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POSITIVE SOLUTIONS OF
A CLASS OF NONLINEAR INTEGRAL

EQUATIONS AND APPLICATIONS

LYNN ERBE, DAJUN GUO AND XINZHI LIU

1. Introduction. It is known that many real world problems such
as chemical reactors, neutron transport, infectious diseases and etc. can
be modeled by nonlinear integral equations [2,4,5]. In the study of such
problems, we are often interested only in finding positive solutions of a
nonlinear integral equation due to the practical meaning of the physical
model concerned. In this note we study a class of nonlinear integral
equations given by

(1.1) u(x) = λ

∫
Ω

K(x, y)f(y, u(y)) dy

and its nonlinear perturbation

(1.2) u(x) = λ

∫
Ω

K(x, y)f(y, u(y)) dy +G(u(x)),

where f(x, u) is a reciprocal of a polynomial. A prototype of (1.1) is
the following integral equation

(1.3) ϕ(x) =
∫ 1

0

R(x, y)
x2 − y2

1
1 + ϕ(y)

dy,

which comes from the integral equation

(1.4) 1 = ψ(x) + ψ(x)
∫ 1

0

R(x, y)
x2 − y2

ψ(y) dy

by a change of variable ϕ(x) = (1/ψ(x)) − 1. Equation (1.4) is of
interest in nuclear physics [5]. This paper is organized as follows. In
Section 2 we consider equation (1.1) and prove that for any positive
number λ, equation (1.1) has exactly one positive solution which can
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be obtained by iteration, that is, every positive number is an eigenvalue,
and corresponding to every eigenvalue there is a unique eigenfunction
which can be obtained by iteration. Furthermore, the solution of (1.1)
is continuous and strictly increasing in λ and its norm tends to zero
(infinity) as λ becomes small (large). Then we apply the result to
equation (1.4) and a second order boundary value problem for an
ordinary differential equation. In Section 3 we investigate equation
(1.2). Due to the nonlinear perturbation, many of the nice properties
that equation (1.1) has are lost. Even the basic existence is, in general,
very difficult to obtain. However, under certain assumptions, we can
construct a strict set contraction operator and establish the existence
and uniqueness of positive solutions of (1.2) by using the Darbo fixed
point theorem. Finally, when the uniqueness is not required, we employ
the topological degree theory and cone compression and cone expansion
technique to prove the existence of positive solutions of (1.2) under
relaxed assumptions imposed on the perturbation term.

2. Positive eigenvectors of nonlinear integral equations. In
this section we consider the following nonlinear integral equation

(2.1) u(x) = λ

∫
Ω

K(x, y)f(y, u(y)) dy,

where λ > 0 is a parameter, Ω is a bounded closed domain in RN , K
is a nonnegative function, and

(2.2) f(x, u) =
[
a0(x) +

m∑
i=1

ai(x)uαi

]−1

.

If we let

(2.3) Au(x) =
∫

Ω

K(x, y)f(y, u(y)) dy,

then (2.1) is equivalent to the following eigenvalue problem

(2.4) λ̃u = Au, λ̃ = 1/λ.

The following theorem shows that any positive real number is an
eigenvalue of (2.4) corresponding to a unique positive eigenvector which
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depends continuously on λ and can be obtained from an iteration
procedure.

Theorem 2.1. Assume that

(A1) 0 �≡ ∫
Ω
K(x, y) dy ≥ 0 on Ω and for any x, x0 ∈ Ω

lim
x→x0

∫
Ω

|K(x, y) −K(x0, y)| dy = 0 uniformly in x0;

(A2) ai ∈ C[Ω,R+] and a0(x) > 0 on Ω, i = 0, 1, . . . ,m;

(A3) 0 < α1 < α2 < · · · < αm ≤ 1 and m ≥ 1.

Then

(i) for any λ > 0, equation (2.1) has exactly one positive solution
uλ on Ω. Moreover,

(2.5) lim
n→∞ ||un − uλ|| = 0,

where un(x) = λ
∫
Ω
K(x, y)f(y, un−1(y)) dy, n = 1, 2, . . . with u0(x)

being an arbitrary nonnegative function in C(Ω);

(ii) uλ is strictly increasing in λ, i.e., 0 < λ1 < λ2 implies uλ1 < uλ2 ,
where uλ1(x), uλ2(x) are the unique positive solutions of (2.1) with
λ = λ1 and λ = λ2, respectively;

(iii) uλ is continuous in λ, i.e., for any λ0 > 0,

(2.6) lim
λ→λ0

||uλ − uλ0 || = 0;

(iv) limλ→+0 ||uλ|| = 0 and limλ→+∞ ||uλ|| = +∞.

Proof. (i) Let E = C(Ω), where C(Ω) denotes the Banach space of
all continuous functions u(x) on Ω with norm ||u|| = maxx∈Ω |u(x)|,
| · | being any convenient norm in RN . Set P = {u ∈ C(Ω);u(x) ≥
0, x ∈ Ω}. Then P is a normal cone of E. It is easy to see that
the operator defined by (2.3) maps P into P and is decreasing and
completely continuous. Let v0(x) ≡ 0, i.e., v0 = θ and v1 = λAv0.
Then it follows from (A1) and (A2) that

v1(x) = λ

∫
Ω

K(x, y)[a0(y)]−1 dy ≥ 0 and v1(x) �≡ 0, x ∈ Ω,
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i.e., v1 > v0. Define vn(x) = λAvn−1 and suppose that

(2.7) v0 ≤ v2 ≤ · · · ≤ v2l ≤ v2l+1 ≤ · · · ≤ v1.

Since A is decreasing, we see from (2.7) that

v2l ≤ λAv2l−1 ≤ v2l+2 ≤ λAv2l = v2l+1

which in turn implies

v2l+2 = λAv2l+1 ≤ λAv2l+2 ≤ λAv2l = v2l+1.

Thus,

(2.8) v2l ≤ v2l+2 ≤ v2l+3 ≤ v2l+1.

Hence, it follows by induction that

(2.9) v0 ≤ v2 ≤ · · · ≤ v2n ≤ v2n+1 ≤ · · · ≤ v1, n = 0, 1, 2, . . . .

Since A is completely continuous, the set {v2n}∞n=0 is relatively com-
pact, which implies that there exists a subsequence {v2nl

} ⊂ {v2n}
such that v2nl

→ v∗ as l → ∞. Since {v2n} is a monotone sequence, it
follows that v2n → v∗ as n → ∞. Similarly, we can prove v2n+1 → v∗

as n→ ∞. It can be seen easily from (2.9) that

(2.10) v0 ≤ v2 ≤ · · · ≤ v2n ≤ v∗ ≤ v∗ ≤ v2n+1 ≤ · · · ≤ v1.

Since v2n+1 = λAv2n, v2n = λAv2n−1 and A is continuous, we see that

(2.11) v∗ = λAv∗ and v∗ = λAv∗.

We next show that v∗ = v∗. From (2.10), we obtain

v∗ ≥ v2 = λ

∫
Ω

K(x, y)f(y, v1(y)) dy

= λ

∫
Ω

K(x, y)
[
a0(y) +

m∑
i=1

ai(y)v1(y)αi

]−1

dy.
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Let M = ||v1|| = maxx∈Ω λ
∫
Ω
K(x, y)[a0(y)]−1 dy and

ε0 = min
x∈Ω

a0/

(
a0(x) +

m∑
i=1

ai(x)Mαi

)
.

Then 0 < ε0 ≤ 1 and

(2.12) v∗ ≥ v2 ≥ ε0λ

∫
Ω

K(x, y)[a0(y)]−1 dy = ε0v1 ≥ ε0v
∗.

Set T = {t > 0|v∗ ≥ tv∗}. T is nonempty by (2.12). Let t0 = supT .
We claim t0 ≥ 1. If, otherwise, 0 < t0 < 1, then by (2.11)

(2.13)

v∗ = λAv∗ ≤ λA(t0v∗)

= λ

∫
Ω

K(x, y)
[
a0(y) +

m∑
i=1

ai(y)tαi
0 v∗(y)αi

]−1

dy

≤ t−1
0 (1 + η)−1v∗,

where

(2.14) η = min
y∈Ω

a0(y)(t−1
0 − 1) +

∑m
i=1 ai(y)(tαi−1

0 − 1)v∗(y)α1

a0(y) +
∑m

i=1 ai(y)v∗(y)αi
> 0,

which implies that v∗ ≥ t0(1+η)v∗. Since t0(1+η) > t0, this contradicts
the choice of t0. Thus, we have v∗ ≥ v∗. This, together with (2.10),
implies v∗ = v∗. Moreover, v∗ ≥ v2 ≥ ε0v1 > v0 = θ. Thus, we see
from (2.11) that v∗ = v∗ = u is a positive solution of equation (2.1).
Finally, for any u0 ∈ P , we define

(2.15) un = λAun−1, n = 1, 2, . . . .

Since u0 ≥ θ, we have θ ≤ λAu0 ≤ λAv0, i.e., v0 ≤ u1 ≤ v1.

Applying the operator λA, we derive v2 ≤ u2 ≤ v1. Continuing this
process, we obtain

(2.16) v2n ≤ u2n ≤ v2n−1, v2n ≤ u2n+1 ≤ v2n+1, n = 1, 2, . . . .

Since v2n → u, v2n−1 → u and v2n+1 → u, it follows that u2n → u
and u2n+1 → u, i.e., ||un − u|| → 0 as n→ ∞. If ū is another solution
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of (2.1), one can easily conclude that v2n ≤ ū ≤ v2n+1, which implies
ū = u. Thus, we have proved that for any λ > 0, (2.1) admits a
unique positive solution uλ on Ω and limn→∞ ||un − uλ|| = 0, where
un = λAun−1, n = 1, 2, . . . , and u0 ∈ P is arbitrary.

(ii) Let 0 < λ1 < λ2, uλ1 and uλ2 be the unique positive solutions
of (2.1) with λ = λ1 and λ = λ2, respectively. Define

(2.17) un = λ1Aun−1, ūn = λ2Aūn−1, n = 1, 2, . . .

with u0 = ū0 = θ. Then limn→∞ un(x) = uλ1(x) and limn→∞ ūn(x) =
uλ2(x) uniformly on Ω. We claim that

(2.18) u2n ≤ ū2n, n = 0, 1, 2, . . . .

By definition u0 = ū0. We assume that u2k ≤ ū2k, k ≥ 0. Then

(2.19) u2k+1 = λ1Au2k ≥ λ1Aū2k = (λ1/λ2)ū2k+1.

Since 0 < λ1/λ2 < 1, it follows from (2.13) and (2.19) that

u2k+2 = λ1Au2k+1 ≤λ1A((λ1/λ2)ū2k+1) ≤λ2(1+η)−1Aū2k+1 < ū2k+2.

Thus, our claim is verified by induction. Letting n → ∞ in (2.18), we
get

(2.20) uλ1 ≤ uλ2 .

Applying A to (2.20), we derive

1
λ1
uλ1 ≥ 1

λ2
uλ2 , i.e. uλ1 ≥ λ1

λ2
uλ2 .

Thus

1
λ1
uλ1 = Auλ1 ≤ A((λ1/λ2)uλ2) ≤

λ2

λ1
(1+η)−1Auλ2 =

1
λ1

(1+η)−1uλ2

which implies uλ1 < uλ2 . Hence, uλ is strictly increasing in λ.
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(iii) Let λ0 > 0 and λ > λ0. It is easy to see from (2.19) that
uλ ≤ (λ/λ0)uλ0 . Thus, we have

||uλ − uλ0 || ≤ (λ/λ0 − 1)||uλ0 || → 0 as λ→ λ+
0 .

Similarly, we can show

||uλ − uλ0 || ≤ (λ0/λ− 1)||uλ0 || → 0 as λ→ λ−0 .

Thus, limλ→λ0 ||uλ − uλ0 || = 0, i.e., uλ is continuous in λ.

(iv) It is easy to see from (2.10) that, for any λ > 0, θ < uλ ≤ v1 =
λAv0. Thus ||uλ|| ≤ λ||Av0|| → 0 as λ → 0+, i.e., limλ→0+ ||uλ|| = 0.
On the other hand, if λ > 1, (1/λ)uλ ≤ ū1, where ū1 is the unique
solution of (2.1) with λ = 1. Thus

ū1 = Aū1 ≤ A((1/λ)uλ) ≤ λ(1 + η)−1Auλ = (1 + η)−1uλ,

which implies

(2.21) uλ ≥ (1 + η)ū1,

where

η = η(λ, ū1) = min
y∈Ω

a0(y)(λ− 1) +
∑m

i=1 ai(y)(λ1−αi − 1)ū1(y)αi

a0(y) +
∑m

i=1 ai(y)ū1(y)αi
.

Since a0(y) > 0, ai(y) ≥ 0, i = 1, 2, . . . ,m, and ū1(y) ≥ 0 on Ω, it
follows that η → +∞ as λ→ +∞. Thus, we obtain from (2.21) that

lim
λ→+∞

||uλ|| ≥ lim
λ→+∞

(1 + η)||ū1|| = +∞,

which yields limλ→+∞ ||uλ|| = +∞. The proof of the theorem is
complete.

As an application of Theorem 2.1, we consider the following nonlinear
integral equation

(2.22) 1 = ψ(x) + λψ(x)
∫ 1

0

R(x, y)
x2 − y2

ψ(y) dy, 0 ≤ x ≤ 1,
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which arises in nuclear physics. The solution ψ(x) represents a certain
probability distribution and so 0 < ψ(x) ≤ 1.

The following result is an easy consequence of Theorem 2.1.

Theorem 2.2. Assume that

(B1) R ∈ C([0, 1]× [0, 1]), R(x, y) ≥ 0 for x > y and R(x, y) ≤ 0 for
x < y and R(x, y) �≡ 0;

(B2) there exists an r > 0 such that

|R(x, y)| ≤ C|x− y|rS(x, y), 0 ≤ x, y ≤ 1, x �= y,

where C is a constant, S(x, y) is a bounded and nonnegative function
such that

lim sup
x,y→0

S(x, y)/(x+ y) < +∞.

Then

(i) for any λ > 0, equation (2.22) has exactly one positive solution
ψλ(x). Moreover, 0 < ψλ(x) ≤ 1 and, constructing successively the
sequence of function

ψn(x) =
[
1 + λ

∫ 1

0

R(x, y)
x2 − y2

ψn−1(y) dy
]−1

, n = 1, 2, . . .

for any initial function ψ0 ∈ C([0, 1]), 0 < ψ0(x) ≤ 1, we have

||ψn − ψλ|| = max
0≤x≤1

|ψn(x) − ψλ(x)| → 0 as n→ ∞;

(ii) ψλ is strictly decreasing in λ, i.e., 0 < λ1 < λ2 implies
ψλ1 > ψλ2 ;

(iii) ψλ is continuous in λ;

(iv) limλ→0+ ||ψλ|| = 1 and limλ→+∞ ||ψλ|| = 0.

Proof. Letting ϕ(t) = 1/ψ(x) − 1, equation (2.22) then reduces to

(2.23) ϕ(x) = λ

∫ 1

0

R(x, y)
x2 − y2

1
1 + ϕ(y)

dy.
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It is clear that 0 < ψ(x) ≤ 1 is equivalent to ϕ(x) ≥ 0. By (B2), we see∣∣∣∣R(x, y)
x2 − y2

∣∣∣∣ ≤ C1

|x− y|1−r
, 0 ≤ x, y ≤ 1, x �= y,

and
R(x, y)
x2 − y2

≥ 0, 0 ≤ x, y ≤ 1, x �= y,

which implies

0 �≡
∫ 1

0

R(x, y)
x2 − y2

dy < +∞, t ∈ [0, 1].

It is not difficult to check that equation (2.22) satisfies all assumptions
of Theorem 2.1. Then the conclusion of Theorem 2.2 follows easily from
Theorem 2.1 and the definition of ϕ(x).

Remark. It is easy to give some elementary functions R(x, y) which
satisfy (B1) and (B2). For example, R(x, y) = C(x − y)1/3(x + 3y −
sin x+ 2x2y), C > 0 is a constant, R(x, y) = C(x− y)1/5 ln(1 + x+ y),
etc.

We next consider a two-point boundary value problem for an ordinary
differential equation
(2.24){−d2u/dx2 = λ[a0(x) +

∑m
i=1 ai(x)u(x)αi ]−1, 0 ≤ x ≤ 1,

u(0) = u(1) = 0, λ > 0 is a parameter.

Theorem 2.3. Assume that

(C1) ai ∈ C[[0, 1], R+], i = 0, 1, 2, . . . ,m, and a0(x) > 0 on [0, 1];

(C2) 0 < α1 < α2 < · · · < αm ≤ 1 and m ≥ 1.

Then

(i) for any λ > 0, the boundary value problem (2.24) has exactly one
positive solution uλ ∈ C2(0, 1) ∩ C1[0, 1], and uλ(x) = limn→∞ un(x)
uniformly on [0, 1], where un(x) is the solution of the boundary value
problem

(2.25)
{−d2u/dx2 = λ[a0(x) +

∑m
i=1 ai(x)uαi

n−1(x)]
−1,

u(0) = u(1) = 0,
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and u0(x) ∈ C2(0, 1) ∩ C1[0, 1] is an arbitrary nonnegative function,

(ii) 0 < λ1 < λ2 implies uλ1 < uλ2 , where uλ1 and uλ2 are the
unique solutions of (2.24) with λ = λ1 and λ = λ2, respectively;

(iii) limλ→λ0 ||uλ − uλ0 || = 0 for any λ0 > 0;

(iv) limλ→0+ ||uλ|| = 0 and limλ→+∞ ||uλ|| = +∞.

Proof. It is well known that (2.24) is equivalent to the following
integral equation

(2.26) u(x) = λ

∫ 1

0

K(x, y)f(y, u(y)) dy,

where K(x, y) denotes the Green’s function of (2.24) and is given by

K(x, y) =
{
x(1 − y), x ≤ y;
y(1 − x), x > y,

and

f(x, u) =
[
a0(x) +

m∑
i=1

ai(x)uαi

]−1

.

It is easy to see that equation (2.26) satisfies all the assumptions of
Theorem 2.1 and therefore the conclusions of the theorem follow easily.

Remark. Let v(x) ≡ 0 and w(x) = u1(x), where u1(x) is the unique
solution of the boundary value problem (2.25) with n = 1. Then it is
easy to see that v(x) and w(x) are lower and upper solutions of the
boundary value problem (2.24) and v(x) ≤ w(x) on [0, 1]. With the
help of lower and upper solutions and modifying the boundary value
problem (2.24) suitably, see [1], one can prove the existence of a positive
solution to the boundary value problem (2.24) using Schauder’s fixed
point theorem. However, this method gives existence only and does
not provide any concrete procedure for the computation of the solution
and the dependence properties of the solution on the parameter λ in
contrast to our present approach.
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3. Nonlinear perturbations. We investigate, in this section, the
perturbed integral equation

(3.1) u(x) = λ

∫
Ω

K(x, y)f(y, u(y)) dy +G(u(x)),

where λ > 0, f(x, u) = [a0(x) +
∑m

i=1 ai(x)uαi ]−1 and G : R+ → R+

is continuous.

Unlike equation (2.1), the perturbed equation (3.1) is, in general,
very difficult to deal with. Even the existence is hard to obtain without
severe restrictions on G.

Even if one can, under certain assumptions on G, construct sequences
like (2.9), nothing can be obtained except pointwise convergence since
the sequence does not possess, in general, any compactness properties.
Thus, the argument used in Section 2 is no longer applicable to equation
(3.1). However, other methods like the Darbo fixed point theorem for
strict set contraction operators and cone compression and expansion
techniques can be applied if we impose suitable assumptions on G.
Our first result gives a set of sufficient conditions which guarantee the
existence and uniqueness of a positive solution of equation (3.1).

Theorem 3.1. Assume that

(D1) (A1) (A3) hold with
∫
Ω
K(x, y) dy > 0 for all x ∈ Ω;

(D2) G(u) is nonincreasing and there exists 0 < L < 1 such that

(3.2) |G(u) −G(v)| ≤ L|u− v|, u, v ∈ R+;

(D3) for any u > 0 and 0 < t < 1

(3.3) G(tu) < t−1G(u).

Then equation (3.1) has exactly one positive solution on Ω.

Proof. Equation (3.1) can be written in the form

(3.4) u = Bu
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where B = λA+G, and

Au(x) =
∫

Ω

k(x, y)f(y, u(y)) dy(3.5)

Gu(x) = G(u(x)).(3.6)

Let P = {u ∈ C(Ω)|u(x) ≥ 0 for x ∈ Ω}, then P is a normal cone in
the Banach space C(Ω), and the operators A : P → P and G : P → P
are decreasing, and so B : P → P is also decreasing. From the proof
of Theorem 2.1, we know that A is completely continuous and for any
u > θ, 0 < t < 1, there exists η = η(u, t) > 0 such that

(3.7) A(tu) ≤ [t(1 + η)]−1Au.

Now, for any u > θ and 0 < t < 1, it follows from (3.3) that

G(tu(x)) < t−1G(u(x)) for all x ∈ Ω,

so, note that G is continuous,

max
x∈Ω

G(tu(x))
t−1G(u(x))

=
1

1 + η1
, η1 > 0.

Hence,

(3.8) G(tu(x)) ≤ [t(1 + η1)]−1G(u(x)), for all x ∈ Ω.

It then follows from (3.7) and (3.8) that

(3.9) B(tu) ≤ [t(1 + η0)]−1Bu, for u > θ, 0 < t < 1,

where η0 = η0(u, t) = min{η, η1} > 0. Let u1 = Bθ. Since B is
decreasing, θ ≤ u ≤ u1 implies θ ≤ Bu ≤ Bθ = u1. Hence B maps
[θ, u1] into itself. Clearly, [θ, u1] is a bounded closed set. From (3.2),
we see

(3.10) ||Gu−Gv|| ≤ L||u− v||, for any u, v ∈ P,

which implies that G is a strict set contraction, and so B is also a strict
set contraction. Hence, by the Darbo fixed point theorem, see Theorem
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5.2.9 in [3], B has a fixed point ū in [θ, u1]. Next, we prove that B has
exactly one fixed point in P . In fact, if u∗ ∈ P is also a fixed point of
B, u∗ ≥ θ implies θ ≤ u∗ = Bu∗ ≤ Bθ = u1. Observing

Bū(x) = λ

∫
Ω

K(x, y)
[
a0(y) +

m∑
i=1

ai(y)ū(y)αi

]−1

dy +G(ū(x)),

and
a0(x) > 0,

∫
Ω

K(x, y) dy > 0 for x ∈ Ω,

we see that there exist 0 < τ < 1, 0 < σ < 1 such that Bū ≥ τAθ,
Aθ ≥ σGθ, and so

(3.11) Bū ≥ ρu1, where ρ = (1/2)τσ > 0.

Hence, ū = Bū ≥ ρu1 ≥ ρu∗. Let t0 = sup{t > 0|ū ≥ tu∗}, then
0 < ρ ≤ t0 < +∞. We claim that t0 ≥ 1. If otherwise, 0 < t0 < 1,
then ū ≥ t0u

∗ and by (3.9)

ū = Bū ≤ B(t0u∗) ≤ [t0(1 + η0)]−1Bu∗ = [t0(1 + η0)]−1u∗

for some η0 > 0, so u∗ ≥ t0(1 + η0)ū ≥ t0ū. Hence,

u∗ = Bu∗ ≤ B(t0ū) ≤ [t0(1 + η̄0)]−1Bū = [t0(1 + η̄0)]−1ū

for some η̄0 > 0, i.e., ū ≥ t0(1 + η̄0)u∗, which contradicts the definition
of t0. Thus, t0 ≥ 1 and ū ≥ u∗. In the same way, we can show u∗ ≥ ū.
Hence, ū = u∗ and the theorem is proved.

Remark. It is not difficult to give some elementary nonincreasing
functions G(u) which satisfy conditions (3.2) and (3.3). For example,

G(u) =
1

2 + u
, with L =

1
4
,

G(u) =
1√

1 + u
, with L =

1
2
.

We note that the question of continuous dependence on the parameter
λ for (3.1) remains. Furthermore, it would be of interest to investigate
smooth dependence (on λ) for (1.1).
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If the uniqueness is not required, then we can relax the conditions
imposed on G. Of course, one should not expect that the previous
arguments apply to this situation. In the following, we employ the
cone expansion and compression technique and prove the existence of
a positive solution of equation (3.1) under much weaker conditions on
G. We need the following lemma; for a proof, see [6].

Lemma 3.1. Let E be an ordered Banach space with respect to a
cone P , and let Ω1,Ω2 be two bounded open sets in E such that θ ∈ Ω1

and Ω̄1 ⊂ Ω2. For i = 1, 2, define

ri = inf {||u|| : u ∈ P ∩ ∂Ωi}, Ri = sup{||u|| : u ∈ P | ∩ ∂Ωi},
Ci = S(P ∩ ∂Ωi),

where S(P ∩ ∂Ωi) denotes the Kuratowski measure of noncompactness
a = S(P1), P1 = {u ∈ P : ||u|| = 1}. Let A : P ∩ (Ω̄2\Ω1) → P
be an L-strict set contraction. Then A has at least one fixed point in
P ∩ (Ω̄2\Ω1) if one of the following conditions is satisfied:

(i)

⎧⎨
⎩

||Au|| ≥ ||u||, for all u ∈ P ∩ ∂Ω1,
||Au|| ≤ ||u||, for all u ∈ P ∩ ∂Ω2,
r1 > L(R1 + 2C1/a);

(ii)

⎧⎨
⎩

||Au|| ≤ ||u||, for all u ∈ P ∩ ∂Ω1,
||Au|| ≥ ||u||, for all u ∈ P ∩ ∂Ω2,
r2 > L(R2 + 2C2/a);

L is a constant such that

S(AQ) ≤ LS(Q)

for any bounded set Q in P .

Theorem 3.2. Assume that

(E1) (A1) (A3) hold with
∫
Ω
K(x, y) dy > 0 for all x ∈ Ω;

(E2) there exists 0 < L < 1/3 such that

|G(u) −G(v)| ≤ L|u− v|, u, v ∈ R+;
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(E3) limu→∞G(u)/u = α < 1.

Then equation (3.1) has at least one positive solution on Ω.

Proof. We again write equation (3.1) in the form u = Bu where
B = λA+G, λ > 0 and

Au(x) =
∫

Ω

K(x, y)f(y, u(y)) dy,

Gu(x) = G(u(x)).

Let P = {u ∈ C(Ω)|u(x) ≥ 0 for x ∈ Ω}, then P is a normal cone
in the Banach space C(Ω), A : P → P is completely continuous and
G : P → P is an L-strict set contraction as proved in the previous
theorem. Consequently, B : P → P is an L-strict set contraction. Let

Mi = max
x∈Ω

ai(x), i = 0, 1, 2, . . . ,m, and m0 = min
x∈Ω

a0(x).

Since a0 ∈ C(Ω) and a0(x) > 0 on Ω, we have m0 > 0.

Let

K = max
x∈Ω

∫
Ω

K(x, y) dy and k = min
x∈Ω

∫
Ω

K(x, y) dy.

It follows from (A1) that
∫
Ω
K(x, y) dy is continuous on Ω. Since∫

Ω
K(x, y) dy > 0 on Ω, we have k > 0. By (E3), there exists N > 0

such that

(3.12)
G(u)
u

≤ 1 + α

2
< 1, whenever u ≥ N.

Define Ω1 = {u ∈ C(Ω), ||u|| < r} and Ω2 = {u ∈ C(Ω), ||u|| < R},
where
(3.13)

r = min
{

1,
λk∑m

i=1Mi

}
and R = max

{
λK

m0
+

1 + α

2
, 1 +

1
N
,N

}
.

Clearly, Ω1,Ω2 are two bounded open sets in C(Ω), θ ∈ Ω1 and
Ω̄1 ⊂ Ω2. Moreover, B : P∩(Ω̄2\Ω1) → P is an L-strict set contraction.
Let u ∈ P ∩ ∂Ω1. It follows from (3.13) that

||λAu|| ≥ λ
∫
Ω
K(x, y) dy

M0 +
∑m

i=1Mi||u||αi
≥ λk∑m

i=0Mi
≥ ||u||.
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Thus,

(3.14) ||Bu|| ≥ ||λAu|| ≥ ||u||, for all u ∈ P ∩ ∂Ω1.

If u ∈ P ∩ ∂Ω2, then by (3.12), we have

||λAu|| ≤ λK/m0 and ||Gu|| ≤ (1 + α)/2.

This, together with (3.13), implies

(3.15) ||Bu|| ≤ λK

m0
+

1 + α

2
≤ ||u||, for all u ∈ P ∩ ∂Ω2.

It is easy to see

r1 = R1 = r, C1 = 2r and a = 2.

Thus

(3.16) L(R1 + 2C1/a) = L(r + 4r/2) < r = r1.

Hence, the conclusion of the theorem follows from (3.14) (3.16) and
Lemma 3.1. The proof is therefore complete.

Remark. It is easy to see that functions such as G(u) = ln(5 + u) +
1/(3 + u), G(u) = (1/6)u+ 1/

√
3 + u, etc., satisfy conditions (E2) and

(E3).
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