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A QUADRATURE METHOD FOR THE
CAUCHY SINGULAR INTEGRAL EQUATIONS

YOUNGMOK JEON

ABSTRACT. We consider a quadrature method for the
Cauchy singular integral equation (CSIE):

aatt) + 2o [ Lot as = 50
™ 0 s —

with the index 0 and —1. The quadrature method is based
on a mesh grading transformation followed by the rectangular
rule. Our method is universal in the sense that the method is
barely dependent on the coefficients (a,b). A complete analy-
sis is given by the use of localization and the Mellin transform
technique. This method is also applicable to the Cauchy sin-
gular integral equation with nonconstant coefficients. For this
case, only numerical results are presented.

1. Introduction. We consider the Cauchy singular integral equa-
tions (CSIE)

(1.1)  Coh(t) := (al + bS)o(t) = ad(t) + %p.v. /01 % ds = f(t)

with @ > 0, b # 0 real constants. We also assume that a? + b2 =1 (a
normalized CSIE) for convenience. If a = 0, it is of the first kind, and
if a # 0, it is of the second kind. In this paper we concentrate on the
analysis of the second kind Cauchy integral equation.

It is known that the solution of (1.1) with a smooth f has the endpoint
singularities:
(1.2) o(t) =t*(1 — t)Ph(t), —1<a,f<1,
where
O(:’Yo+M1, B:_’}/O+M27

(1.3) 1 a—bi tan=!(b/a

Voz—rlog ;= — (/)

e a—+ b T
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for some integers My, My so that v = —(a+ ) = —(M1 +Mz) = —1,0,
or 1 [8, 13]. The integer v is the index. For the index 0 solution, there
can be two classes: that is, My = M3 = 0 (the natural airfoil solution)
or —M; = My = vo/|v0]-

We are interested in the natural airfoil solution. We also consider the
index —1 problem. The index —1 solution satisfies M; = 0, Ms =1
when 9 > 0 or M; =1, My = 0 when vy < 0. The index —1 solution
is obtained when f satisfies the consistency condition,

1 f(t
(1.4) /0 ﬁ =0.

So the index —1 solution can be considered as an index 0 solution with
a special f. We also introduce an important result from [13]:

For a > 0,C : Ls[0,1] — L3]0, 1]

1.5
(1.5) is a Fredholm integral operator of index 0.

This will be used in proving Theorem 5.2 and then Theorem 3.1 that
appear in later sections.

Let us consider a transformation:

vi(z)

(1.6) w(z) = v(z)? +ve(1 —z)’

q>2

with v(z) = (1/2 —1/q)(2z — 1)3 + 1/q(2x — 1) + 1/2. This parameter-
ization is considered in [10]. We call ¢ the order of the mesh grading
or the mesh grading parameter. The transformation, w : [0,1] — [0, 1]
is bijective and has the following properties:

1. w(z) =294+ 0(z?)asz - 0and w(z) =1 (1 - z)9+O0((1
) asz — 1,

2. w'(1/2) = 2 so that w(z) = 2z away from 0 and 1.

With a change of variables, ¢ = w(z) and s = w(y) in (1.1), and
multiplying (1.1) by the derivative w’(z), we have

Q3 (r) — ad E v ' w'(z) % = f(x
(L) i) = adle) + Zpiv. [ i) dy =



CAUCHY SINGULAR INTEGRAL EQUATIONS 427

with $(2) 1= w'(2)p(w(x)) and f(z) := w () f(w(x)).

But, unfortunately, (1.7) is not uniquely solvable in the Lo-space, but
it is uniquely solvable in a weighted Ls-space. We introduce the weight
function

K(z) = [z(1 - )]
The number A is the weight parameter in this article. Let
é(z)
1.8 =—".
(18) vie) = 03
Dividing equation (1.7) by &(z), we have

9(e) = ap(e) + L., [ 10 @)
(L.9) Ci(z) == ay( )+7rp' '/0 k(z) w(y) — w(z)

where g(z) = f(z)/k(z). Now (1.9) is uniquely solvable for ¢ if the
mesh grading parameter g and the weight parameter \ satisfies

o 2A+ )

~ 2tan™'([b|/|al)

(see Theorem 5.2), and then the solution 1 satisfies the following
regularity:

(1.11) Y(x) = 2@ D=2 (1 — g)Patla=D=Ap (g,

Y(y) dy = g(x)

(1.10) A<g<q*

where h is a smooth function on [0,1]. Therefore, ¢ is a smooth
1-periodic function if mesh grading parameter ¢ is sufficiently large,
and the trigonometric approximation for 1) may give a well-convergent
numerical scheme.

Let us consider a quadrature method for equation (1.9). Using
the subtraction of a singularity, followed by the rectangular rule, we
consider a fully discrete approximation for C{:

Yn(kh)

— w(z)

. _ b N k(kh) w'(z)
Can¥n(@) := athp(x) + ;h kZ:O k(z) w(kh)

(1.12) + %¢h(m)[log <1;(7“;()m))
L3 ]
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where h = 1/N and v, is a trigonometric function of degree .
Collocating (1.12) at z = kh + &h with 0 < £ < 1, we have an N x N
matrix system. If it is nonsingular, we can solve for {¢y,(kh)}n_ . In
collocating (1.12), we need to evaluate v, at points other than node
points, and it will be evaluated by the use of the Dirichlet kernel.

(1.13) Un(@) = h S D(a, kh)n(kh),
k=0

=

where

sin(Nw(z — y))

sn(r(z —3))
sin(Nw(z — y))

sin(m(z — y))

N odd,
D(z,y) =

cos(m(z — y)) N even.

Once 9y, is solved, ¢p(z) = A(z)¢n(x) will be an approximate solution
of (1.7).

For the second kind of CSIE, the Chebyshev or the Jacobi polynomials
are generally used for the approximation of density functions. When a
fully discrete method is considered, the Gauss quadrature or Lobatto
quadrature methods are used for the approximation of integrals in
most cases [8, 16]. But the singularity in (1.2) varies according
to the coefficients (a,b). Therefore, the quadrature method and the
trial function space need to cope with these changes to have a well
convergence numerical scheme. But generating the Jacobi polynomial
and the Gaussian quadrature method for the weight with arbitrary
(a, B) may be costly. So, sometimes the Chebyshev polynomial with
the Lobatto quadrature is used for the general second kind equation
without regard to («,3) [16].

Our method is a universal method in the sense that it is little
dependent on (a,b). Moreover, it solves the problems of the indices
0 and —1 at the same time. The mesh grading transformation methods
have been popular recently for the boundary integral equations of
potential problems [10,9,7]. The solution of potential problems (the
Symm’s integral equation) has a similar regularity to that in (1.2) with
v = 0, and it is our motivation. A quadrature method with the mesh
grading transformation for the Cauchy singular integral equation has
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been used before in [14], in which the explicit singular representation
of the solution is used for a weight, and the Simpson rule is used for the
approximation of integral operators. Our method has different flavors
with them in that we use a general weight (reduce the dependence
on (a,b)), and we use the rectangular rule for the integral operator
approximation, which results in a good convergence for a certain class
of integral operators. Our quadrature method is rather similar to that
of [15], in which they analyze the e-collocation for the CSIE on closed
curves.

2. Preliminary. We introduce Sobolev spaces and a collocation
projection Pp,. Let H® be the Sobolev space of periodic functions on
[0,1] of order s with the norm || -||s. Then f € H*® if and only if

Z |m|25|fA(m)‘2 < 00, f(q;) = Z f(m)€27rimz‘
meZ meZ

Note that H® = L[0,1]. We denote Z* = Z/{0}. Let T" be the space
of trigonometric functions of dimension . Let

Ap={m:-N/2<m < N/2-1 for even N},

. {m: —[N/2] <m < [N/2] for odd N},

where [z] is the greatest integer not greater than z, and let A} =
Ay /{0}. Then '
T" := span {€*™™" : m € Ap}.

For simplicity of notation, we denote @, () := e*7me,
Define a collocation projection Py ¢ : H® — Th as
(2.1) (Pnef)(kh+&h) = f(kh+&R), 0<&<1, k=0,...,N—-1

for s > 1/2 because H®, s > 1/2, is compactly embedded in the
continuous periodic function space C,[0,1]. From here on, we denote
P, := P,¢ unless stated otherwise. Then we have the following
standard convergence result for Pj,.

Lemma 2.1 [15]. Assume f € H* witht > 1/2 and 0 < s <t. Then
If = Puflls < CR 7| f]]s-
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For an integral operator,

A(z) = / Az, 9)8(y) dy,

define a rectangular approximation Ay as
N—
(2.2) Ané(x Z (z,kh)$

We introduce a useful result for the Hilbert transform H:

Ho(z) = p.v. / cot(m(y — ))é(y) dy.

Lemma 2.2. For ¢ € T", Hyo — dHn (1) = Ho.

Proof. By a simple calculation,

cot(m(y —z)) =1

where ¢,,(z) = €?™™. Then for m > 0,
HNOm — dmHN(1) =h Z cot(m(kh — 2))(¢m(kh) — m(z))

_ hzzi e L 6m()(om (b — 2) = 1
=1i¢ m(x)

—1
qul (kh—2) + 1][pm_1(kh—z) + - -- +1]
=0

=1 m(x)
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since h Zgz_ol ¢m(kh) =1if m =0 (mod N) and 0 otherwise. By the
same way for m < 0,

N-1
HNPm — dmHn(1) =h ) cot(m(kh — z))(¢m(kh) — ¢m())
k=0
NS 14 ¢y (kh — )
=1th 2 1—¢ 1(kh — m) ¢m(x)(¢m(kh - x) - l)
= 7'L¢m(m)h
N-1
Y [poa(kh—x) + [gmia (kh—2) + -+ 1]
k=0
= —idm ().
Then the lemma follows. u]

We introduce the singular integral operators:

ety = [ (220 W oty )t

23 () () — w(e)
= ' 1 —w,(y) — CO — X
W) = [ (3ot ooty 0) ol

Using Lemma 2.2, equations (1.9) and (1.12) can be written in symbolic
form:

(2.4) Cip = ayp + bHY + bLY = g,

Cx n¥n = atbn + bHpn + LN YR + b

29 VO W)~ e T

Then the collocation method for (2.5) is: find v, € T" such that

PpCS on = ap, + bHYp + bPy Ly

(2.6)
+ bPp{tn - (W(1) = Wn (1))} = Phg.
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Unfortunately, the collocation method (2.6) is unstable, and we need
to modify (2.6) around endpoints 0 and 1. Let us introduce a truncation
operator T, such that

(2.7) (Tov)(z) = {v(a:) zer,l—r] ,

0 otherwise

and a smooth truncation function S, such that 0 < S,.(z) <1 and

{1 z€lr,1—r],

(28) 5@ =10 ze /2,1 —r/2],

where its derivatives satisfy
1
| Sﬁp)| <C—
rp

for any integer p and a constant C' independent of p.
Our modified method is: find 9, € T" such that

PpCS y ien ¥ := atpp + bHYp + DPL LN Ti-pthn

(2.9)
+ bPh{(Si*h -y, - (Wl — WNl)} = Pyg.

Here i* is an integer independent of h, and it denotes the number of
subintervals cut off. In fact, i* is needed only for theoretical purposes,
and in most cases i* = 0 is sufficient for stability in practice.

3. Stability. In this section we prove the stability of our numerical
system equation (2.9). For stability analysis we introduce the following
stability result for the operator:

(3.1) Cy ¥ = (al + bH + bLT, ).

Theorem 3.1. There is an ro > 0 such that
(3.2) [|(al +bH + LT )Y|lo > Cl|¥]lo

for all0 <r <rg, ¥ € Hy and C > 0 independent of r.
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The proof of Theorem 3.1 will be given in Section 5.

In this section, assuming Theorem 3.1, we prove that for a properly
chosen integer i* > 0 independent of h,

(3.3) ||(al + bH + bPL,LNT+p)0n
+ bPu[Sivn - ¥n - W1 =Wn1)]llo = Cllibnllo
for ¢, € T" and C > 0 independent of h.

For the proof of (3.3), we introduce a class of integral operators where
the operators £ and W belong. The integral operator space Z is a set
of singular integral operators that satisfy the following.

(A1)

(3.4) (Mg) () = / M(z,9)8(y) dy,

where the kernel M (z,y) is a 1-periodic function in [0, 1] x [0, 1] except
at four corners of [0,1] x [0, 1].

(A2) Let

(85) Mijuid(z) = / [2(1 - 2)]*y(1 — )| DLDI M (2, ) 6(y) dy

with k 4+ 1 = i + j where k,l € R" and i,j € Z*. Then M, ;i is a
bounded operator on H°.

Here D. := o’ - /0x' and D, := 9" - /9y".
It is not difficult to see that the operators £ and W in (2.3) satisfy
(A1) and (A2), and we refer to the Appendix.

Theorem 3.2. Assume that the integral operator M satisfies the
assumptions (A1) and (A2). For an arbitrary 6 > 0, there is an integer
t* > 0 independent of h such that

(3.6) (I = Po)MTi-pllo < 8l|6llo, ¢ € H,

(3.7) (1 = PO)MNTingllo < 8llgllo, ¢ €T,
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(3)
(3.8) | PulSi-n - ¢ - W1 = WnD)lllo < 8llgllo, o €T

Proof of (1).
[(MTp, = PoMTi+1)llo < ChP || DP MT3p|[o

for some integer p > 1. Now

1—i*h
IDP(MTn)lo = \ [ peatteet) dy

h 0
1-i*h
<C@h) P . [y(1 = y)IPIDEM (2, y)¢(y)| dy
i* 0
c
(ih)
Then o
CR?||DP(MTi-n9)lfo < Wl\qﬁllo
< 6l[9llo
for sufficiently large i*. O

Proof of (2). For an integer p > 1,
/(I = Po)MnTi-n¢llo < ChP||DP MNTi-n)o-

By the error formula for the rectangular rule, and using the inverse
estimate on T", that is, h®||¢||s < ||#||o for ¢ € T",

|DP MT;-p¢ — DP M Tixnéllo
1—i*h 8p+]_
8x1’6y

R g M (2, y)
OxP Oyt

<Ch

M(z ,y)aﬁ(y)]‘dy

0

o(y)t | dy

0

1
1 (1-1)
SChZ(*h)P‘HH(ﬁ HO
=

1
CZ +,IIaﬁHo
l:O
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The proof of (1) and the above inequality give us (2) immediately for
all sufficiently large i*. O

Proof of (3). For an integer s > 1,
|[Sixn-¢- (Wl = Wn1L) = Pu[Si-n - ¢ - VL = Wn1)][lo

<ChSZ|| *h¢ W~ ]-st,j“(Wl—WNl)(S—j)”O
<0hSZII 1 ®) Dol lwsm g (WL = WD) =9,

where w;(z) = [z(1 — z)]?. Now, by the rectangular rule error formula,

(1 — gy W (@)

1
. _ ()
i (W1 — Wy1)@)| < Ch/o o

< Ch.

Using the inverse estimate on T" and the property of S;-p,

N C
1(Sin) Vw2 4llo < =i 1l

Then
[[Si=n - ¢+ W1 = Wn1) — Pyp[Sin-¢- (Wl = WnD]llo

hs—l—l

< Zc @yl

< =
< 219l

for all sufficiently large i*.

To complete the proof, we show that

b
[Ssen - - W1 =Wy 1)||o < §||¢H0-
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For some integer s > 1,

1ien+ 6+ VL= WaL)llo < [1glloSien - w; s - VT = Wi 1)l
hS
<(C—7— .
< C el 9l

Now (3) is immediate. O

We introduce theorems that trace the collectively compact operator
theory [1, 3, 11].

Theorem 3.3. Under the same assumption as in Theorem 3.2, for
an arbitrary § > 0 there is an integer i* > 0 independent of h such that

(1)

(3.9) [(MTp, — MNTien) MTiengllo < 0l16llo, ¢ € H°

(2)

(3.10)  [|((MTsp, — MNTip)MnNTi<ndllo < 6||0]o, ¢ €T

Proof of (1). By the error formula for the rectangular rule,
(MTe = MNTi- ) MT i1

1—i*h N—i*—1
= [ M@ dyh Y Ml ke, b= M

k=i*

B <%> (93 M (z,y) MTi-no(y)] dy
- ¥
h

()
) 8 M (z,y) /”*h 8 I M(y, 2)

oy ¢(2) dz dy,

ivh 6y1—j
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where B is a locally defined polynomial (Peano kernel). Then

|(MTiep = MN Ty, ) MTi 10| |0

Ch | [* |09 M (z y)‘
< - 1y | ZEEY)
= n 2|, [v(1—y) By

' 01T M (y, 2)
. 1—g)t7 Al
[ - T o) s |

C

< Zlgllo-

Proof of (2). By the same way as the above,

(MTiep, — MNTse ) )MNTi @

_C’hZ/l o ( )81\2?@,)

N—i*—
8= M (y, kh)
|k 7_7¢(kh)dy]
Now
N—i*—1 .
9= M (y, kh)
h —— 1 ¢(kh)
k=i Oy'~
1-i*h a1—j
0" I M(y, 2)
:/i*h Sy #(z) dz

L=i"h N 92 M (y, 2)é(2)]
B h/i*h b <E> Oy 702 dz

1—-i*h 91—
_ 0 I M(y, z)
B /i*h Oy*= #lz) dz

e 32*"M(y, 2)

—h/l —i*h <h> o ;;\f(]y, )¢(z)dz_
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By a similar way to the above proof with the inverse estimate on T,
we have the proof of (2). O

As a result of Theorem 3.2 with the stability estimate (3.2),
(3.11) al + bH + bP LTy, : H® —s H°

is invertible for all sufficiently small A > 0 and sufficiently large i* fixed,
and the inverse is uniformly bounded on h.

In the next corollary, we will show one of our main results, the
stability of the operator {al + bH + bP,LT+p + bPy(Sin(:) - (W1 —
Wn1))} on T". In the proof, we need Theorems 3.2 and 3.3 with the
stability estimate (3.11) and the perturbation theorem in [3, 10].

Corollary 3.4. For a sufficiently large i*,
(3.12) al 4 bH 4 bPyLyTip + bPL[Ss-n(-) - W1 = Wy1)] : T" — T"

is tnwvertible, and the inverse is uniformly bounded on h.

Proof. First we will prove that the operator
al +bH +bPyLyTi-p : T — T"

is invertible, and the inverse is uniformly bounded on h. Then by the
property (3) of Theorem 3.2,

|Pn(Sien - ¢ - (W1 = Wn1))[lo < 6l[0l]o

for arbitrary § > 0, and we have the theorem immediately.

Let
G :=al +bH.

Then G is invertible (see Section 5), and the inverse is bounded. Then
al +bH +bPLLnNTysp, = G(I + bGilphﬁNTi*h), .

Now we show that I + bG~'P,LnTi-p is invertible, and the inverse is
uniformly bounded for all sufficiently small hA.
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From (3.11), we see that (I + bG~1P,LT;+p) is invertible, and the
inverse is uniformly bounded. Define

By, :=1—b(I +bG  P,LTyp) 'GPy Ly Ty
Then simple calculation shows that
(3.13) Bi(I +bG P LnTyep) =1 — Sh,
where

Sp =02 (I + G P LTyp) Y (G 1Py LNTop
— G 'PLT)G ' PLLN Ty,

Note that the operator G~'L also satisfies (Al) and (A2). Using
Theorem 3.3,

1Sk¢llo < CI(G™ LT — G LTi-p) PuG ™ LTy llo
< O(IG™ LaTsen = G LTyon) G~ LT llo
+ (G LNTin — G LTn) (I = P)G ™ LN Ti-nd) o)
< 6/[9llo

for arbitrary § > 0 as h — 0. Since the righthand side of (3.13) is
invertible for § < 1 on T", therefore (I + P,LnTi-y) is invertible on
T" and the inverse is bounded by

1B lo

I+ PG LNTien) Mo < C— b
H( h N h) HO 1_|‘Sh||0

4. Convergence analysis. The next theorem is the main result of
this paper. Let us introduce a space of functions. For any p € Z*,

(41)  SPi={¢: 9D (2) = [z(1 — )P T;(x), ¥; € H}

and the norm of S? is defined as

P
(4.2) 16]se =Y 1W;llo-
j=0
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It is trivially identified that SP C H?, and for f € SP, ||fllp < ||fl|s».

Theorem 4.1. Suppose @) is the solution of equation (2.4) and
Y € SP for p > 1. Then (2.9) is uniquely solvable, and we have an
error estimate

¥ — ¥nllo < CRP||9]|se.

Proof. The unique solvability is obtained from Corollary 3.4. To look
at the error estimate, write (2.9) using (2.4) for substitution of g.

[aI + bH + bPhﬁNT’i*h]wh + bPh[Si*h . ’(/}h . (W]. — WN].)]
= [aPy, + bPyH + bPLL]3.

Let 1 be a certain element in 7. The above equation can be written

C PG aen(n — ¥n) = AP — ) + BB )
+ 0Py [LY — LnTi-pPn]
— bPy[Sinn - ¥ - (W1 = Wi1)].
Then, even though P} is not bounded, roughly speaking,
1n = on)llo < CUIE — en)llo + 18 — LxTiontbwlo
+[|Sien - ¥ - WL = Wn1)lo)
= Q1+ Q2+ Qs.
Let ¢n = P00 (see Section 2 for the definition of Py o).
For @1, by Lemma 2.1,

[ —¥nllo < CRP[|9]lp, € HP.

For Q2, since ¥n(z) = ¥(z) at node points, by the nature of the
quadrature method we have
LY — LNTin¥n = LYY — LnTi=ntp.
Then
1LY = LnTi=ntpllo < [[(£ = Ln)Pllo + [[(£n = L£)(¢ = Tinth)llo
+ 1L = Ti-nt)llo
<P+ P+ CllY — Ti=ntllo
< Py + P>+ ChP|[¢||s».
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Using the Euler-Maclaurin formula [12] and 3 € SP,

= [[(£ = Ln)¢Pllo < CRP

/0 DL )]l dy |

p 1
<owy / DLl )l dy |

p 1
<cwd-|| [ IDyLe st - )bl dy
0 0

< CR?||Y]|se-

Py = ||(L— LN)(® — Ti=nt)llo

i*—1

H/ y)dy — Y L(z,kh)y(kh)

k=0

0
N-1

/l_v*hL(x V) dy— > Lz, kh)p(kh)

+ ‘
k=N—i*

0
Let us look only at

i*—1

H/ (z, )¢ (y) dy — Z L(z, kh)y(kh)

0
i*—1

H / y)dy — Y Lz, kh)y (kh)

k=0
< ChH / 1D, L Wl dy

0

0

h
|D! Lz, y)» "V (y)| dy

1

< O3 hEnP il
=0

< Ol ls».

h
| Dy Lz, y)y? " i(y)| dy

441

0
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Then
Q2 < ChP[|Y||s».

For @3, with wy(z) = [z(1 — 2)]?,

|[Sixn - ¥n - W(1) =W (1))]]lo
<||Sisntpnw, b - wp(W(1) = Wi (1))]]o
< Cllwp,(W(1) =W (1) loo|ISi-nwy, 9w 1o
< CRP||¢]|se,

since

[|wp,(W1 — Wy 1)||oo < ChP

and L L
I1Sinw, " ¥nllo < ISisnw, " (¥ — ¥)llo

+[1Sinwy, "9l
hP
< Cwlld)llp +Cl[Ylls»
< Cl[9]]se-
Adding Ql,Qz and Qg,

[[¥n — ¥nllo < CRP||4][sw.
By the triangle inequality,

l1Yn = ¥llo < ||n — ¥Unllo + Y8 — ¥llo
< ChP||Y]|ge- u]

Remark 1. For p € ZT and 0 < o < 1, define
(43) 57 i={¢: 9V (2) = [x(1 - )P I¢(x), ¢¥; € H*}.

Then using the generalized Euler-Maclaurin formula [12], we may be
able to extend the convergence result in Theorem 4.1 as follows:

(4.4) 1% = ¥nllo < CRP.
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5. Proof of Theorem 3.1. Let us start localization of the operator
C{. Define smooth cutoff functions, X and X’ such that supp (X) C [0, €]
and X = 1 on [0,&1] where 0 < &1 <e < 1/2 and X'(z) = x(1 —z). It
is easy to see that

1

— —cotm(y —z) = lK1(£l7,y)‘¥‘E1(9Uay)
TY—% T
(5.1) 1 k() w'(z) B 1 1

1
() w) —w@) ry—z  ale@y+E(ny)

where
! 1 ! 1
Ka(wy) = X@X W) g3z ~ X @XW
Kao) = X)) | = - L
(5.2) _ )AL (] — )
x| - e
]
-y -Q-a)]

and F; and E5 are smooth. Then

1 k(y) w'(z

1
7 k(z) w(y) = cot(m(y — z)) + ;Kl (z,y)

w(z)
+ 2 Ka(e,y) + Bu(e,y) + Bala,),

and (2.4) can be written as follows:

(5.3) Cip = (al +bH+VK+E)p =g,

where
Ho(z) = pov. / cot(m(y — z))(y) dy
Ko(z) = / (Kv(2yy) + Ka(z,y))6(y) dy

™

1
E(x) = / (i (2,y) + Es(e,9))9(y) dy.
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Here H is the Hilbert transform and the operator £ is compact. From
here on, £ represents a generic compact operator, and it can be a
different compact operator for each occasion.

Note that
(al +bH)(al —bH) =17

since a®? +b%> =1 and HH = —I + J, where

1
Jé= /0 b(y) dy.

Then (al 4+ bH) ! exists, and

(al +bH) ' = (al —bH)(I —b*T)"*
= (al —bH) + &,
& = (al —bH)(*T)(I - *T)~L.

We multiply (5.3) by (al +bH)~! to obtain

(5.4) (I+B+&)¢ =4,
where
B:=b(al — bH)K
(5.5) £ :=bEK + (al — bH)E + EE
G:= (al +bH)'g.

Now we seek the local representation of the operator B in terms of
Mellin operators. Firstly, we introduce a set of Mellin convolution
operators that resemble the local behavior of the operator K. Define

Go(e) = o | N G(f> o) g,

™ Yy Y
(56) Gtoa) = o [~ 1 (2) gy

Ro(w) = Lp.v. /OOO R(%) @ dy

3
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where

1 arn  qTAE 1
G(t) = Gl =G  RO=7

The operator G is the well-known Cauchy singular integral operator on
[0,00]. Then, in view of (5.1), (5.2) and (5.3), K can be expressed in
terms of Mellin’s convolution operators defined above.

K = XG4 — G)X + X[~ (G2 — §)IX + XRX' — X'Ry
_ L [Gx 9] R T
60 [T ]

=1I(G) - H)1",

where the matrices of Mellin operators, 7 and GZ\ are defined as

719 R —¢_[GY 0
(5.8) H._[ﬁ _g}, gA_[O _gﬂ
and
IT = (X, X').

Here C;;I\ and G are obtained from GY and G by the change of variables
z—1—zandy—1-—y, R from R by the change of variables z — =z,
y = 1 —y and R from R by the change of variables z — 1 — z and
y—y.

In a similar way (see Appendix B),

B =b(al — bH)K

al —bG bR G1 —g] R
= Hb = ~ = ~ ~ H g
(5.9) —bR ol + bg] [ R o—gi-¢)
= IIb(al — bH)(Gs — H)II
=TIIBII + &,

where

(5.10) B = b(al — bH)(G5, — H).



446 Y. JEON

Using (5.9), write (5.4) as

(5.11) (I+B+E&¢=(I+UBI+E)¢=3

Lemma 5.1. Assume |a| — |b| cot((2A + 1)7/(2q)) # O that implies

2\ + 1)m

17 Stan1(b)/[a))’

Then
(I + B) : L3[0,00) @ L3[0,00) — L3[0,00) ® L[0, 00)

is an invertible Fredholm operator.

Proof. We prove the lemma by showing that the symbol of (I + B) is
nonsingular. First, note that the symbols 7, G5 are (see Appendix A)

W= | i) o |

and

—7 _ [cot(m(z — A —1)/q) 0
o(Gy) = [ 0 ! COt(?T(Z/\l)/Q)]

with 2 = 1/2 + 4y, y € R. Using the fact that a®> + b*> = 1 and
o(H)? = Diag(—1, 1), we have
o(I+B)=1+bla—bo(H))(o (g)\) —0o(H))
= (aI — bo(H))(al + b0 (GY)).
It is clear that
det[(al — bo(H))] # 0

since

(al —ba(H))(al +bo(H)) = I.
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Now let us look at (al 4+ bo(Gy)). By a simple calculation,

(aI + bo(G})) = Diag (a 4 beot(w(z — A — 1)/q),
a—bceot(r(z—A—-1)/q)).

Because
cot(—(2A+1)mw/(2q) + iry/q)
_ - sin((2A+1)7/(2q)) cos((2A+1)7/(2q)) — isinh(7y/q) cosh(my/q)
cosh?(my/q) — cos2((2\ + 1)7/(2q))
=w(y) +ip(y), YER,

we will show that a + bw(y) and u(y) are not zero simultaneously.
Since p(y) = 0 only for y = 0, we must have a + bw(0) # 0 to have
det[(al + bo(G5))] # 0. Since

2 1
a+bw(0) =a+bcot (W),
q

we have a & bw(0) # 0 from the assumption. O

Theorem 5.2. Suppose A\ and q satisfy (1.10). The operator,
Cy : Ly[0,1] — L2[0,1] is an invertible Fredholm operator of index
0.

Proof. We prove the theorem in the following way.

Step 1. C{ is a Fredholm operator from L[0,1] to itself.

Step 2. C{ is homotopic to C of (1.1); then ind (C{) = ind (C) = 0.
Step 3. null (C}) = {0}.

Step 1. If \ and ¢ satisfy (1.10), we have

2 4+ 1)w
A< _ 7
=4 Stan 1(b|/Ja])

By Lemma 5.1, (I +B) is invertible, and let (I +F) = (I+B) 1. Define

I+ F:=I+0F0"%.



448 Y. JEON

Simple calculation shows that (I + F) is a left and right regularizer of
I+B+¢&. Then I+ B+E is a Fredholm operator. For details, see [13].
Since ~

Cy = (al +bH)(I+B+E),

and (al + bH) is invertible on L[0,1], C{ is a Fredholm operator on
L,[0,1].

Step 2. To prove ind (C{) = 0, we will show that C{ is homotopic to
C! = C. Define a homotopy map F : L[0,1] x [0,1] — L2[0,1] as

F(g,t) = C)¢

where A(t) = A, and ¢(t) = 1+ (¢ — 1)t. F is continuous for each
variable, and F(-,0) = C and F(-,1) = Cj. Moreover, CZ\E% is a
Fredholm operator because

At) <q(t)=(1-t)+at < “‘t)*#@lﬁ/ﬂap
@AY
< tan () /Ja]) ”(1 2tan1<b|/|a>>
A
< Ztan-1(bl/la])"

and by following Step 1. By [13, Chapter 1] and (1.5) in Section 1,
ind (C}) = ind (C) = 0.

Step 3. Let us prove null (C{) = 0. Suppose ¢ € L,[0,1] is a solution
of C{y = 0. then, with w in (1.6)

U(t) = [w ()L —w (O P (w™ (1) (™) ()

is a solution of C¥ = 0. But, using the Jacobi polynomial expansion
formula for the Cauchy singular integral equation [8, page 260], we can
see that W(t) = Ct*(1 — t)? for some constant C' where

(aaﬁ) = (71+705770) or (aaﬂ) = (770571_’_70))
70 = tan~ ' (|bl/|al) /7.
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Using that
wt(t) = [t -] Y0(), () = [t -] ()
with continuous functions v and u, we have

U(t) = (1 — )P - M /a2 a=D/a=a _ pMa=1/2a=D/a=Bp¢),

where
h(t) = Y(w ™ () (w 1) (H)(t) € L0, 1]

and some continuous function 4. Then we must have

tMa1/2(a=N)/amaq _ pyMa=1/2a=D/a=Bp ) = ¢,

or, equivalently,

h(t))C =t~ Mart/2(a=D/ataq _ py=Aa+1/2(a=D/a+b ¢ 1,]0,1].

Without loss of generality, assume (o, 8) = (—1+70, —0). Then, since
Y < (2XA +1)/(2q) from (1.10),

A, lg-1 L2411
A leg-1 1 1
7 2 ¢ 27 Toq TS TY

which contradict h(t)/C € Lz[0,1]. Then C =0 and so ¥ = 0. o

Conjecture 1. Under the same assumption as in Theorem 5.2, the
operator (I + B) is strongly elliptic, that is,

(5.12) Re(M(I + B)|®, ®)) > C(®, ®)
for some constant 2 x 2 matriz operator M, depending on a,b,q, A

and some constant C > 0, where ® € L3[0,00) x L3[0,00) and (-,-)
represents the usual inner product such that

((f1, f2), (91,92)) = /0°°(f1g1 + f2g2) dx.
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The conjecture is partially justified in Remark 2. As a result of
Conjecture 1, we have the Garding inequality for the operator I+B+¢&,
that is, with the operator N induced by M,

(5.13) NI +B+E)¢p,¢) > C(p,9) — (£'¢,0)

for some compact operator £ and constant C' > 0. Here (-,-) is the
usual inner product in Ly[0, 1].

The Garding inequality with Theorem 5.2 implies that the Galerkin
method, i.e., find ¢ € Ker (I —T;.) C L2[0,1] for any 0 < r < 1/2, such
that

(5.14) (I+B+E)(p)=T,f

where f € L[0, 1] is uniquely solvable, and the stability of the Galerkin
method is independent of r. Then T,.(I + B + £)T;. is invertible, and
the inverse is uniformly bounded on r. Since

(5.15) (I + (B+&E)T))Ly0.1]

:[TT(I+B+£)TT 0
T |I-T)B+ET I

)
:|Ker (1-T,)xKer T,

and the inverse satisfies

(5.16) (I+ (B+&)T,))~ "
_ [ [T.(I+B+&)T, ]t 0}

(I -T)B+ETT,(I+B+&E)T,) ™ I
we have

(5.17) I+ (B+E&)T, || > C.

Because (al 4+ bH + bLT,) = (al + bH)(I + (B + €)T,), the proof of
Theorem 3.1 is complete.

Remark 2. Conjecture 1 is tested by numerical experiments. Here
our numerical procedure is explained. By Parseval equality, and using
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an elementary matrix algebra,

Re (M[I + b(aIbH)(GL — H)|®, @)

:% n 21/2Re<{Mo<I+b<aI—bﬁ>@i—ﬁ))}o@),a@dm

1 L)L) o o o
-5 (—2 (@), (@)) dl-),

where
L := Mo(I + b(al — bH)(G: — H)),

L* is a complex conjugate transpose of the matrix L and (-, -) is a usual
inner product in C2. We define an inequality between matrices.

A > 0 if and only if (AX, X) > 0.

To prove the conjecture, we need to show that L > 0 for some constant
matrix M. Let

cot(m(z = A= 1)/q) = w(y) + in(y),

cot(mz) = tu(y), 1/sin(mz)=v(y).

Then w(y) and p(y) are as in the proof of Lemma 5.1, and

sinh(7y) 1

u(y) = —m’ (y) =

cosh(rmy)’
Simple calculation shows

[o(1 +blal — bH)(G\ — H))

]
= [(aI — bo(H))(al +bo(G3))]
(

:[ (a+bw( ) + bPu(y)u(y) —bu(y)(a — bw(y)) }
bu(y)(a + bw(y)) a(a*bW(y))er2 (y)u(y)
Iy [abu(y)—bu(y)(a+bw(y)) “v(y)u(y) }
v*v(y)u(y) —abpu(y )+bU( )(a — bw(y))

Choose

M_[_ab 2]



452 Y. JEON

Then
P(y) = 2
(a®+b%v(y))(a+bw(y))+ab’u(y)u(y)  —ab?(1—v(y))w(y)—ib*u(y)w(y)

—ab?(1-v(y))w(y) +ib*u(y)w(u)  (a®+b%0(y))(a—bw(y))+ab®u(y)u(y) |

The matrix P(y) is Hermitian. Therefore, it is real-diagonalizable,
and eigenvalues are positive if det(P(y)) > 0 for all y € R because
P(+o0) = al. Numerically, we observed that det(P(y)) > 0 for the
choices of (a,b) and (g, \) at which the numerical results, Examples 1
and 2 in Section 6, are obtained.

6. Numerical experiments. We do numerical experiments for
equation (1.1) with various choices of (a,b) and f. For each (a,b) and
f, we experiment with the effect of various mesh grading.

Example 1. Let (a,b) = (1/2,4/3/2). Then by the formulas
(1.2) and (1.3), (a, ) can be (=2/3,—1/3), (=2/3,2/3), (1/3,—1/3)
or (1/3,2/3) for the index 1,0,0 (the natural airfoil solution), —1
problems respectively. Consider a boundary function f(t) = 2t — 3/4.
Since f is the Jacobi polynomial of degree 1 with regard to the
weight ¢ ~1/3(1 —)~2/3, it satisfies the consistency condition (1.4) with
(o, B) = (1/3,2/3). Then (1.1) is a CSIE of the index —1, and the
unique solution ¢ of (1.1) will have regularity:

o(t) =131 — t)?3n(t),  heC0,1], heC>®(0,1).

After a mesh grading transformation of order g, ¥ is a unique solution
of (1.9) if the mesh grading parameters q and the weight parameter A
satisfy the condition (1.10), that is,

2

Then ¢ will have regularity:
Y(a) = aW/DIHE DA _ ) @/Hta D ARy he oo, 1]
— /DTHa=D)=AF1/2=¢ (] _ 1) (2/Ba+la=1)=A+1/2¢f (1)

h € L[0,1]
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for an arbitrary £ > 0, and

$(z) = [2(1 - 2) 9 (2)

= g(1/3)a+(a=DF1/2=e (1 _ 4)(2/3)a+(a-1)+1/2=¢p )
is a solution of (1.7).

Theorem 4.1 and Remark 1 assert that the convergence of the ap-
proximation solution ¥, to ¥ will be

1Y = ¥nllo = Ch*
with p = (1/3)¢+ (¢ —1) —A+1/2 —¢ for an arbitrary € > 0. Actually,
we are interested in the convergence of ¢ () = [z(1 — )]} s () to .
So far, we have no convergence analysis for ¢p, but in our numerical
experiments ¢ converges consistently faster to qE than 1, does to .

In this example we give results obtained by using the mesh grading
parameters ¢ = 3 and 5 with the weight parameters A = 1 and A = 1.2,
respectively. According to Remark 1, the order of convergence may be
pr25forg=3and A =1, and p ~ 4.966... for g =5 and A = 1.2.
In Table 1, Columns 2 and 6 show the numerical results for 1, and
they concord well with Theorem 4.1 and Remark 1. Columns 4 and 8
represent the numerical results of ¢y,.

TABLE 1. Numerical results for Example 1 with ¢ = 3, 5.

h|En(g=3)| Rn En Rn | En(g=5) | Ru Ep Ry

1/4 | .185E+400 0.459E-01 0.318E+00 0.570E-01
1/8 | 0.538E-02 | 5.10 | 0.990E-03 | 5.54 | 0.434E-01 | 2.88 | 0.646E-02 | 3.14
1/16 | 0.261E-03 | 4.37 | 0.133E-04 | 6.22 | 0.135E-03 | 8.33 | 0.261E-04 | 7.95
1/32 | 0.441E-04 | 2.56 | 0.140E-05 | 3.25 | 0.306E-06 | 8.78 | 0.178E-07 | 10.52
1/64 | 0.777E-05 | 2.50 | 0.166E-06 | 3.08 | 0.101E-07 | 4.92 | 0.419E-09 | 5.41
1/128 | 0.138E-05 | 2.50 | 0.201E-07 | 3.04 | 0.336E-09 | 4.90 | 0.122E-10 | 5.10

Example 2. Let (a,b) = (v/3/2,1/2) and f(t) = 1. The natural
airfoil solution satisfies (o, ) = (1/6,—1/6) in (1.2). After a mesh
grading transformation of order ¢, the solutions of (1.9) will have
regularity:

Y(z) = w(l/ﬁ)q+(q—1)—A+1/2—a(1 — x)(—1/6)q+(q—1)—A+1/2—aiL(w)’

h e Ly[0,1].
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Then

‘73(96) = ﬂU(l/ﬁ)qﬂq’1)“/2’5(1 - x)(*1/6)q+(q71)+1/275ﬁ(w)’

is a solution of (1.7). In this example, any ¢ < 9 with A\ = 1 satisfies
(1.10). The numerical results are given for ¢ = 3 and ¢ = 6 with A = 1.
Then the order of convergence of ¢y, in the La-norm will be p &~ 1, 3.5
for g = 3, 6, respectively.

TABLE 2. Numerical results for Example 2 with ¢ = 3, 6.

h| En(g=3)| Rn Ey, Ry | En(g=6) | Ry E, Rn

1/4 | .175E+00 0.397E-01 0.228E+00 0.780E-01
1/8 | 0.246E-01 | 2.83 | 0.278E-02 | 3.84 | 0.422E-01 | 2.44 | 0.108E-01 | 2.85
1/16 | 0.115E-01 | 1.09 | 0.688E-03 | 2.01 | 0.229E-03 | 7.53 | 0.463E-04 | 7.87
1/32 | 0.560E-02 | 1.04 | 0.219E-03 | 1.65 | 0.803E-05 | 4.83 | 0.401E-06 | 6.85
1/64 | 0.277E-02 | 1.01 | 0.738E-04 | 1.57 | 0.701E-06 | 3.52 | 0.253E-07 | 3.99
1/128 | 0.138E-02 | 1.01 | 0.255E-04 | 1.53 | 0.622E-07 | 3.49 | 0.161E-08 | 3.97

Example 3. Let (a,b) be nonzero real functions in (1.1) with f = 1.
This will be an index 0 problem. Using the regularity result [13, Section
3.7, Chapter 17], « = —g(0), 8 = g(1), where

For a(z) = 2 + 1 and b(z) = —exp(z), we have o = —1/4 and 8 =
tan~1(e/2)/m ~ .2980882980. After a mesh grading transformation of
order ¢, the solution of (1.9) will have regularity:

Y(x) = m(*1/4)q+(q*1)+1/2*€*>\(1 _ x)5q+(q*1)+1/2fff>\;~l(x),
and then

d(z) = x(—1/4)q+(q—1)+1/2—6(1 _ m)5q+(q—1)+1/2—aﬁ(m)‘
Equation (1.10) leads to

g < (22 +1)/(2tan"(e/2))
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for this problem to have a unique solution. All ¢ < 5 with A = 1 satisfy
the above inequality. For ¢ = 6, we use A = 1.3 so that the above
inequality is satisfied. The order of convergence of v, will be p ~ 3/4
forg=3and A =1, and p =~ 2.7 for p = 6 with A =1.3.

In the tables,
Ep = [|Yn —Ynsallo, R =log(E2n/Er)/log2

and

By, = [|Pu(én) — Puj2(dns2)llo,  Rn = log(Ean/En)/log2

with the collocation projection P} in Section 2. Our method especially
has a superb convergence for the index —1 solution and the natural
airfoil solution with a > b in (1.1). When ¢ is large and A is small,
mesh tends to highly concentrate toward 0 and 1. We observe that
some instability occurs in our experiments when ¢ > 7 and h < 1/256.
It seems that the instability is mainly caused by round off error
rather than by not having cutoff around endpoints. In our numerical
experiments, we didn’t use the cutoff of intervals around endpoints.

TABLE 3. Numerical results for Example 3 with ¢ = 3, 6.

h| En(g=3) | Ry Ep Ry | En(g=6) | Ry Ep R,

1/4 | 0.229E+4-00 0.414E-01 0.539E+00 0.909E-01
1/8 | 0.791E-01 | 1.53 | 0.697E-02 | 2.57 | 0.821E-01 | 2.71 | 0.124E-01 | 2.88
1/16 | 0.466E-01 | 0.76 | 0.246E-02 | 1.50 | 0.117E-02 | 6.14 | 0.103E-03 | 6.92
1/32 | 0.274E-01 | 0.76 | 0.961E-03 | 1.36 | 0.191E-03 | 2.61 | 0.126E-04 | 3.03
1/64 | 0.162E-01 | 0.76 | 0.382E-03 | 1.33 | 0.307E-04 | 2.64 | 0.194E-05 | 2.69
1/128 | 0.961E-02 | 0.76 | 0.153E-03 | 1.32 | 0.489E-05 | 2.65 | 0.298E-06 | 2.71

Acknowledgment. This work was performed when the author was
a research associate at the University of New South Wales, Sydney,
Australia.

APPENDIX

A. Here are some basic facts about the Mellin convolution operator
on [0, 00), which are needed in Section 5. These are based on [7] and
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[17]. The Mellin transform o(¢) of ¢ € L2[0,1] is defined as

o(@)(z) = /000 s*Lo(s) ds, z=1/2+1y, yeR.

Then it has the following properties.

1. Mellin transform o is an isomorphism from L5 [0, 00) to La[{Re (2) =
1/2}].

2. Parseval’s equality.

/ sz/ o ()7 (9)|dz
0 Re (z)=1/2

3. (Convolution Theorem.) If K is a Mellin convolution operator,

. Ko(t) = /OOOKG)@@

with kernel s /2K (s) € L;[0,00), then o(K¢) = o(K) - o(¢). Then
it is easy to see that |[K|lo < supge(.)—1/210(K)(z)]. Here we define
o(K) := o(K), and o(K) is the symbol of the operator K.
4. If K and L are convolution operators, then o(KL) = o(K) - o(L).
Therefore, if |o(K)z)| > C > 0, then £~ exists and o(K~!) = 1/0(K).
5. The properties (1)—(4) extend to the case of matrix operators if
we replace symbols and kernels with matrix functions. In particular,

if K is a matrix of Mellin operators with a matrix symbol o(K) with
| det(o(K)(2))| > C > 0, then K is an invertible operator.

Let us consider singular integral operators considered in Section 5.
The Cauchy singular operator on R,

gt = o [ 75 o [

is a Mellin operator with the symbol ¢(G)(z) = cot(nz), and

1) 1[0 1 g(s)
RM“—;A H¢“—;A TS s
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is a Mellin operator with the symbol o(R)(z) = 1/ sin(7z). For

oo A —
Gig(t) = lp.v./0 (;) Mds

™ sq — tq
_ 1 = q(t/s)1 " (s)
- Ep'v'/o - (/s s ™

1 < gsd—A~1
J(g;{)(Z) = ;pv/or S lﬁ d57

(by a change of variable, u = s9)

_ lp.v./ pean/ea-i_L g
us 0 1—pup
=cot((z =X —=1)m/q+ )
=cot((z — A — 1)7/q).
B. Here we will prove that
B=(al —bH)K
B.1 - R 17— R
(B.1) I al :bg bR ~] {[g)\ :g] i lnrae
~bR  al +bG -R -G} -¢]

where £ is compact and II = (X, X'), where X and X’ in Section 5.
Remember that

K =x[G] - GIx + X'[-(GL = G)IX + XRX' — X'RX + £
g_ R
=1I [g)\ :g] 50 5 n’ +&.

-R - -GX-9]

Let us introduce other cut off functions w and w’ such that w =1 on
supp (X), supp (w) C [0,1/2), and w'(z) = w(1l — ). Then, using w and
w', split H as

H=—wR +wRw+S8+E,

1
56 = 1/0 L b(y)dy.

m y—2x

where




458 Y. JEON

The operator S is the Cauchy singular integral operator on [0, 1]. Split
S also as follows.

S=wSw+ w8 +wS(l-w—-w)+w'S(1l-w-—w)
+(1-w—w)Sw+ (1 —w—w)S
+(1l-w—-w)S1l-w-w)+¢&

since wSw' and w'Sw are compact.

Now let us look at SK. Since
l-w—-uw)X=1-w- )X =wX' =uw'x =0,

and

wX = X, w'x' =X,

SK = wSX[GL — GIx + (1 —w — )SX[GL — GIX + W' SX'[(GL — G)|X'
+ (1—w—w)SX'[-(GL — §)X' +wSXRX' + (1—w—w')SXRX'
—WSX'RX — (1 —w —w)SX'RX + &

= wSX[G — GIX + W'SX'[- (G - §)X'
F WwSXRX — W SX'RX + E.

The last line follows from the fact that (1 —w—w')SX, (1 —w—w')SX’
are compact. Moreover, since XS — 8X and X'S — SX’ are compact,
and S = G around (0,0) and S = —G around (1,1), SK can be further
simplified as

SK = XG[G1 — GIx + X' (—G)[-GL + G|’
+XIRX = X' (—G)RX + &

g 0] [6i-6 R .
i T R A L

Noting that RX — X'R and RX’ — XR are compact, and by the same
way as above,

D/ 5 _ Q _ﬁ’
(—wRw —l—wa)K—H[R 0}
. .
|:g)‘ :g ~R ~]HT—}-5
R —GI+G
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Then .
HE = (S — wRw + w'Rw + E)K
. a .
— - R
:H|:g R:| [g)\ :g - ~ H+g’
-R  —G5+¢

R -G
Now we have (B.1).

C. Divide the integral operator M into local Mellin operators and a
compact perturbation.

(C.l) M= Myg + Mg + Moy + M1 + €.

Here {Mupg}tap=0,1 are Mellin operators, which represent the local
behavior of M at («, ), and £ is a compact operator.

For simplicity, let us look at Mg only.

(€2) Maase) = [~ 2 (2) a0 an
where P(s)
M(s) = w,

with P and @ polynomials, and deg (P) = deg (Q) — 1, @ # 0.

Now look at the operator M; ; i, where

wnu(3);

Mathematical induction gives us, for m := ¢ + j,

o))
Y,y Y Yy

R(s)
T(s)
and deg (R) =deg(T) —m — 1. Then, if i+ j =k +1,

co A ()oC)s

1
(C.3) M, jkaz(s) ::/ zlyk
0

where

G(s) :=
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and

(C.5) sup s'|G(s)| < oo

seRt
for 0 < I < m. Thus, s ¥/2(s!|G(s)|) € Li(RY), and L; jx; is a
bounded operator on Ly(R ™). For more details about Mellin operators,
see [7].
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