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EXACT SOLUTION OF A SIMPLE HYPERSINGULAR
INTEGRAL EQUATION

P.A. MARTIN

ABSTRACT. We obtain the general solution to the simplest
one-dimensional hypersingular integral equation; the integral
is a Hadamard finite-part integral over a finite interval. We
use elementary methods, relating the integral equation to a
singular integral equation with a known solution. Despite
this, our formula appears to be new.

1. Introduction. We consider the hypersingular integral equation

(1.1) Hf ≡ 1
π

×
∫ 1

−1

f(t)
(x − t)2

dt = v(x), −1 < x < 1.

Here, v(x) is a known function and f(x) is to be determined. The
integral must be interpreted as a Hadamard finite-part integral, defined
by
(1.2)

×
∫ 1

−1

f(t)
(x − t)2

dt = lim
ε→0

{∫ x−ε

−1

f(t)
(x − t)2

dt +
∫ 1

x+ε

f(t)
(x − t)2

dt − 2f(x)
ε

}

where |x| < 1 and f is required to have a Hölder-continuous derivative,
f ∈ C1,α(−1, 1). The finite-part integral (1.2) is related to a Cauchy
principal-value integral by

(1.3) ×
∫ 1

−1

f(t)
(x − t)2

dt = − d

dx
−
∫ 1

−1

f(t)
x − t

dt,

provided that f ∈ C1,α; indeed, (1.3) is sometimes taken as the
definition of a finite-part integral. Further properties of finite-part
integrals and numerous references to the related literature can be found
in [6, 7].

In this short paper, we give the general solution of (1.1) for v in a
suitably restricted class of functions. This formula seems to be new,
and is obtained by exploiting (1.3).
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The general solution of (1.1) contains two arbitrary constants, which
can be determined by imposing two supplementary conditions on the
solution, f . For example, the integral equation (1.1) arises in potential
flow past a thin flat rigid plate. In this context, f represents the
discontinuity in the velocity potential for the flow across the plate.
Then, the appropriate supplementary conditions are

(1.4) f(−1) = f(1) = 0,

as these ensure that the velocity potential is continuous at the two plate
edges (x = ±1). With these conditions, we find that

(1.5)
(
H−1v

)
(x) =

1
π

∫ 1

−1

v(t) log

(
|x − t|

1 − xt +
√

(1 − x2)(1 − t2)

)
dt.

The paper concludes with some remarks on (i) closed contours, (ii)
pseudo-differential operators, (iii) Chebyshev polynomials, and (iv)
non-integrable v(x).

In many applications, (1.1) is generalized to

(1.6) (H + K)f = v,

where K is another linear operator. Typically,

(Kf)(x) = λ(x)f(x) + −
∫ 1

−1

L(x, t)f(t) dt,

where λ(x) is a known function and L(x, t) has an integrable singularity
at x = t (perhaps only as a Cauchy principal-value integral). For
example, if L ≡ 0, (1.6) is equivalent to Prandtl’s equation [8, §121].
Numerical methods for the direct treatment of (1.6) are discussed in
[7]. Alternatively, one can use H−1 to regularize (1.6) as

(I + H−1K)f = H−1v.

This approach is used in [2, 3].

2. The airfoil equation. The simplest singular integral equation
over a finite interval is the airfoil equation,

(2.1)
1
π

−
∫ 1

−1

f(t)
x − t

dt = g(x), −1 < x < 1.
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This equation and its generalizations have an extensive literature; see,
e.g. [8, 9, 10, 11].

If we restrict g(x) to be Hölder continuous for −1 ≤ x ≤ 1,
g ∈ C0,α[−1, 1], we can write down the general solution of (2.1); it
is (see, e.g. [9, pp. 173 180] or [13, pp. 188 190])

(2.2) f(x) =
−1
π

−
∫ 1

−1

√
1 − t2

1 − x2

g(t)
x − t

dt +
A√

1 − x2
,

where A is an arbitrary constant. Thus, in general, f(x) has an
inverse square-root singularity at both x = −1 and x = 1. For a
unique solution, we need one supplementary condition on f : often, f
is required to be bounded at one end-point.

3. The dominant equation. The simplest hypersingular integral
equation over a finite interval is (1.1), which we call the dominant
equation. Suppose that v(x) in (1.1) is such that

(3.1) v(x) = g′(x),

where g ∈ C0,α[−1, 1]∩C1(−1, 1); thus v can have integrable end-point
singularities. Hence, using (1.3),

1
π

−
∫ 1

−1

f(t)
x − t

dt = −g(x) + B,

where B is an arbitrary constant of integration. Solving this equation,
using (2.2), we obtain

(3.2) f(x) =
−1
π

−
∫ 1

−1

√
1 − t2

1 − x2

B − g(t)
x − t

dt +
A√

1 − x2
.

Now, apart from another constant of integration, we have

−
∫ √

1 − t2

x − t
dt = −

√
1 − t2 + x arcsin t

(3.3)

−
√

1 − x2 log

(
|x − t|

1 − xt +
√

(1 − x2)(1 − t2)

)
.
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In particular (cf. (4.3) below, with n = 0),

(3.4)
1
π

−
∫ 1

−1

√
1 − t2

x − t
dt = x,

whence (3.2) gives

(3.5) f(x) =
1
π

−
∫ 1

−1

√
1 − t2

1 − x2

g(t)
x − t

dt +
A − Bx√

1 − x2
.

This is a formula for the general solution of the dominant equation
(1.1) in terms of g (which is given by (3.1)). We can obtain a formula
in terms of v by an integration by parts, using (3.3); the result is
(3.6)

f(x) =
1
π

∫ 1

−1

v(t) log

(
|x − t|

1 − xt +
√

(1 − x2)(1 − t2)

)
dt +

A + Bx√
1 − x2

,

where A and B are (new) arbitrary constants.

The first term on the right-hand side of (3.6) is a particular solution of
(1.1), for the given function v. The second term is the general solution
of the homogeneous form of (1.1) (i.e. with v ≡ 0); it is also given in
[10, p. 45]. For a unique solution of (1.1), we need two supplementary
conditions on f ; these are often taken to be (1.4) whence A = B = 0
in (3.6), and (1.5) obtains.

4. Discussion.

4.1. Closed contours. We can also consider the dominant equation
over a simple, smooth, closed contour C, namely

(4.1)
1
πi

×
∫

C

f(t)
(z − t)2

dt = v(z), z ∈ C.

The general solution of this integral equation, for continuous v, say, is
given by

(4.2) f(z) =
1
πi

∫
C

v(t) log |z − t| dt + A,
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where A is an arbitrary constant. For a unique solution of (4.1), we
need one supplementary condition on f .

4.2. Pseudo-differential operators. It is well known that H is a
pseudo-differential operator of order +1, i.e. H is a continuous linear
operator between Sobolev spaces Hs → Hs−1; see, e.g. [11, 12]. Thus,
roughly speaking, H coarsens by one order. It follows that H−1 must be
a pseudo-differential operator of order −1 (i.e. smooths by one order),
and so we are not surprised to see the kernel log |x − t| in (1.5), since
this gives rise to such an operator [11]; similar remarks apply to (4.1)
and (4.2). However, the calculus of pseudo-differential operators does
not usually allow one to construct inverse operators explicitly, as done
here for the simple operator H supplemented with (1.4).

4.3. Chebyshev polynomials. It is well known that

(4.3)
1
π

−
∫ 1

−1

√
1 − t2

x − t
Un(t) dt = Tn+1(x),

where Tn(x) and Un(x) are Chebyshev polynomials of the first and
second kinds, respectively. Hence, (1.3) implies that

(4.4)
1
π

×
∫ 1

−1

√
1 − t2

(x − t)2
Un(t) dt = −(n + 1)Un(x).

Equations (4.3) and (4.4) are valid for n = 0, 1, 2, . . . and −1 < x < 1.
It follows that if

(4.5) v(x) = Un(x)

in (1.1), then we have

(4.6) f(x) =
−1

n + 1

√
1 − x2 Un(x),

and (1.4) is satisfied. Since the polynomials Un are orthogonal, satis-
fying ∫ 1

−1

√
1 − t2 Um(t) Un(t) dt =

π

2
δmn,
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we find that
f(x) =

√
1 − x2

∑
n=0

vn

n + 1
Un(x)

where

vn =
−2
π

∫ 1

−1

√
1 − t2 Un(t) v(t) dt.

This gives an alternative specification of H−1, which is used in [1, 2,
3]. These papers, and [5], also contain applications of the method and
additional references.

We note that substitution of (4.5) and (4.6) into (1.5) gives the
following identity,
(4.7)√

1−x2 Un(x) = −n + 1
π

∫ 1

−1

log

(
|x−t|

1−xt +
√

(1−x2)(1−t2)

)
Un(t) dt,

which is valid for n = 0, 1, 2, . . . and |x| < 1. We can rewrite (4.7) as

∫ 1

−1

K(x, t)φn(t) dt = λnφn(x)

where
φn(x) = (1 − x2)1/4 Un(x), λn =

π

n + 1

and

K(x, t) =
1

(1 − x2)1/4(1 − t2)1/4
log

(
1 − xt +

√
(1 − x2)(1 − t2)
|x − t|

)
.

This gives the eigenvalues λn and eigenvectors φn of the integral
operator with positive, symmetric kernel K. Alternatively, if we put
x = cos φ and t = cos θ in (4.7), we obtain

sin mφ =
m

π

∫ π

0

log

∣∣∣∣∣ sin
φ+θ

2

sin φ−θ
2

∣∣∣∣∣ sin mθ dθ

for m = 1, 2, . . . , which is equivalent to a known Fourier sine series (use
1.441(2) in [4]).
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4.4. Non-integrable data. Tricomi [9, p. 181] notes that

1
π

−
∫ 1

−1

(
1 − t

1 + t

)α
dt

x − t
=

1
sin(πα)

−
(

1 − x

1 + x

)α

cot(πα)

for 0 < |α| < 1. Differentiating with respect to x gives

1
π

×
∫ 1

−1

(
1 − t

1 + t

)α
dt

(x − t)2
= −2α

(1 − x)α−1

(1 + x)α+1
cot(πα).

This formula, which is valid for −1 < α < 1, shows that (1.1) has a
solution even when v(x) is not integrable at x = −1 (0 < α < 1) or at
x = 1 (−1 < α < 0). For example, in the first case (0 < α < 1), there
is a solution which is weakly singular at x = −1; such solutions cannot
be obtained by the methods described in the rest of this paper.
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