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ON THE BEHAVIOR AT INFINITY OF SOLUTIONS
OF INTEGRAL EQUATIONS ON THE REAL LINE

S.N. CHANDLER-WILDE

ABSTRACT. We consider integral equations of the form

x(s) = y(s) +
∫ +∞
−∞ k(s, t)x(t) dt and the behavior of the

solution, x, at infinity. In particular, we show that if, for
some q > 1, |k(s, t)| = O(|s − t|−q), uniformly in s and t,
as |s − t| → ∞, some other mild conditions on the kernel
k are satisfied, and y(s) = O(s−p) as s → ∞, with 0 <
p < q, then x(s) = O(s−p). Two examples illustrate the
application of these results and the extent to which they
may be considered sharp. The second of these examples is
a boundary integral equation which models two-dimensional
harmonic sound propagation in a half-plane with a variable
impedance boundary condition.

1. Introduction. We consider integral equations of the form

(1) x(s) = y(s) +
∫ +∞

−∞
k(s, t)x(t) dt, s ∈ R,

with y and k given and x to be determined. We abbreviate (1) as

(2) x = y +Kx

where the integral operator K is defined by

(3) Kψ(s) =
∫ +∞

−∞
k(s, t)ψ(t) dt.

Denote the space of Lebesgue integrable functions on R by L1(R) and
let C(R) denote the Banach space of bounded continuous functions
on R. Let ks(t) = k(s, t). Throughout the paper, we assume that
ks ∈ L1(R) for s ∈ R and that k satisfies the following hypotheses:

A. sups∈R ||ks||1 = sups∈R

∫ +∞
−∞ |k(s, t)| dt <∞.
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B. Δ(K;h) → 0 as h→ 0 where Δ(K;h) := sup|s1−s2|≤h ||ks1 − ks2 ||1
= sup|s1−s2|≤h

∫ +∞
−∞ |k(s1, t) − k(s2, t)| dt.

These hypotheses ensure that K is a bounded operator on C(R), with
norm ||K|| = sups∈R ||ks||1, but do not imply that K is compact.

We shall additionally suppose, for most of the paper, that I −K is
invertible on C(R) so that equation (1) has a unique solution x ∈ C(R)
for each y ∈ C(R).

A stronger condition than A is

A′. |k(s, t)| ≤ |κ(s − t)|, s, t ∈ R, where κ ∈ L1(R) and, for some
q > 1 and C > 0,

(4) |κ(s)| ≤ C(1 + |s|)−q, |s| ≥ 1.

Our main concern in this paper will be to investigate the behavior of
the solution x at infinity given Assumptions A′ and B. Our main result
will be to show that, with these hypotheses, and if y(s) = O(s−p) as
s→ ∞ for some p in the range 0 < p < q, then

(5) x(s) = O(s−p) as s→ ∞.

If y(s) = O(s−q) and if some more restrictive conditions on k are
satisfied, then x(s) = O(s−q). Later, after strengthening Assumption
A′ appropriately, we show the same behavior for derivatives of x.

The form of Assumption A′ is convenient for later calculations but
implies that k(s, t) is bounded for |s − t| ≥ 1, which may be unduly
restrictive in certain cases. The results we obtain apply, by a simple
linear change of variable, to any kernel k satisfying Hypothesis B and
a modified Hypothesis A′, with (4) replaced by

(6) κ(s) = O(s−q), s→ ∞.

For, suppose k is such a kernel which satisfies Hypotheses B and A′,
but with (4) replaced by (6). Then κ, which satisfies (6), satisfies

|κ(s)| ≤ C(1 + |s|)−q, |s| ≥ c,
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for some constants C, c > 0. Making the change of variable s̃ = s/c,
t̃ = t/c in (1), we obtain the integral equation

x̃(s̃) = ỹ(s̃) +
∫ +∞

−∞
k̃(s̃, t̃)x̃(t̃) dt̃, s̃ ∈ R,

where x̃(s̃) = x(s̃c), ỹ(s̃) = y(s̃c), k̃(s̃, t̃) = ck(s̃c, t̃c). This equation is
of the form (1) with a kernel k̃ which satisfies Assumptions A′ and B.

The class of equations to which the results we obtain apply include
the important special cases

(7) k(s, t) = κ(s− t), s, t ∈ R,

and

(8) k(s, t) =
{
κ(s− t), s ∈ R, t ≥ 0,
0, s ∈ R, t < 0,

where κ ∈ L1(R) satisfies (4). (Both these examples satisfy Hypotheses
A′ and B.) In particular, with k defined by (8), equation (1) becomes

x(s) = y(s) +
∫ ∞

0

κ(s− t)x(t) dt, s ∈ R,

an equation of Wiener-Hopf type.

For the particular case of the equation of Wiener-Hopf type, the
behavior at infinity of the solution x, given assumptions similar to A′

and B, has been investigated previously in [20] and [21]. In particular,
making the assumption

(9)
∫ +∞

−∞
(1 + |t|)q|k(t)| dt <∞,

(generally much more restrictive than (4); for example, κ(t) := (1 +
|t|)−p satisfies (4) for p ≥ q but (9) only for p > q + 1) we have, from
Theorem 1.1 in [21], combined with classical results on the spectra of
Wiener-Hopf operators in C(R) [16], that, if y(s) = O(s−q) as s→ ∞
and I −K is invertible, then x has the asymptotic behavior given by
(5). Silberman [21] also states related results in weighted Lp spaces.
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The equation of Wiener-Hopf type is amenable to a treatment by
Fourier transform methods and the resolvent kernel can be constructed
explicitly; these special features are used in the arguments in [20].
We will obtain stronger and more general results by more elementary
arguments.

A related problem to that considered in this paper is to determine
the behavior of x given an exponential decay in the kernel k, i.e., with
(4) replaced by

|κ(s)| ≤ Ce−b|s|, |s| ≥ 1,

for some b > 0. For the particular case of the equation of Wiener-Hopf
type, results are given in [19, 16, 12, 13]. The arguments we use
below do not, however, appear to extend to the case of exponential
decay in k and we do not therefore consider this case further.

Some comment on the usefulness of knowing solution behavior at
infinity is appropriate. Atkinson [4], considering the solution of integral
equations on the half-line (included here as the special case k(s, t) = 0,
t < 0), proposes approximating the solution of (1) by the solution (if
it exists), xA ∈ C(R), of xA = y + K(A)xA where K(A) is the finite
section version of K defined, for A > 0, by

K(A)ψ(s) =
∫ +A

−A
k(s, t)ψ(t) dt, s ∈ R.

In view of the finite range of integration and since, if Hypotheses A
and B are satisfied, K(A) is compact, standard methods of numerical
treatment can be applied to this equation [2, 5, 17].

From the equation

x− xA = (I −KA)−1(K −KA)x,

it is easy to see that, if Hypotheses A and B are satisfied and I −KA

is invertible and uniformly bounded for A ≥ A∗, then

||x− xA||∞ ≤ sup
A≥A∗

||(I −KA)−1|| ||K|| sup
|s|≥A

|x(s)|

for all A ≥ A∗. Thus, if the rate of decay at x at infinity is
accurately known, then ||x− xA||∞ can be estimated. In particular, if
x(s) = O(s−p) as s→ ∞, then ||x− xA||∞ = O(A−p) as A→ +∞.
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The difficulty in applying the above inequality is showing the uniform
boundedness of (I −KA)−1, A ≥ A∗. Under appropriate conditions on
the operators involved, this is demonstrated for the case in which K is
a compact perturbation of a Wiener-Hopf operator in [3] and for the
case k(s, t) = κ(s− t)z(t), with κ ∈ L1(R), z ∈ L∞(R), in [8].

Knowledge of the decay of the solution x and its derivatives at
infinity is also valuable in constructing appropriate finite dimensional
subspaces from which to seek an approximation to x as part of a
numerical solution of (1). For example, [18] discusses the construction
of piecewise polynomial approximations on suitably graded meshes to
functions which decay like s−p at infinity. These are then used as the
basis for a numerical method for Wiener-Hopf equations in the case
when it is known that the decay of the solution and sufficiently many
of its derivatives is given by (5).

The paper has two main sections. In the first of these (Section 2)
the theoretical results on the behavior of x at infinity are presented.
Section 3 illustrates these results by applying them to two examples,
the first of which is simple enough for the exact asymptotic behavior
of x at infinity to be determined by other means. The second example
is a boundary integral equation of application in the prediction of
outdoor sound propagation. This equation models two-dimensional
acoustic propagation, with a harmonic time dependence, in a half-
plane above a straight boundary with an inhomogeneous impedance
boundary condition. By applying the results of Section 2, we are able
to show, if a conjecture on the uniqueness of solution of the boundary
integral equation in C(R) is correct, that the acoustic pressure, p(ξ),
at distance ξ along the boundary satisfies

p(ξ) = O(ξ−r), ξ → ∞,

for all r in the range 0 < r < 3/2, for a wide class of distributions of
surface impedance.

In a brief Section 4, we examine, in the light of the examples in
Section 3, whether the results, obtained in Section 2, on the rate of
decay of x at infinity are sharp.

2. The rate of decay of the solution at infinity. We introduce
first of all some additional function spaces. For p ≥ 0 define
(10) Cp(R) := {ψ ∈ C(R) : ||ψ||p∞ := ||wpψ||∞ <∞}
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where
wp(s) = (1 + |s|)p, s ∈ R.

If ψ ∈ Cp(R), then ψ is continuous on R and ψ(s) = O(s−p) as s→ ∞.

We shall consider, in what follows, equation (1) directly and will also
consider a transformed version of this equation. For p > 0, let

(11) xp = wpx, yp = wpy.

Then it is easy to see that equation (1) is satisfied if and only if

(12) xp(s) = yp(s) +
∫ +∞

−∞
k(p)(s, t)xp(t) dt, s ∈ R,

where

(13) k(p)(s, t) :=
wp(s)
wp(t)

k(s, t), s, t ∈ R.

We define k
(p)
s for s ∈ R by k

(p)
s (t) = k(p)(s, t) and define the

integral operator Kp by equation (3) with K, k replaced by Kp, k(p),
respectively.

We note first the following straightforward result which follows from
the equivalence of equations (1) and (12) and the observation that, for
any ψ ∈ C(R) and p > 0,

(14) Kpψ = wpK(ψ/wp), Kψ = (1/wp)Kp(wpψ).

Theorem 1. For all p > 0

i. K is a bounded operator on Cp(R) if and only if Kp is a bounded
operator on C(R);

ii. I −K is bounded and injective on Cp(R) if and only if I −Kp is
bounded and injective on C(R);

iii. I −K is bounded and invertible on Cp(R) if and only if I −Kp

is bounded and invertible on C(R).

Our next result is only slightly less obvious.
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Theorem 2. For p > 0, if I −K is injective on C(R) and Kp is a
bounded operator on C(R), then I −Kp is injective on C(R).

Proof. If Kp is bounded on C(R), then, from Theorem 1, i, K is
bounded on Cp(R). If also I −K is injective on C(R), then x = Kx
has no nontrivial solution in C(R) and so no nontrivial solution in
Cp(R) ⊂ C(R). Thus, I −K is bounded and injective on Cp(R), and
so I −Kp is injective on C(R) by Theorem 1, ii.

We need the following technical lemma before proceeding to our next
theorem.

Lemma 3. For α, β ≥ 0, α+ β > 1, define

fαβ(s) :=
∫ +∞

−∞
(1 + |t|)−α(1 + |s− t|)−β dt, s ∈ R.

Then
Fαβ := sup

s∈R
fαβ(s) <∞,

and, if α, β > 0, fαβ(s) → 0 as s→ ∞.

Proof. The result is obvious in the case α = 0 or β = 0. Moreover,
it is clear that fαβ(s) increases as α or β is decreased. Thus, it is
sufficient to consider further only cases in which 0 < α < 1, 0 < β < 1,
and α+ β > 1.

We define

gαβ(s) :=
∫ ∞

0

(1 + |t|)−α(1 + |s− t|)−β dt, s ∈ R,

and note that fαβ(s) = gαβ(s)+gαβ(−s) so that it is sufficient to show
that gαβ is bounded and gαβ(s) → 0 as s→ ∞.

For s ≤ 0,

gαβ(s) ≤
∫ ∞

0

Gs(t)(1 + t)−(α+β) dt

where

Gs(t) =
{

1 + t

1 − s+ t

}β

, t ≥ 0.
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Now |Gs(t)| ≤ 1 so that

(15) gαβ(s) ≤
∫ ∞

0

(1 + t)−(α+β) dt, s ≤ 0.

Also Gs → 0 uniformly on finite intervals as s → −∞ so that
gαβ(s) → 0 as s→ −∞.

For s ≥ 0,

gαβ(s) =
∫ s

0

(1 + t)−α(1 + s− t)−β dt+ gβα(−s).

Thus, and from (15),

(16) gαβ(s) ≤ 1 +
∫ ∞

0

(1 + t)−(α+β) dt, 0 ≤ s ≤ 1.

For s > 0,

gαβ(s) ≤
∫ s

0

t−α(s− t)−β dt+ gβα(−s)

= s1−(α+β)

∫ 1

0

t−α(1 − t)−β dt+ gβα(−s).

Thus gαβ(s) → 0 as s→ +∞ and, using (15),

(17) gαβ(s) ≤
∫ 1

0

t−α(1 − t)−β dt+
∫ ∞

0

(1 + t)−(α+β) dt, s ≥ 1.

We have shown that gαβ(s) → 0 as s→ ∞ and, in (15), (16), and (17),
that gαβ is bounded.

With this technical lemma, we proceed to the next and crucial result
of the paper.

Theorem 4. Suppose that Hypotheses A′ and B are satisfied by k
and 0 < p < q. Then Hypotheses A and B are satisfied by k(p) and

(18) lim
s→∞

∫ +∞

−∞
|k(s, t) − k(p)(s, t)| dt = 0.
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Proof. We show first that Hypothesis A is satisfied, then equation
(18), then Hypothesis B.

For s, t ∈ R,
wp(s)
wp(t)

=
{

1 +
(|s| − |t|)
1 + |t|

}p

≤
{

1 +
|s− t|
1 + |t|

}p

≤ 2p
{

1 +
{ |s− t|

1 + |t|
}p}

.

Thus, and from Hypothesis A′,
(19)

|k(p)(s, t)| ≤
⎧⎨
⎩

2p|κ(s− t)|, |s− t| ≤ 1,
2pC{(1 + |s− t|)−q

+ (1 + |t|)−p(1 + |s− t|)p−q}, |s− t| ≥ 1.

Hence, for s ∈ R (and with fαβ , Fαβ defined as in Lemma 3),

∫ +∞

−∞
|k(p)(s, t)| dt ≤ 2p||κ||1 + 2pC{f0,q(s) + fp,q−p(s)}

≤ 2p||κ||1 + 2pC{F0,q + Fp,q−p}
<∞

by Lemma 3, so k(p) satisfies Hypothesis A.

From (19), and since k satisfies Hypothesis A′,
(20)

|k(s, t)−k(p)(s, t)| ≤
⎧⎨
⎩

|vs(s− t)||κ(s− t)|, s, t ∈ R,
(2p + 1)C(1 + |s− t|)−q
+ 2pC(1 + |t|)−p(1 + |s− t|)p−q, |s− t| ≥ 1,

where, for s ∈ R, vs : R → R is defined by

vs(t) =
wp(s)

wp(s− t)
− 1

=
{

1 + |s|
1 + |s− t|

}p

− 1.
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Thus, for all A ≥ 1,
(21)

F (s) :=
∫ +∞

−∞
|k(s, t)−k(p)(s, t)| dt =

∫ +∞

−∞
|k(s, s−t)−k(p)(s, s−t)| dt

≤
∫ A

−A
|vs(t)| |κ(t)| dt+

∫
R\[−A,A]

|k(s, s−t)−k(p)(s, s−t)| dt

≤
∫ A

−A
|vs(t)| |κ(t)| dt+ 2p+2C

q − 1
(1+A)1−q + 2pCfp,q−p(s),

where to obtain this last line we use (20) and note that

(2p + 1)C
∫
R\[−A,A]

(1 + |t|)−q dt ≤ 2p+2C

∫ +∞

A

(1 + t)−q dt.

Given ε > 0 we can choose A sufficiently large so that the second
term in (21) is ≤ ε/2, and then, for all s sufficiently large, the sum of
the remaining terms is ≤ ε/2 since fp,q−p(s) → 0 as s→ ∞ by Lemma
3, and vs tends to zero as s → ∞, uniformly on finite intervals. Thus
F (s) → 0 as s→ ∞, i.e., we have shown (18).

To show that k(p) satisfies Hypothesis B, note that
(22)
Δ(Kp;h) := sup

|s1−s2|≤h
||k(p)

s1 − k(p)
s2 ||1

≤ sup
|s1−s2|≤h

||(k(p)
s1 − ks1) − (k(p)

s2 − ks2)||1 + Δ(K;h)

≤ sup
|s1−s2|≤h

|s1|,|s2|≤A+h

||k(p)
s1 −ks1)−(k(p)

s2 −ks2)||1+2G(A)+Δ(K;h),

where G(A) := sups≥A F (s).

Now k
(p)
s − ks = ((wp(s)/wp) − 1)ks and |wp| ≥ 1, so that

(23)

||(k(p)
s1 − ks1) − (k(p)

s2 − ks2)||1 ≤ |wp(s1) − wp(s2)| ||ks1 ||1
+ (1 + wp(s2))||ks1 − ks2 ||1

≤ |wp(s1) − wp(s2)| ||K||
+ (1 + wp(s2))Δ(K;h).
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Since G(A) → 0 as A→ +∞, given ε > 0 we can choose A sufficiently
large so that 2G(A) ≤ ε/2. Then, by Hypothesis B, from the inequality
(23), and since wp is uniformly continuous on finite intervals, for all h
sufficiently small the sum of the remaining terms in (22) is ≤ ε/2. Thus
Δ(Kp;h) → 0 as h→ 0.

We note that the above result and proof extends in part to the case
p = q. Specifically, if k satisfies Hypotheses A′ and B, then we see from
the above proof that

(24) sup
s

∫ +∞

−∞
|k(q)(s, t)| dt ≤ 2q||κ||1 + 2qC{F0,q + Fq,0}

so that k(q) satisfies Hypothesis A. However, it does not follow from
Hypotheses A′ and B that

lim
s→∞

∫ +∞

−∞
|k(s, t) − k(q)(s, t)| dt = 0

as is shown by the example in the next lemma.

Lemma 5. For some q > 1, define

k(s, t) = (1 + |s− t|)−q, s, t ∈ R.

Then k satisfies Hypotheses A′ and B but

(25)
∫ +∞

−∞
|k(s, t) − k(q)(s, t)| dt �→ 0 as s→ ∞.

Proof. It is clear that k satisfies Hypotheses A′ and B. To see (25),
note that, for s ∈ R,

∫ +∞

−∞
|k(s, t) − k(q)(s, t)| dt ≥

∫ |s| 12

−|s| 12

∣∣∣∣
{

1 + |s|
1 + |t|

}q

− 1
∣∣∣∣ (1 + |s− t|)−q dt

≥ (1 + |s| + |s| 12 )−q
∫ |s| 12

−|s| 12
1
2

{
1 + |s|
1 + |t|

}q

dt
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for |s| ≥ 2. (To see this last inequality, note that 1
2{(1+|s|)/(1+|t|)}q ≥

1 if |t| ≤ |s| 12 and |s| ≥ 9.) Thus, for |s| ≥ 9,

∫ +∞

−∞
|k(s, t) − k(q)(s, t)| dt ≥

{
1 + |s|

1 + |s| + |s| 12
}q ∫ |s| 12

0

(1 + t)−q dt

→
∫ ∞

0

(1 + t)−q dt =
1

q − 1

as s→ ∞, demonstrating (25).

As a corollary of the last theorem, we have the following important
result.

Theorem 6. If Hypotheses A′ and B are satisfied, then, for 0 < p <
q, Kp is a bounded operator and Kp−K a compact operator on C(R).

Proof. If Hypotheses A′ and B are satisfied (by k), then, from
Theorem 4, Hypotheses A and B are satisfied by k(p). These hypotheses
imply that Kp is a bounded operator on C(R), and, moreover, that
Kp and also K and Kp − K which also satisfy Hypotheses A and
B, map a bounded set in C(R) into a set which is bounded and
equicontinuous. Taking into account (18), we see that Kp − K maps
a bounded set in C(R) into a set S which is bounded, equicontinuous,
and equiconvergent to zero at ∞. (This last means that ψ(s) → 0
uniformly for ψ ∈ S.) Such a set is precompact in C(R) (see Atkinson
[4]). Thus, Kp −K is compact on C(R).

We have, in addition, the following partial result for the case p = q.

Theorem 7. If Hypotheses A′ and B are satisfied, then Kq is a
bounded operator on C(R).

Proof. If Hypotheses A′ and B are satisfied, then for ψ ∈ C(R) and
s ∈ R,
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|Kqψ(s)| ≤
∫ +∞

−∞
|k(q)(s, t)| dt||ψ||∞(26a)

≤ 2q
{
||κ||1 +

4C
q − 1

}
||ψ||∞(26b)

from (24), since F0,q = Fq,0 = 2/(q − 1). Thus, Kqψ is bounded.

From (14), Kqψ = wqK(ψ/wq). Now wq is continuous and |wq| ≥ 1,
so that ψ/wq ∈ C(R), K(ψ/wq) ∈ C(R), and so Kqψ is continuous.

We have shown that Kqψ is bounded and continuous so that Kq :
C(R) → C(R). From (26b) this mapping is bounded with

(27) ||Kq|| ≤ 2q
{
||κ||1 +

4C
q − 1

}
.

In fact, by examining how the bounds (27) and (24) are obtained, we
see that the argument can easily be sharpened slightly to give

(28) ||Kq|| ≤ 2q
∫ 1

−1

|κ(t)| dt+ (2q+1 + 4)
C

q − 1
.

With care, a smaller bound still could be obtained. Such bounds may
be valuable since, as remarked in Theorem 10 below, if ||Kq|| < 1, then
I −Kq is invertible.

In view of Theorem 1, i, we can write the first part of Theorem 6
together with Theorem 7 equivalently as

Corollary 8. If Hypotheses A′ and B are satisfied, then K is a
bounded operator on Cp(R) for all p in the range 0 < p ≤ q.

We now come to the main result of the paper.

Theorem 9. If Hypotheses A′ and B are satisfied and I − K is
an invertible operator on C(R), then, for all 0 < p < q, I − Kp is a
bounded and invertible operator on C(R) and I −K is a bounded and
invertible operator on Cp(R).



166 S.N. CHANDLER-WILDE

Proof. Suppose that Hypotheses A′ and B are satisfied, that I−K is
an invertible operator on C(R), and that 0 < p < q. Then, by Theorem
6, Kp is a bounded operator on C(R) and Kp−K is compact, and, by
Theorem 2, I −Kp is injective on C(R). But

I −Kp = I −K +K −Kp

is the sum of an invertible operator and a compact operator and so
satisfies the Fredholm alternative. Thus, I −Kp is invertible on C(R).

The remainder of the theorem follows from Theorem 1, iii.

Again, we have a partial result for the case p = q.

Theorem 10. If Hypotheses A′ and B are satisfied and ||κ||1 and C
are sufficiently small, then I −Kq is a bounded and invertible operator
on C(R) and I −K is a bounded and invertible operator on Cq(R).

Proof. If Hypotheses A′ and B are satisfied, then, from Theorem 7,
Kq is bounded on C(R) with norm bounded by (27). Thus, for ||κ||1
and C sufficiently small, ||Kq|| < 1 and I −Kq is invertible on C(R).
It follows from Theorem 1, iii that I − K will then be bounded and
invertible on Cq(R).

As a corollary of the above two theorems, we obviously have

Corollary 11. If Hypotheses A′ and B are satisfied, I − K is an
invertible operator on C(R), and y ∈ Cp(R), for some 0 < p < q, then
the unique solution x ∈ C(R) of equation (1) is in Cp(R) and

(29) |x(s)| ≤ Cp||y||p∞(1 + |s|)−p, s ∈ R,

where Cp denotes the norm of (I − K)−1 as an operator on Cp(R),
defined by

Cp := sup
ψ∈Cp(R)

||(I −K)−1ψ||p∞
||ψ||p∞ = sup

ψ∈C(R)

||(I −Kp)−1ψ||∞
||ψ||∞ .

If also ||κ||1 and C are sufficiently small and y ∈ Cq(R), then x ∈
Cq(R) and x satisfies (29) with p replaced by q.
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If we strengthen Assumptions A′ and B appropriately and make
appropriate assumptions about the behavior of the derivatives of k
as well as about k, then we can make deductions about the decay also
of the derivatives of x at infinity. A simple hypothesis, which implies
both Hypotheses A′ and B, and leads to a result of this type is the
following:

C. For some m ∈ N and r = 0, 1, . . . ,m, ∂r/∂srk(s, t) ∈ C(R2) and,
for some q > 1 and C > 0,

∣∣∣∣ ∂
r

∂sr
k(s, t)

∣∣∣∣ ≤ C(1 + |s− t|)−q, s, t ∈ R, r = 0, 1, . . . ,m.

Theorem 12. If Hypothesis C is satisfied and y(m), x ∈ Cp(R) for
some p in the range 0 < p ≤ q, then

(30) x(m)(s) = y(m)(s) +
∫ +∞

−∞

∂m

∂sm
k(s, t)x(t) dt, s ∈ R,

x(m) ∈ Cp(R) and

(31) ||x(m)||p∞ ≤ ||y(m)||p∞ + 2pC{F0,q + Fp,q−p}||x||p∞.

Proof. From [22, p. 59] Hypothesis C implies that, for all ψ ∈ C(R),
(Kψ)(m) is continuous and

∂m

∂sm

∫ +∞

−∞
k(s, t)ψ(t) dt =

∫ +∞

−∞

∂m

∂sm
k(s, t)ψ(t) dt, s ∈ R.

Thus, equation (30) follows from differentiating equation (1). Also, if
ψ ∈ Cp(R), for some p in the range 0 < p ≤ q, then

||(Kψ)(m)||p∞ = sup
s∈R

∣∣∣∣wp(s)
∫ +∞

−∞

∂m

∂sm
k(s, t)ψ(t) dt

∣∣∣∣
≤ sup

s∈R

∫ +∞

−∞

wp(s)
wp(t)

∣∣∣∣ ∂
m

∂sm
k(s, t)

∣∣∣∣ dt||ψ||p∞
≤ 2pC{F0,q + Fp,q−p}||ψ||p∞
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on applying the arguments and the bound on wp(s)/wp(t) in Theorem
4. Thus, and if y(m) ∈ Cp(R), we obtain from (30) that x(m) ∈ Cp(R)
and the inequality (31).

By combining Corollary 11 and Theorem 12 we have the following
result concerning the decay of the derivatives of the solution x at
infinity.

Corollary 13. If Hypothesis C is satisfied, I − K is an invertible
operator on C(R) and y, y(m) ∈ Cp(R) for some p in the range
0 < p < q, then x(m) ∈ Cp(R) and

(32) ||x(m)||p∞ ≤ ||y(m)||p∞ + 2pC{F0,q + Fp,q−p}Cp||y||p∞.

If also C is sufficiently small and y, y(m) ∈ Cq(R), then x(m) ∈ Cq(R)
and (32) holds with p replaced by q.

Proof. If Hypothesis C is satisfied, then so also are Hypotheses B and
A′ (with κ(s) = C(1 + |s|)−q in A′). If also y ∈ Cp(R) for some p in
the range 0 < p ≤ q, and if, in the case p = q, C is also sufficiently
small, then, from Corollary 11, x ∈ Cp(R) and ||x||p∞ ≤ Cp||y||p∞. If
also y(m) ∈ Cp(R), then, from Theorem 12, x(m) ∈ Cp(R) and we have
the bound (32).

3. Examples. We give in this section two examples of integral equa-
tions satisfying Hypotheses A′ and B which illustrate the application
and sharpness of the results obtained in the previous section. The first
of these is a simple example of no practical application. The second is
a boundary integral equation arising in outdoor sound propagation.

Consider first the integral equation

(33) x(s) = y(s) + λ

∫ +∞

−∞

x(t)
1 + (s− t)2

dt,

where λ ∈ C and y ∈ Cp(R) for some p > 0. This is identical to
equation (1) if we define k in (1) by (7) and κ by

(34) κ(s) = λ(1 + s2)−1, s ∈ R.
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k defined in this way satisfies Hypothesis B and also Hypothesis A′

with q = 2.

Equation (33), a convolution integral equation on the real line, can
be solved by Fourier transform methods. For ψ ∈ L1(R), we define the
Fourier transform of ψ, denoted ψ̂, by

ψ̂(ξ) =
∫ +∞

−∞
ψ(s)eiξs ds, ξ ∈ R.

We note that ψ̂ ∈ C(R) and ψ̂(ξ) → 0 as ξ → ∞ by the Riemann-
Lebesgue lemma. From a theorem due to Wiener (see, for example,
[15, Theorems 13.2 and 13.3]), with K defined by (3) and k as defined
above, I −K is invertible if and only if

κ̂(ξ) �= 1, ξ ∈ R.

With κ defined by (34), by a standard application of contour integra-
tion,

(35) κ̂(ξ) = λπe−|ξ|, ξ ∈ R.

We see that I − K is invertible if and only if λ ∈ Λ := C\{λ ∈ R :
λ ≥ π−1}. Again, from [15, Theorems 13.2 and 13.3], provided λ ∈ Λ,
there exists κ∗ ∈ L1(R) such that κ̂∗ = κ̂/(1 − κ̂) and

(36) x(s) = y(s) +
∫ +∞

−∞
κ∗(s− t)y(t) dt, s ∈ R.

With κ̂ given by (35), κ̂/(1 − κ̂) ∈ L1(R) so that

(37)
κ∗(s) =

1
2π

∫ +∞

−∞

κ̂(ξ)
1 − κ̂(ξ)

e−iξs dξ

= λ

∫ ∞

0

e−ξf(ξ) cos(ξs) dξ

where f(ξ) = (1 − λπe−ξ)−1, ξ ≥ 0.

We do not calculate κ∗(s) explicitly but determine the asymptotic
behavior of κ∗(s) as s → ±∞. It is easy to see that f, f ′, f ′′ ∈ C(R)
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(as indeed are all the derivatives of f). Integrating (37) by parts twice,

(38)

κ∗(s) = −λ(f ′(0) − f(0))
s2

− λ

s2

∫ ∞

0

e−ξ(f ′′(ξ) − 2f ′(ξ)

+ f(ξ)) cos(ξs) dξ

=
λ

(1 − λπ)2s2
+ o(s−2)

as s→ ∞, on applying the Riemann-Lebesgue lemma. Thus, κ∗ decays
at the same rate at infinity as κ.

Defining the operator K∗ on C(R) by

(39) K∗ψ(s) =
∫ +∞

−∞
κ∗(s− t)ψ(t) dt, s ∈ R,

K∗ (like K) satisfies Assumptions B and A′ with q = 2. From equation
(36) (provided λ ∈ Λ),

(I −K)−1 = I +K∗.

Thus, and applying Corollary 8 to K∗, we see that (I − K)−1 is a
bounded operator on Cp(R) for 0 < p ≤ 2. However, neither I − K
nor (I −K)−1 map Cp(R) onto Cp(R) for any p > 2, since ỹ ∈ C(R),
defined by

ỹ(s) =
{

1 − |s|, |s| < 1,
0, |s| ≥ 1,

is in Cp(R) for all p > 0, and it is easy to see (using (38) in the case of
K∗) that

Kỹ(s) ∼ λ

s2
, K∗ỹ(s) ∼ λ

(1 − λπ)2s2
, s→ ∞,

so that Kỹ, K∗ỹ /∈ Cp(R) for p > 2.

We now consider how well the results of the previous section predict
these properties of (I −K)−1. K satisfies Hypotheses B and A′ (with
q = 2 and C = 2|λ|) and (assuming λ ∈ Λ) I−K is invertible. Thus, we
have, from Theorem 9, that I−K is a bounded and invertible operator
on Cp(R) for 0 < p < 2. Further, from Corollary 8, I−K is a bounded
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operator on C2(R). However, our results do not predict that I − K
is invertible on C2(R), unless also ||K2|| < 1. From the bound (28),
||K2|| < 1 if

|λ| < 1
2π + 24

.

We consider now an example with practical application in outdoor
sound propagation. The physical problem is that of propagation from
an acoustic monofrequency line source situated in a homogeneous fluid
medium which occupies the half-space above a plane boundary. The
boundary is locally reacting with normalized surface admittance β
which is assumed constant in the direction of the line source.

We introduce cartesian coordinates Oξ̃η̃ζ̃, the fluid region being the
half-space η̃ > 0, and the ζ̃-axis parallel to the line source, the position
of which is defined by ξ̃ = 0, η̃ = η̃0 (η̃0 > 0). The physical problem
which has been described is two-dimensional; the acoustic field depends
only on the space variables ζ̃ and η̃.

By Green’s theorem, the acoustic pressure at an arbitrary point in
the fluid medium can be expressed in terms of the boundary values of
the pressure. These boundary values are found by solving a boundary
integral equation. The acoustic pressure P (ξ̃, t), at time t and point
(ξ̃, 0, ζ̃) on the boundary can be written

P (ξ̃, t) = Re {e−2πiftp̃(ξ̃)},

where f is the frequency of the source, i =
√

(−1), and p̃ ∈ C(R).
Introducing dimensionless space variables, ξ = kξ̃, η = kη̃, η0 = kη̃0,
where k > 0 is the wavenumber, and defining p ∈ C(R) by

p(ξ) = p̃(ξ̃), ξ ∈ R,

p satisfies the integral equation

(40)
p(ξ) = Gβc

(ξ) + i

∫ +∞

−∞
gβc

(ξ − ξs)(βc − β(ξs))p(ξs) dξs,

ξ ∈ R.

A derivation of this equation, in which the constant βc satisfies βc = 0
or Re βc > 0, is given in [14, 9]. The functions Gβc

and gβc
are defined
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by

Gβc
(ξ) = − i

2
H

(1)
0 ((ξ2 + η2

0)
1
2 ) + Pβc

(ξ, η0), ξ ∈ R,(41)

gβc
(ξ) = − i

2
H

(1)
0 (|ξ|) + Pβc

(ξ, 0), ξ ∈ R,(42)

whereH(1)
0 is the Hankel function of the first kind of order zero. Pβc

= 0
if βc = 0 while, if Reβc > 0, Pβc

is defined by

(43)
Pβc

(X,Y ) :=
iβc
2π

∫ +∞

−∞

exp(i(Y (1 − t2)
1
2 −Xt)

(1 − t2)
1
2 ((1 − t2)

1
2 + βc)

dt,

X ∈ R, Y ≥ 0,

with 0 ≤ arg{(1 − t2)
1
2 } ≤ π/2.

Equation (40) is identical to equation (1) on defining

(44)
y = Gβc

, x = p,

k(ξ, ξs) = igβc
(ξ − ξs)(βc − β(ξs)), ξ, ξs ∈ R.

At points ξ where the ground is completely rigid, β(ξ) = 0. Reβ
increases as the ground becomes more acoustically absorbing. Standard
models of the normalized surface admittance (β) of typical ground
surfaces [11,6], in which the ground is modelled as a homogeneous
porous half-space, predict that |β| ≤ 1, and we assume that β ∈
L∞(R). Practically, the case when β is a piecewise constant is most
important.

From the definition of the Hankel function, it follows that

(45) H
(1)
0 (|ξ|) = ln |ξ|A(ξ) +B(ξ), ξ ∈ R,

where A and B are even, entire analytic functions. Also [1]

(46) H
(1)
0 (ξ) ∼ (2/(πξ))

1
2 ei(ξ−π/4), ξ → +∞.

We see from (41), (42) and (46) that, in what appears at first sight to
be the simpler case βc = 0, when Pβc

= 0, so that Gβc
and gβc

are
given purely in terms of the Hankel function,

|gβc
(ξ)| ∼ (2/(π|ξ|)) 1

2 , ξ → ∞,
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so that gβc
/∈ L1(R) and the theory of the previous section does not

apply.

The functions Pβc
, Gβc

, and gβc
, are discussed at length in [10, 7].

From [10, Theorem 8], Pβc
is continuous and bounded on R2

+ :=
{(ξ, η) : ξ ∈ R, η ≥ 0}. From [7, equations (2.1.87), (2.1.91), and
(2.1.92)], we have that

Gβc
(ξ) =

1√
2π

{
1
β2

− iη0
2β

}
ei(|ξ|−π/4)|ξ|−3/2 +O(ξ−5/2),

(47)

ξ → ∞,

gβc
(ξ) =

1√
2π

1
β2
ei(|ξ|−π/4)|ξ|−3/2 +O(ξ−5/2),

(48)

ξ → ∞.

It follows, on considering also equations (41) and (45), that Gβc
∈

C3/2(R) but Gβc
/∈ Cp(R) for p > 3/2. Also, from (42), 45), and (48),

gβc is continuous except for a logarithmic singularity at 0, gβc
∈ L1(R),

and (assuming β ∈ L∞(R)) k (defined by (44)) satisfies Hypothesis A′

with q = 3/2. k also satisfies Hypothesis B for

∫ +∞

−∞
|k(s1, t)−k(s2, t)| dt ≤

∫ +∞

−∞
|gβc

(t+|s1−s2|)−gβc
(t)| dt ||β−βc||∞,

and the integral on the right-hand side tends to zero as |s1 − s2| → 0.

To the author’s knowledge, for Re βc > 0 and an arbitrary β ∈ L∞(R)
with Reβ(ξ) > 0 or β(ξ) = 0 for each ξ ∈ R, the existence and/or
uniqueness of solution of equation (40) is an open question. If β is
“close enough” to βc the situation is clear enough: specifically, if

(49) ||βc − β||∞||gβc
||1 < 1

then, where K is defined by (3) and k by (44), ||K|| < 1 and so I−K is
invertible on C(R). Further, in the special cases, amenable to solution
by Fourier transform methods,

(50) β(ξ) := β∗, ξ ∈ R,
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(51) β(ξ) :=
{
β∗, ξ ≥ 0,
βc, ξ < 0,

where β∗ is a constant, we have from [15, Theorems 13.2 and 13.3],
in the first case (cf. the previous example) and [16] in the second,
Wiener-Hopf case, that I −K is invertible, if and only if

(52) 1 − i(βc − β∗)ĝβc
(s) �= 0, s ∈ R.

From [10],

ĝβc
(s) =

−i
(1 − s2)

1
2 + βc

, s ∈ R,

where Re {(1− s2)
1
2 }, Im {(1− s2)

1
2 } ≥ 0, so that the condition (52) is

(53)
(1 − s2)

1
2 + β∗

(1 − s2)
1
2 + βc

�= 0, s ∈ R.

Clearly (53) is satisfied and I −K invertible if Reβ∗ > 0, while (53) is
not satisfied and so I −K is not invertible if β∗ = 0.

Besides the above results for ||β − βc||∞ small and β given by (51)
or (52), [7, p. 244] shows that I − K is invertible if β is piecewise
continuous with β − βc compactly supported and Reβ ≥ 0.

Mindful of the above partial results, [8] makes the following conjec-
ture concerning the uniqueness of solution of equation (40).

Conjecture. If Re βc > 0, β ∈ L∞(R), and, for some ε > 0,
Re β(ξ) ≥ ε for ξ ∈ R, then the homogeneous version of (40), p = Kp,
has only the trivial solution p = 0 in C(R).

Assuming this conjecture, the following result can be obtained [8].

Theorem 14. If Reβc > 0, β satisfies the conditions of the
conjecture, and the conjecture is true, then I−K is invertible on C(R).

We consider now the application of the results of Section 2 to the
integral equation (40). We have seen above that k, defined by (44),
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satisfies Hypothesis B and Hypothesis A′ with q = 3/2, and that
Gβc

∈ C3/2(R). Applying Theorems 9 and 14 and noting that I −K
is invertible if (49) is satisfied, we therefore have

Theorem 15. (i) If Re βc > 0, β satisfies the conditions of the
conjecture, and the conjecture is true, then for all r in the range
0 < r < 3/2, I − K is invertible on Cr(R), so that p ∈ Cr(R) and
p(ξ) = O(ξ−r), ξ → ∞.

(ii) If Re βc > 0, (49) is satisfied, and ||β−βc||∞ is sufficiently small
(how small is sufficient depending on the value of βc), then I − K is
invertible on C3/2(R), p ∈ C3/2(R) and p(ξ) = O(ξ−3/2), ξ → ∞.

Finally we consider how well the above result predicts the behavior
we expect from analytical solutions of equation (40) and from physical
intuition. When β is given by (50) (β is a constant function), with
Re βc, Re β∗ > 0, the unique continuous solution of (40) is easily seen,
by Fourier transform methods (cf. the first example), to be p = Gβ∗ .
Thus, in the case of a homogeneous absorbing boundary, from (47),

(54) p(ξ) ∼ C|ξ|−3/2, ξ → ∞,

for some constant C depending on β∗ and η0.

In the case of an inhomogeneous absorbing boundary, with β satisfy-
ing the conditions of the conjecture, we might anticipate from physical
intuition, and making allowance for a possible local doubling of sound
pressure due to diffraction from admittance discontinuities, that

(55) |p(ξ)| ≤ 2 sup
β∗∈B

|Gβ∗(ξ)|, ξ ∈ R,

where B denotes the essential range of β, giving

(56) p(ξ) = O(ξ−3/2), ξ → ∞,

in this case also.

Given the behavior shown for the homogeneous case in (54), proved
for the inhomogeneous case for ||β − βc||∞ small in Theorem 15,ii, and
suggested for the general inhomogeneous case in (56), it seems very
possible that Theorem 15 is not quite sharp; the conditions of the
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theorem may in fact be sufficient to conclude that I −K is invertible
on C3/2(R) so that p(ξ) = O(ξ−3/2), ξ → ∞, without any restriction
on the size of ||β − βc||∞.

4. Discussion. In these concluding remarks, we consider briefly, in
the light of the examples in Section 3, whether or not the results in
Section 2 are sharp.

We have shown, in particular in Corollary 8, that, if k satisfies
Hypotheses A′ and B, then K is a bounded operator on Cp(R) for
0 < p ≤ q and that, if also I −K is invertible on C(R), then I −K is
invertible on Cp(R) for 0 < p < q: I −K is also invertible on Cq(R) if
||Kq|| < 1. The examples of Section 3 suggest that Hypotheses A′ and
B may be sufficient, if also I −K is invertible on C(R), to show that
I −K is invertible on Cq(R) without any restriction on ||Kq||, and it
would be a satisfactory extension to the results of Section 2 to either
prove this or provide a counter example. Both the examples considered
in Section 3 are consistent with this result being true. However, Lemma
5 has shown that the arguments we use to demonstrate that I −K is
invertible on Cp(R), for 0 < p < q, do not extend to the case p = q.

The first example considered in Section 3 has shown that the results
we have obtained are at least “almost sharp” in that, in general, I−K
will not be invertible on Cp(R) for any p greater than q. Precisely, it
illustrates the fact that k may satisfy Hypotheses A′ and B, and I −K
may be invertible on C(R) without it being the case that either K or
(I −K)−1 map Cp(R) into Cr(R) for any pair p and r with r > q.
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