
converging continued fractions. In view of point 2 above, we should
therefore use modifications also where we have fast convergence, if it
can be done with little extra work.

4. The computation of the truncation error bounds does not need
high precision. Some of the bounds contain for instance square roots.
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They can be simplified by the simple observation that 1−x <
√
1− x <

1− x/2 and 1 <
√
1 + x < 1 + x/2 for 0 < x < 1.

5. The computation of the modification wn can generally be done
with less accuracy than wanted for Sn(wn). The value wn is just an
approximation to f (n) anyway.

6. The fixed point modification can be seen as a way to make the
approximants Sn(w) of K(an/1) of type 1 to behave more like the
classical approximants of continued fractions of type 2.
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