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A NOTE ON SOLUTIONS IN L![0,1] TO
HAMMERSTEIN INTEGRAL EQUATIONS

DONAL O’REGAN

ABSTRACT. In this paper we seek solutions in L'[0,1]
to Hammerstein integral equations. Some general existence
principles are derived.

1. Introduction. We present some existence principles for the
Hammerstein integral equation

(1.1) y(t)zg(t)+/0 k(t, $)f (s, y(s)) s ae. ¢ € [0,1].

Throughout we have k : [0,1] x [0,1] - R and f : [0,1] x R — R.
In this paper we are mostly interested in solutions which lie in L]0, 1]
(we will for completeness also discuss the case LP[0,1], 1 < p < 0).
Banas [2, 3] and Emmanuele [8, 9] have examined this type of problem
extensively over the last ten years or so. Their analyses rely on the
notion of measures of weak noncompactness and on the Schauder fixed
point theorem. However, in this paper we will use old compactness
results of Riesz and Komogorov to establish some very general existence
principles (and theory) for (1.1). Our proofs are elementary and
follow classical type arguments. It is worth remarking here also that
essentially the same reasoning would establish existence principles for
Volterra and even Urysohn integral equations.

To conclude the introduction, we gather together some results which
will be used frequently in Section 2. We first state the compactness
criteria of Riesz and Kolmogorov, see [1, 4, 5, 7, 11].

Theorem 1.1 (Riesz). Let Q C LP[0,1], 1 <p < co. If
(i) Q is bounded in LP[0,1],
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(ii) fol |u(t +h) —u(t)|P dt as h — 0 uniformly with respect to u € Q,
then Q is relatively compact in LP[0, 1].

Theorem 1.2 (Kolmogorov). Let Q C LP[0,1], 1 <p < oo. If
(i) Q is bounded in LP[0,1],

(ii) up, — u (convergence in LP[0,1]) as h — 0 uniformly with respect
to u € Q, then 2 is relatively compact in LP|0, 1]; here

t+h
up(t) = %/t u(s) ds.

Remark. In both Theorems 1.1 and 1.2 it is agreed that u € Q is
extended to an interval (a,b) D [0, 1] by letting u(t) = 0 outside [0, 1].

Next we state a nonlinear alternative [6] of Leray-Schauder type
which will be used in Section 2.

Theorem 1.3. Let U be an open subset of a convezr set K in a
Banach space E. Assume 0 € U and that N : U — K is a continuous,
compact map. Then either

(A1) N has a fized point in U, or
(A2) there exists X € (0,1) and u € OU such that u = ANw.

For notational purposes for 1 < p < oo, let L?[0, 1] denote the Banach

space of pth-power integrable functions with |jul/, = (fo1 |u|P dt)'/P.
Also, L*°[0,1] denotes the Banach space of essentially bounded mea-
surable functions together with the essential supremum norm (denoted

by |+ lloo)-

2. Existence. Throughout this section we assume f is a Carathéo-
dory function; by this, we mean

(C1) for almost every t € [0,1], the map z — f(¢,2) is continuous;
(C2) for every z € R the map t — f(t, z) is measurable.

We now state and prove the main result in this paper.
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Theorem 2.1. Suppose the following conditions are satisfied:

(2.1) g € L'[0,1]

(2.2) k:[0,1] x [0,1] — R is measurable with respect

1
to both variables and ||/ |k(t, s)] dt]|oo < 00
0

1

2.3 li
(2.3) fim |

1 t+h
E/ (z,s) — k(t, )| da|| dt =0
t

oo

and

(24) f :[0,1] x R = R is a Carathéodory function, and there exist
a € L'[0,1], a constant b > 0 with |f(t,u)| < a(t) + blu| for almost
every t € [0,1] and all u € R.

In addition, assume there is a constant My, independent of \, with

(2.5) lyllx # Mo
for any solution y (here y € L[0,1]) to
1
260 w0 =A(s0)+ [ ke Gp(e)ds) aere
0
for each \ € (0,1). Then (1.1) has at least one solution in L*[0,1].
Proof. Define the operators
1
K:L'0,1] — L'0,1] by Ku(t) = g(t) + / k(t, )u(s) ds
0
1
Ko:L'0,1] — L'[0,1] by Kou(t) = / k(t,s)u(s)ds
0

and
F:LY0,1] — L'0,1] by Fu(t) = f(t, u(t)).
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A solution to (1.1) is a fixed point of the operator N = KF : L'[0,1] —
L'[0,1]. Also finding a y € L[0,1] which satisfies (2.6), is equivalent
to solving the fixed point problem y = ANy. A well known result of
Krasnoselskii [12] implies (since (2.4) holds) that F' : L'[0,1] — L[0,1]
is continuous and bounded. We now show K : L'[0,1] — L'[0,1] is
continuous and completely continuous. The fact that K is continuous
will follow once we show the linear operator Ko : L'[0,1] — L[0,1] is
continuous. Let u € L0, 1]. Then

/01 /01 |k(t, s)||u(s)|dsdt = /01 |u(5)|/01 Ik(t, s)| dt ds

IR Zn

<l

and so

il <l | [ 1 k(t,s>|dtHw).

Hence Ko : L'[0,1] — L'0,1] (and so K : L'0,1] — L'[0,1]) is
continuous. To show K : L'[0,1] — L'[0,1] is completely continuous,
we apply Theorem 1.2. Let 2 be a bounded subset of L]0, 1], i.e., there
exists M with ||[v|l; < M for all v € Q. Let u € Q. Then

1 1
IKully = / alt) + / K(t, s)u(s) ds

1 1 1
< / lo(t) dt + / / Ikt )] Ju(s)] ds

S/01|g(t)dt+||u||1 /01|k(t’s)|dtHoo
< [t ar| [ ncsa]

dt

and so K () is bounded in L'[0,1]. Next we will show (Ku), — Ku
(convergence in L'[0,1]) as h — 0, uniformly with respect to u € Q.
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To see this, notice

/0 (Ku)n(t) — Ku(t) dt

L /t Ku(z) dx—Ku(t)‘dt

1

dt

J
J

1
h
1
h

t+h
0 /t [Ku(z) — Ku(t) de

</01;/tt+h g(8)] da dt
+/ —/Hh/ Kz, 5) — k{t,5)] ()| ds dr di
/ /Hh (@) — g(t)] d dt
[ [ e (— / e~ k) ) s
1 s

1

t+h
A / |k(z,s) — k(t,s)|dz

/ / g(t)| de dt
E/t |k(x, 5) — k(t, 5)| dz

From [13, Chapter 4], since g € L'[0,1], we have

dt

+ IIUH1

oo

dt.

oo

= 1
h—>0h/ g(t)|dz =0 for a.e. t €]0,1]

and so

(2.7) lim 01 (% /fh l9(2) — g(t)| da:) dt =0,

h—0
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since

// )‘df”dt/ /Igt+:c g(t)| dt dz

< sup [lg(- +5) — g()l-
0<s<h

Now (2.3) and (2.7) imply
(Ku)p, — Ku (convergences in L[0,1]) as h — 0,

uniformly with respect to u € . Consequently, K : L'[0,1] — L[0,1]
is completely continuous. As a result, N = KF : L'[0,1] — L'[0,1] is
continuous and completely continuous. Set

U={ueLY0,1]:|ul < My}, K =E=L0,1].
Now Theorem 1.3 implies that N has a fixed point (notice (A2) in
Theorem 1.3 does not occur since (2.5) holds). o

Next we discuss the case when solutions to (1.1) lie in L?[0, 1], p > 1.

Theorem 2.2. Let1 < p < oo and 1 < q¢ < oo. Suppose the
following conditions are satisfied:

(2.8) g € L?[0,1],

(2.9) k:]0,1] x [0,1] = R is measurable with respect

to both variables

(2.10) /01 (/01 Ik(t, s)|Tds>p/T dt < co;

here r is the conjugate of q and
(2.11) f : [0,1) x R — R is a Carathéodory function and there exists

a € L9[0,1], a constant b > 0 with |f(t,u)| < a(t) + blulP/9 for almost
every t € [0,1] and all u € R.



HAMMERSTEIN INTEGRAL EQUATIONS 171

In addition, assume there is a constant My, independent of X, with

(2.12) 19llp # Mo

for any solution y (here y € LP[0,1]) to (2.6)5 for each X € (0,1). Then
(1.1) has at least one solution in LP[0,1].

Remark. The case ¢ = 1 is discussed in Theorem 2.3. Of course, the
case p = g = 1 was already discussed in Theorem 2.1.

Proof. Let K, Ky : L[0,1] — L?[0,1] and F : LP[0,1] — L?[0,1] be
given as in Theorem 2.1. A solution to (1.1) is a fixed point of the
operator N = KF : LP[0,1] — L”[0,1]. A result of Krasnoselskii [12]
implies F : L?[0,1] — L0, 1] is continuous and bounded. Essentially
the same reasoning as in Theorem 2.1 establishes the result once we

show K : L9]0,1] — LP[0,1] is continuous and completely continuous.
Let u € L?[0,1]. Then

A (/ (e, o) ds )
([ |u<s>st)p/q( A |k(t,s>rds)p/r at
=t [ ([ k(t,s>|rds)w i

and so

1 1 p/T 1/p
||K0U||p§||u|q( / ( / k(t,swds) dt) .

Thus K : L9]0,1] — LP[0,1] is continuous. To show K : L7[0,1] —
L?[0,1] is completely continuous, we apply Theorem 1.1. Let Q be a
bounded subset L?[0,1], i.e., there exists M with ||v|; < M for all
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v € Q. Let u € Q. Then

1
|Kull?, = /
0

1
<or / ()P dt
0

4ot /01 (/01 lke(t, 5)| |u(s)) ds)pdt

1
<or- / 9P dt
0

1 1 p/T
+2P—1||u||g/0 </0 k(t,s)rds) dt.

and so K () is bounded in L?[0,1]. Next we show

p

1
g(t)—}—/0 k(t,s)u(s)ds| dt

1
/|Ku(t+h)—Ku(t)\pdt—>0 as h —0,
0

uniformly with respect to u € 2. To see this, notice

/1 |Ku(t+ h) — Ku(t)|P dt
0
<27t [l h) g
+2P—1/0 (/0 e(t + h, s)—k(t,s)||u(s)|ds> dt

1
<gr1 / gt + 1) — g(&)|? dt
0

1 1 p/T
+2P*1MP/ (/ |k(t + h, 5) k(t,s)rds> dt
0 0

—0 as h—0,

see [14, Chapter 12]. Consequently, K : L?[0,1] — L?[0,1] is com-
pletely continuous. a

Theorem 2.3. Let 1 < p < co. Suppose the following conditions are
satisfied:

(2.13) g € L7[0,1]
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(2.14) k: [0,1] x [0,1] — R is measurable with respect to both variables
and || [, |k(t, 5)|7 dt]|o < o0,

(2.15) lim

1
/ e(t + hy s) — K(t, s)|”dtH ~o,
h—0 0

o0

and

(2.16) f : [0,1] x R — R is a Carathéodory function and there exists
a € L'0,1], a constant b > 0 with |f(t,u)| < a(t) + blulP for almost
every t € [0,1] and all u € R.

In addition, assume there is a constant My, independent of X, with

(2.17) 1yl # Mo

for any solution y to (2.6)x for each A € (0,1). Then (1.1) has at least
one solution in LP[0,1].

Proof. Let K,Ky : L'[0,1] — LP[0,1] and F : LP[0,1] — L*[0,1]
be given as in Theorem 2.1. Essentially the same reasoning as in
Theorem 2.1 establishes the result once we show K : L[0, 1] — LP[0, 1]
is continuous and completely continuous. Let u € L[0,1], and let m
be the conjugate of p. Then

/01 (/ (e, (e ds )
-/ 1 (/ (e, ) ()] ) ds)pdt
<[ [ e oratolas( [ 1 u<s>|ds)p/m at

1 1
= Null™ [ [ e s)PluCe) ds e
0 Jo
1 1
= el [l [ ks deds
0 0

[ k]

/01 k(t,s)V’dtHw,

< Jfalf?™ [ull2

= llully
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and so

1 1/p
||K0u||p§||u||1<H / |k(t,s>"dtH ) .

Thus, K : L'[0,1] — L?[0,1] is continuous. To show K : L'[0,1] —
L?[0,1] is completely continuous, we apply Theorem 1.1. Let £ be a
bounded subset of L[0,1], i.e., there exists M with ||v||; < M for all
v e Let u e Q. Then

1
|Kull? < 201 / ()P dt
0

+2p—1/01 (/01 Ik (t, 5)| u(s)|ds>pdt

1
< gr- / (D) dt
0

cot(| [ 1 |k(t,s>PdtHoo)

1
<gr / ()P dt
0

x| [ o] )

so K () is bounded in L?[0,1]. Also
1
/ \Ku(t +h) — Ku(t)P dt
0
1
<2 [Vge ) - g0 di
0
1 1 P
+ 2”71/ (/ |k(t + h,s) — k(t, s)| |u(s)]| ds) dt
0 0
1
<2t gl ) gloeae
0

1
+2p—1Mp<‘/ k(t+h,s)—k(t,s)|pdtH >
0 oo

Thus .
/|Ku(t+h)fKu(t)\”dt—>0 as h—0,
0
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uniformly with respect to u € 2. Consequently K : L'[0,1] — LP[0, 1]
is completely continuous. u]

We can now use these existence principles to establish existence the-
ory for (1.1). For completeness we give one application of Theorem 2.2.

Theorem 2.4. Let1 < p < oo and 1 < ¢ < co. Suppose (2.8)—(2.11)
hold. In addition, assume

(2.18)

sup I I - 1 1 >1
z€[0,00] \ 271 fo lg|P dt + 22(1171)[(‘/‘0 a? dt)P/q + bPzP/4) fo (fo [k(t, s)|" ds)P/™ dt
holds. Then (1.1) has at least one solution in L0, 1].

Remark. If ¢ > p, then (2.18) is satisfied since the lefthand side of
(2.18) would be infinity.

Remark. If ¢ < p, then (2.18) is again satisfied if b is sufficiently
small.

Proof. Let M > 0 satisfy

(2.19)

M;
2p—1 fol lg|P dt + 22(P—1) [(fo1 a® dt)P/a 4 bp MP/ 9] fol(fol [k(t, s)|™ ds)P/T dt

>1.

Let y € LP[0,1] be any solution of (2.6) for 0 < A < 1. Then, for
almost every t € [0, 1], we have

WOP < 227 g + 2( [ ke i) + bl ds)

and so
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1 1
/ ylPdt < 2”*1/ |g|P dt
0 0
1 1 p
Lot [210—1/ </ |k(t,s)a(s)ds> dt
0 0
1 1 p
27t [ ([ aopluterras) af
0 0
1
§2”‘1/ lgl? dt
0
1 1 p/T
+22(p_1)</ aqu> </ \k(t,s |Tds> dt
0 0
p/q 1 p/r
+22(”‘1)b"</ Iyl”ds> / < |k(t, s Ird8> dt.
0 0

Thus

(2.20)

1
Pdt
[ 1l

<1
op—1 fol \ol? dt + 22(;'—1)[(]‘01 ad dt)P/ 4 bp(fol ly|P dt)p/a] fol(fol [k (¢, s)|™ ds)P/T dt

Let My = Mll/p. Suppose ||y|l, = My. Then (2.20) yields

M
= <1

2p—1 fol lg|P dt + 22(P—1>[(f01 ad dt)P/a 4 bp P/ fol(fol [k(t, s)|” ds)P/T dt

This contradicts (2.19). Thus, any solution y of (2.6) satisfies
llyllp # Mp. Theorem 2.2 implies that (1.1) has a solution y € LP[0, 1].
[}

Remark. 1t is worth noticing in the proof of Theorem 2.4 that we
showed any solution of (2.6), satisfies ||y||l, # Mo. We do not claim
that any solution of (2.6), satisfies ||y, < Mj.
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Finally we would like to remark that we could also obtain new results
for the general operator equation

(2.21) y(t) = Ny(t) ae tel0,1].

For completeness we state the analogue of Theorem 2.1 in this situation
(the proof is immediate).

Theorem 2.4. Suppose
(2.22) N :L'0,1] — L'[0,1]

s continuous and completely continuous. In addition, assume there is
a constant My, independent of \, with

lylls # Mo

for any solution y (here y € L[0,1]) to
y(t) = ANy(t) a.e te€]0,1]

for each X € (0,1). Then (2.21) has at least one solution in L[0,1].
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