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STABILITY ANALYSIS OF ALMOST
SINUSOIDAL PERIODIC OSCILLATIONS
IN NONLINEAR CONTROL SYSTEMS

SUBJECTED TO NONCONSTANT PERIODIC INPUT

G.S. KRENZ AND R.K. MILLER

ABSTRACT. We investigate the existence, local uniqueness
and local stability properties of almost sinusoidal periodic
oscillations in a class of nonlinear control systems subjected
to a nonconstant periodic input.

Provided two parameters are sufficiently small, a modified
Routh-Hurwitz condition is given which determines the sta-
bility of the forced response. The analysis uses (1) the clas-
sical single-input sinusoidal describing function to predict the
amplitude and phase shift of the fundamental component of
the forced response; (2) a novel linearization of the forced
problem; (3) averaging; and (4) a simple theorem concerning
perturbed linear systems.

We present several systems which, in theory, satisfy our
results. A specific example demonstrates how the results could
be used in practice.

1. Introduction. John Nohel wrote his thesis in 1953 at MIT under
the guidance of Norman Levinson. The topic of this thesis was stability
of periodic solutions of perturbed periodic and autonomous differential
equations. This thesis complemented 1952 results of Coddington and
Levinson. A portion of the thesis was published in 1960, cf. [23].
Richard Miller wrote his thesis [18] in 1964 under the guidance of John
Nohel on the subject of stability of solutions of perturbed periodic
differential equations. Gary Krenz wrote his thesis [13] in 1984 under
the guidance of Richard Miller. Continuing the tradition, he wrote on
the subject of stability of periodic solutions of nonlinear differential
equations. This paper contains a portion of the results from Krenz’s
thesis.

The results of Nohel in [23] are proved using Floquet multipliers and
some delicate analysis of matrix functions and their determinants. The
results in [18] were proved using invariance principle arguments which
complemented and generalized earlier work of John and J.J. Levin.
The results in the present work depend on an integral manifold result,
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cf. [13, Appendix A]. This integral manifold theorem generalizes earlier
results on this topic. It is proved using Lyapunov-Schmidt arguments to
turn the problem into an integral equation question. A pair of delicate
contraction mapping arguments are needed to prove the solution of the
corresponding system of integral equations exists and has the necessary
properties.

In this paper, we investigate the stability of periodic motions in a
class of nonlinear control systems subjected to continuous, nonconstant,
periodic inputs. In particular, we use the single-input sinusoidal
describing function method [7] to obtain the approximate amplitude,
a1, and phase shift, α, of the system response. We employ several state-
space coordinate transformations, averaging, and a result on perturbed
linear systems in order to

(1) verify the existence and uniqueness of a periodic motion xp(t)
near the approximate solution determined by a1 and α, and

(2) analyze the stability properties of xp(t).

The class of control systems consists of a linear part and a nonlinear
part connected in a single loop feedback configuration (see Figure 1).
The linear part is given by a controllable and observable realization
[16] of a real rational transfer function G(s), where the degree of the
numerator is less than the degree of the denominator of G(s). The
nonlinear part of the system is required to be an odd, continuous,
single-valued function with some additional piecewise differentiability
properties.

The most popular method of testing stability of periodic solutions
of unforced nonlinear feedback systems is the quasistatic stability
analysis (also called the Loeb criterion). This analysis is usually done
graphically. Our results can be viewed as an extension of the quasistatic
stability analysis to forced nonlinear feedback systems. Our result does
not have a graphical interpretation. Instead, stability is checked in
the Routh-Hurwitz style by determining the signs of certain easily
computed parameters. Stability results are derived and proved by
techniques similar to those in the unforced case [21, 22]. However,
the presence of the forcing term causes sufficient complications so that
the results given here do not constitute mere modifications or obvious
extensions of earlier results.
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FIGURE 1. Block diagram of the system.

This paper is divided into six sections. The first is a brief intro-
duction. In the second section, we state some related results. For the
reader’s convenience, the theorem on perturbed linear systems is given.
The third section explains some of the notation and contains our main
result. In the fourth section, we give a brief sketch of the analysis of
the feedback system. The fifth section contains specific examples. The
final section contains brief remarks and observations.

2. Related results. There is extensive literature devoted to
the theoretical justification of the describing function method as it is
currently used in studying limit cycle behavior in nonlinear systems.
The results of Bass [2], Bergen and Franks [3], Bergen et al. [4],
Mees and Bergen [17], Skar et al. [25], and Swern [26] are concerned
with the existence of self-sustained oscillations in systems subjected
to zero inputs. On the other hand, Holtzman [10], Miller and Michel
[19], and Sandberg [24] used the describing function method to obtain
sufficient conditions which guarantee the existence of periodic solutions
of nonlinear control systems subjected to periodic inputs.

Sandberg’s analysis is based on a global contraction mapping argu-
ment on the space of periodic functions which are square integrable
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over a period. His results require that the nonlinearity be Lipschitzian.
With some additional restrictions, he is able to assert the existence
of a unique periodic response to an arbitrary periodic input with the
same period. Moreover, he is able to give an upper bound on the mean
square error between the actual periodic system response and the pre-
dicted response. In addition, he gives a necessary condition for the
occurrence of jump-resonance phenomena (see [7] or [11]) as well as
conditions under which sub-harmonics and self-sustained oscillations
cannot occur.

Holtzman obtains a local existence result by requiring the local
differentiability of the operator near the approximate solution. As a
consequence of this approach, he is able to give a uniform bound on
the error between an actual solution and the approximate solution.

Miller and Michel, by applying results on the differential resolvent of
Volterra equations and weak solutions, presented an existence result for
sinusoidally forced nonlinear systems containing, for example, relays or
hysteresis nonlinearities. Like Holtzman, a subspace of the continuous
functions is used to obtain a uniform bound on the error between a
solution and the describing function approximation.

The techniques employed in this paper are similar to those used by the
present authors (see [21] or [22]) to study the stability of oscillations
in nonlinear systems with zero input. However, in the current paper,
the linearization of the problem must account for the effects of the
fundamental component of the input. In addition, the role of the
phase angle of the solution is drastically changed. The averaging
technique used in this paper dates back to the early work of Krylov
and Bogoliubov [15] and Bogoliubov and Mitropolsky [5]. However,
the exact form of averaging we use is an adaptation of that used by
Hale [8].

In Section 4, we will require a theorem on perturbed linear systems
of the form

(1)
x′ = εAx+ εX(t, x, y, ε),

y′ = By + ε1/2Y (t, x, y, ε),

where
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(G-1) X and Y are assumed to be defined and continuous on a set
Ω = {(t, x, y, ε) ∈ R × Rk × Rj × R : |x| ≤ η̃, |y| ≤ η̃, 0 ≤ ε ≤ ε0}, for
some η̃, ε0 > 0,

(G-2) X and Y are 2π-periodic in t,

(G-3) there exists a continuous, monotone increasing function κ(·)
such that κ(0) = 0, and |X(t, x, y, ε)| ≤ κ(b̃) + κ(ã)ã for all t ∈ R,
|x| ≤ ã, |y| ≤ ã, 0 < ε ≤ b̃,

(G-4) Y is Lipschitz in x and y, with Lipschitz constant M , and

(G-5) there exists a nonnegative step function L(t, v, w) which is
2π-periodic in t, such that, for 0 ≤ t ≤ 2π, L(t, v, w) =

∑N
n=1 cn(v, w)

χIn,v,w(t), where

(a) 0 ≤ cn(v, w) ≤M0 <∞, for 1 ≤ n ≤ N , 0 ≤ v ≤ η̃, 0 ≤ w ≤ ε0,

(b) for 1 ≤ n ≤ N , In,v,w = [an,v,w, bn,v,w ] are disjoint subintervals
of [0, 2π],

(c) χIn,v,w
is the characteristic function for In,v,w,

(d) for all n, 1 ≤ n ≤ N , cn(v, w)·(bn,v,w−an,v,w) → 0 as (v, w) → 0,
and

(e)

|X(t, x2, y0, ε) −X(t, x1, y0, ε)| ≤ L(t, ã, b̃)|x2 − x1|,
|X(t, x0, y2, ε) −X(t, x0, y1, ε)| ≤ L(t, ã, b̃)|y2 − y1|,

for all t ∈ R, xi ∈ Rk, yi ∈ Rj , with |xi| ≤ ã ≤ η̃, |yi| ≤ ã ≤ η̃ and
0 ≤ ε ≤ b̃ ≤ ε0.

THEOREM 1. Suppose X and Y satisfy (G-1) through (G-5) and
that A and B are noncritical. If ε1 is sufficiently small, then, for
0 < ε ≤ ε1, there exist C(ε), D(ε) and continuous functions f1 and
f2, with η̃ ≥ C(ε) > D(ε) ≥ maxt{f1(t, ε), f2(t, ε)}, such that, within
the region

Ωε = {(t, x, y) : (t, x, y, ε) ∈ Ω, |x| ≤ C, |y| ≤ C},
there is a unique 2π-periodic solution of (1) given by Sε = {(t, f1(t, ε),
f2(t, ε)) : t ∈ R}. The solution is unique in the sense that if a solution
(t, x(t), y(t)) ∈ Ωε for all t ∈ R, then (t, x(t), y(t)) ∈ Sε, for all t ∈ R.
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In addition, if either A or B have an eigenvalue with a positive real
part, then Sε is unstable in the sense of Lyapunov. However, if both A
and B are stable matrices, then Sε is locally asymptotically stable.

The proof of Theorem 1 follows standard contractive mapping argu-
ments such as those found in [8, 9, 11, 20] or see [13, pp. 119 174].
Since the proof is a contractive argument, numerical tools such as those
described in [12] can be used to obtain approximations to both f1
and f2.

3. Statement of main result. We will analyze feedback systems
of the form displayed in Figure 1, where, for some ω > 0, r0 ∈ R
is continuous and 2π/ω-periodic. Without loss of generality, we may
assume r0 has the form

r0(t) = a0 sinωt+ ψ(ωt),

where

a0 > 0 and
∫ 2π

0

ψ(t)eit dt = 0.

The linear part of the feedback system is denoted by the transfer
function G(s). We assume that G(s) is a real rational function, i.e.,

G(s) = p(s)/q(s),

where
p(s) = γJ−1s

J−1 + γJ−2s
J−2 + · · · + γ1s+ γ0,

q(s) = sJ + δJ−1s
J−1 + · · · + δ1s+ δ0,

δk, γk ∈ R, 0 ≤ k < J.

Some of the leading coefficients of p(s) may be zero, i.e., 0 ≤ deg p(s) <
J . In addition, we assume p(s) and q(s) have no common roots. The
nonlinear part, n(·), must be an odd function which satisfies some
additional smoothness requirements (see (H-2) of Theorem 2.)

Applying the describing function method [7] to the system in Figure
1, we obtain

(2) (1 +G(iω)N(a))ae−iα0 = G(iω)a0,
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where N(a) is the sinusoidal-input describing function for the nonlinear
function n(y). The term exp(−iα0) corresponds to the phase shift
required to balance the resulting fundamental components of the signals
in the system.

Suppose there is a value a1 > 0 for which (2) holds, that is,

(3)
|1 +G(iω)N(a1)|a1 = |G(iω)|a0,

α0 = arg(G(iω)−1 +N(a1)).

We assume a1 is a value for which n′(a1) exists. For example, if n is
the saturation function

n(y) =

{
my, |y| ≤ δ,
mδ sgn y, |y| > δ, m, δ > 0 and sgn y = y

|y| ,

then a1 �= δ.

The assumption that p(s) and q(s) have no common roots implies
the feedback system in Figure 1 has a natural controllable, observable,
phase space realization

x′0 = Ax0 + b0u,(4)
y0 = hT

0 x0,(5)

with transfer function G(s) = L{hT
0 e

Atb0} [16]. Here, A is the
companion matrix for q(s),

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0
0 0 1 · · · 0
0 0 0 · · · 0
...

...
...

...
0 0 0 · · · 1

−δ0 −δ1 −δ2 · · · −δJ−1

⎤
⎥⎥⎥⎥⎥⎥⎦
,

while b0, h0 are real J-tuples with bT0 = (0, 0, . . . , 0, 1) and hT
0 =

(γ0, γ1, . . . , γJ−1). The control, u, will be r0(t) − n(y0(t)).

If we substitute the control ũ(t) = a0 sinωt − N(a1)y0(t) for u in
(4) (5), we see that the new system has a periodic solution

x̃0(t) = a1E
−1(sin(ωt− α), ω cos(ωt− α),−w2 sin(ωt− α), . . . )T ,
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where α = α0 + arg(p(iω)) and E = |p(iω)|. We will show that there
exists a 2π/ω-periodic solution xp(t) of the original system (4) (5) near
x̃0(t), provided two computable parameters are small. In addition, we
will give a stability criterion for xp(t). Here, stability will mean local
asymptotic stability, while instability will be in the sense of Lyapunov
[20]. In order to state the stability result for the above phase space
realization of the feedback system, we introduce the following notation:
Let d(s) be given by

d(s) = q(s) + p(s)N(a1) − a0E

a1

{
(sinα)

s

ω
+ cosα

}
(6)

= d0s
J + d1s

J−1 + · · · + dJ−1s+ dJ ,(7)

where α0 and a1 are given by equation (3). Define β̂1 and β̂2 by

β̂1 − iβ̂2 =
2

ωd′(iω)
.

For k = 1, 2, . . . , J − 2, we define Hurwitz determinants Dk associated
with d(s) by

D1 = d1, D2 = det
[
d1 d3

d0 d2

]
, D3 = det

⎡
⎣ d1 d3 d5

d0 d2 d4

0 d1 d3

⎤
⎦ ,

D4 = det

⎡
⎢⎣
d1 d3 d5 d7

d0 d2 d4 d6

0 d1 d3 d5

0 d0 d2 d4

⎤
⎥⎦ ,

and so forth. We take dj = 0 if j > J . Define DJ−1 and DJ by

DJ−1 = 1 + a1N
′(a1) Re

{
G(iω)

1 +G(iω)N(a1)

}

and

DJ = Re
{

(β̂1 − iβ̂2)(2[q(iω) + p(iω)N(a1)] + a1N
′(a1)p(iω))

}
.

We now present our main result.
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THEOREM 2. Suppose that system (4) (5) satisfies:

(H-1) All dj are real for 0 ≤ j ≤ J , with d0 = 1 and that Dj �= 0,
for 1 ≤ j ≤ J .

(H-2) The function n is an odd, continuous, piecewise continuously
differentiable function. Moreover, on any interval ya < y < yb,
where n′(y) exists and is continuous, n′′(y) also exists and is uniformly
continuous. The describing function for n(y) will be denoted by N(a).

(H-3) The polynomials p(s) and q(s) have no common factors.

(H-4) There exists a1 > 0 satisfying (3) and an associated α such
that d(s) has the simple roots ±iω. In addition, a1 must be a point of
continuity of n′(y).

If β̂1 and β̂2 are sufficiently small, then there is a (sup norm)
neighborhood N0 of (t, x̃0(t)) with the properties:

(i) There exists a 2π/ω-periodic solution xp(t) of (4) (5) such that
(t, xp(t)) ∈ N0 for all t ∈ R.

(ii) If (t0, η) ∈ N0, but η �= xp(t0), then the solution x0(t0) = η must
leave N0 in finite time. Hence, xp(t) is the only 2π/ω-periodic solution
of (4) (5) near x̃0(t).

(iii) If Dj > 0, for j = 1, 2, . . . , J , then xp(t) is stable.

(iv) If Dk < 0, for some k, 1 ≤ k ≤ J , then xp(t) is unstable.

Since |xp(t) − x̃0(t)| is generally small, we have

yp(t) = hT
0 xp(t)

≈ a1

E

[
γ0 sin(ωt− α) + γ1ω cos(ωt− α) + · · ·

+ γJ−1
dJ−1

dtJ−1
sin(ωt− α)

]

=
a1

E
Im

[
p(iω)ei(ωt−α)

]
= a1Im [exp(i(ωt− α+ arg p(iω)))]
= a1 sin(ωt− α0).
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Finally, suppose we have a controllable and observable system

x′ = A1x+ b1u,(8)
y = cTx,(9)

with transfer function G(s) = p(s)/q(s). Here, A1 ∈ RJ×J , b1, c ∈ RJ

and u ∈ R, with u = r0(t)−n(y). Then, by results from control theory
[16], there is a nonsingular change of coordinates, x = Px0, which
brings the system (8) (9) to the form (4) (5).

4. Analysis of the feedback system. We provide only a highlight
of the main points in the analysis. The detailed analysis can be
found in [14, pp. 16 30]. Note that the system (4) (5) with control
u = r0 − n(y0) is equivalent to the scalar equation

(10) q(D)z + n(p(D)z) = a0 sinωt+ ψ(ωt),

where D ≡ d/dt and xT
0 = (z,Dz, . . . , DJ−1z).

Define d̂(s) by d̂(s) = ω−Jd(ωs). By rescaling time, (10) is equivalent
to

(11)

d̂(D)z = ω−J

[
N(a1)p(ωD)z − Ea0

a1

{
(sinα)

dz

dt
+ (cosα)z

}

− n(p(ωD)z) + a0 sin t+ ψ(t)

]
.

After a series of transformations (rewriting the scalar equation as
a matrix system; splitting the linear part of the matrix system into
its critical, stable and unstable components; applying the Van der Pol
transformation; averaging; and polar coordinates), we arrive at the
system

[
η
r

]′
=

1
2

[−MR − E
a1
ZI

a1
E MI −ZR

] [
η
r

]
+ perturbation terms

and
x′5 = C1x5 + ε−1/2(β̂1ξ̂1 + β̂2ξ̂2) perturbation terms,
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where

MR + iMI = (β̂1 − iβ̂2)
a0E

a1
exp(iα)

and
ZR + iZI = MR + iMI +

(
β̂1 − iβ̂2

)
a1N

′(a1)p(iω).

The β̂i are as previously defined. The ξi are vectors resulting from
transformations, and C1 contains the stable and unstable portions of
the linear part of (11). With ε as a free parameter, it is straightforward
to check that this new system now satisfies Theorem 1.

The stability of the linear part of the polar system can be checked
by signs of DJ−1 and DJ . Similarly, the stability of C1 is checked by
examining the signs of D1, . . . , DJ−2.

5. Examples. Let ω = 1; α0 = π/4, a1 > 0 be a fixed, but
arbitrary, real number; ψ(t) ≡ 0; n(y) be any nonlinear function
satisfying (H-2) and (H-3) of Theorem 2, such that its describing
function, N(a), satisfies the property N ′(a1) > 0; p(s) = s; and
q(s) = s4 + (k + 1)s3 + (k + 1)s2 + (k + 2 −N(a1))s+ (k − 1), where
k > 1 is a parameter. In addition, assume n′(a1) exists.

As required for controllability and observability, p(s) and q(s) do not
have a common root. Moreover, evaluation at s = i yields

[1 +G(iω)N(a1)]a1 exp(−iα0) = G(iω)a1

√
2.

Thus, for a0 = a1

√
2, we have a solution to the describing function

equation (2).

Using the above parameters, we obtain α = 3π/4, β̂1 − iβ̂2 =
(−(k + 1) − i(k − 1))/(2(k2 + 1)), ε = (β̂2

1 + β̂2)1/2 = [2(k2 + 1)]−1/2,
d(s) = (s2 + 1)(s + 1)(s + k), D3 = 1 + a1N

′(a1)/2 > 0, and
D4 = (4k + (k − 1)a1N

′(a1))/(2(k2 + 1)) > 0. Furthermore, since
the roots of d(s) are ±i, −1 and −k, we see that is unnecessary to
check D1 and D2. For all sufficiently large k, we may apply Theorem
2 to obtain an asymptotically stable periodic solution [14, pp. 31 36].

In the above example, admissible choices of n(y) include:

(1) n(y) = yp, where p is any odd integer greater than 1,
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n(y)

-δ δ

m

1 y

FIGURE 2. Threshold nonlinearity.

(2) n(y) = |y|yp, where p is any odd positive integer, or

(3) any threshold nonlinearity, with a1 > δ (see Figure 2).

Furthermore, the condition N ′(a1) > 0 is not essential in the above
example. In particular, if n(y) is an ideal saturation function (see
Figure 3) and a1 > δ, then

a1N
′(a1) =

−4mδ
πa1

√
1 −

(
δ

a1

)2

.

Thus, provided N ′(a1) �= 0 and D3 > 0, similar computations hold
without the requirement N ′(a1) > 0. That is, for an ideal saturation
nonlinearity (by taking a1 and k sufficiently large) the above choice of
ω, α0, p(s) and q(s) yields an asymptotically stable periodic solution.

Although we have presented an existence, uniqueness and exact sta-
bility analysis based upon the describing function method, we con-
cede that the task of checking the “sufficiently small” hypothesis is
formidable. Thus, in actual practice, we urge control engineers to use
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mδ

-mδ

-δ δ
y

n(y)

FIGURE 3. Saturation function:

n(y) =
{
my, for − δ ≤ y ≤ δ,
mδ sgn (y), otherwise.
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the above theory as they currently use the describing function method:

when the theory predicts that the system has the desired response
properties, verify by simulation.

The following example illustrates this approach. Let

G(s) =
s+ 1

s(s+ 2)(s+ 3)
,

and

n(y) =
{

4y, for |y| ≤ 1,
4|y|/y, for |y| > 1.

The function n(y) is an ideal saturation function (see Figure 3, with
m = 4, δ = 1). Observe that the describing function equation (2)
is satisfied when a0 ≈ 257.6772484, a1 ≈ 2.4754145 (N(a1) = 2),
ω = 10 and α0 ≈ 2.745118723 (radians). In addition, we have
d(s) = (s2 + 100)(s + 5), α ≈ −2.066693891 + 2kπ, k any integer,
β̂1 − iβ̂2 = (−2 − 1i)/2500, D1 > 0, D2 > 0 and D3 > 0.

Since β̂1 and β̂2 are “small,” we expect that the system (4) (5) has
a locally asymptotically stable periodic solution near

x̃0(t) =
a1√
101

(sin(10t− α), 10 cos(10t− α), −100 sin(10t− α))T .

In order to numerically substantiate this conjecture, we first simulated
the system using the initial conditions x0(0) = x̃0(0). The resulting
graph is similar to that of Figure 4c. Next, we conducted various
simulations using initial conditions near x̃0(t). In Figures 4a 4c, one
such simulation is displayed. The plot shows the first component of the
approximate and exact solutions.

The numerical evidence supports the existence of a locally asymptot-
ically stable periodic solution near x̃0(t).

6. Concluding remarks. We have presented an exact stability
analysis for nonlinear systems subjected to continuous, nonconstant,
periodic inputs. More precisely, if a system of the form (4) (5) satisfies
hypotheses (H-1) through (H-4) and, provided ε = |β̂1 − iβ̂2| =
|2/(ωd′(iω))| is sufficiently small, then:
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FIGURE 4a. The graph of (a1/E) sin(ωt − α) (dotted) superimposed on the
numerical solution of x01(t) (solid).
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FIGURE 4b. The graph of (a1/E) sin(ωt − α) (dotted) superimposed on the
numerical solution of x01(t) (solid).
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FIGURE 4c. The graph of (a1/E) sin(ωt − α) (dotted) superimposed on the
numerical solution of x01(t) (solid).
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(1) The existence of a 2π/ω-periodic state-space solution is guaran-
teed.

(2) The 2π/ω-periodic solution is unique in the sense that it is the
only solution which remains (for all t ∈ R) in a particular neighborhood
of an “approximate solution” predicted by the describing function
technique.

(3) The local stability (asymptotic stability or instability) of the
state-space solution is easily obtained from the linearization of the
problem. The stability of the system is checked by a modified Routh-
Hurwitz criterion.

Although we have used a describing function approximation, our
results are for an actual periodic solution of the nonlinear system. That
is, we have analyzed the actual system and its actual response, not an
approximate system or an approximate system response.
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