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GENERALIZED SOLUTIONS FOR ONE DIMENSIONAL
FLOWS OF K − BKZ FLUIDS

MELVIN L. HEARD

ABSTRACT. A boundary traction problem for a viscoelas-
tic liquid is studied. The problem is posed in one-space di-
mension and is described by a third order integrodifferential
equation of Volterra type. Existence, uniqueness and asymp-
totic behavior are proved for a class of generalized solutions.
The results obtained correspond to what is already known for
smooth solutions to these types of problems.

1. Introduction. In this work we consider the motion of one-
dimensional shearing flows of a K-BKZ fluid with a Newtonian viscosity.
Our main interest is to investigate a class of generalized solutions for
certain initial-boundary value problems associated with these flows. We
assume that the fluid occupies a reference configuration given by the
unit interval 0 ≤ x ≤ 1 and a Newtonian viscosity given by a positive
constant η > 0. If u(x, t) denotes the displacement, then the motion
is governed by a third order partial integrodifferential equation of the
form

(IDE) utt(x, t) − ηuxxt(x, t)

=
∫ ∞

0

g(s, ux(x, t) − ux(x, t− s))x dx+ f(x, t),

where 0 ≤ x ≤ 1, 0 ≤ t < ∞. The function g is called the memory
function and f represents the body force. Equation (IDE) is based on
a constitutive law proposed by Kaye [7] and Bernstein, Kearsley, Zapas
[2] for viscoelastic liquids. A discussion of the derivation of (IDE) from
the principles of continuum mechanics is given in [10].

There are several possible initial-boundary value problems that are
naturally associated with equation (IDE). In this work we wish to
discuss one particular type of problem called the boundary traction
problem. This means that, in addition to prescribing the initial history
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ũ(x, t) of the displacement u(x, t) for t < 0, and prescribing initial
conditions u0(x), u1(x) for the one-sided limits u(x, 0+), ut(x, 0+),
respectively, we also assume that traction forces act on the fluid at the
boundary. Thus, we are considering equation (IDE) with the following
initial and boundary conditions:

uxt(j, t) +
∫ ∞

0

g(s, ux(j, t) − ux(j, t− s)) ds = hj(t),(BC)

t > 0, j = 0, 1,
u(x, 0+) = u0(x), ut(x, 0+) − u1(x), 0 < x < 1,(IC)

u(x, t) = ũ(x, t), 0 < x < 1, t < 0.(IH)

Problem (IDE), (BC), (IC), (IH) has been solved by H. Engler [5]
in the context of smooth solutions. Along with the related boundary
displacement problem for (IDE), Engler has shown that, under general
smoothness and compatibility assumptions, local smooth solutions of
the boundary traction problem exist and are unique. Furthermore, if
g, f, h0, h1 satisfy certain growth and integrability conditions, then the
smooth solutions exist globally in time, and their asymptotic behavior
can be described with rates of convergence depending on the material
parameters of the problem.

In this work we take advantage of the “divergence structure” of
equation (IDE) and extend the concept of a solution to a wider class of
functions not necessarily having derivatives up to order three. By doing
this, we are able to require less regularity on g, f, ũ, u0, u1, h0, h1 than
found in [5]. Our method of approach is to first replace the nonlocal
boundary conditions (BC) by a pair of Neumann conditions

(NBC) ux(j, t) = ϕj(t), t > 0, j = 0, 1.

This intermediate step allows us to derive a simple integral equation for
u(x, t). The bulk of the paper is devoted to the study of this integral
equation which is derived by using some ideas from G. Andrews [1]. The
integral equation can be easily solved locally in time by the Contraction
Mapping Principle. We do not require the Krasnoselskii Fixed Point
Theorem that was used in [1]. Under the assumptions that we make
on the data, we show that the solution u(x, t) has the property that

u ∈ C([0, T ];L∞(0, 1)), ux ∈ C([0, T ], L∞(0, 1))
ut ∈ C((0, 1) × (0, T )), uxt ∈ L2((0, 1) × (0, T ))
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for a suitable constant T > 0. Also, we show that, under some
mild conditions on the data, the solution u(x, t) satisfies the traction
boundary condition (BC) almost everywhere on 0 ≤ t ≤ T .

Under suitable assumptions (same as in [5]), we show that generalized
solutions exist globally in time, even if the data is large. They also share
the same asymptotic behavior as smooth solutions. The proofs of these
statements are based on energy methods and use an integral identity
satisfied by all generalized solutions of (IDE), (BC), (IC), (IH).

The organization of the paper is as follows. In Section 2 we introduce
notation and present background material on parabolic equations that
will be needed in the sequel. Section 3 is devoted to the proofs of
existence and uniqueness of generalized solutions. In Section 4 we
use energy methods to obtain the necessary estimates for the proof
of global existence. In Section 5 we discuss the asymptotic behavior of
generalized solutions.

For references on the type of problem considered in this work, we refer
to the book [10]. We especially mention Chapter IV for a synopsis of
the boundary displacement problem for (IDE). This problem can also
be treated by the methods used here and corresponding results can be
proved under appropriate assumptions.

2. Preliminaries. In this section we introduce notation and discuss
some results that will be used in subsequent sections. For a given set S,
let Lp(S) andWm,p(S) denote the standard Lp and Sobolev spaces with
norms ‖ · ‖p and ‖ · ‖m,p, respectively, where 1 ≤ p ≤ ∞, m = 1, 2, . . . .
Given a positive number T > 0, we let QT = (0, 1) × (0, T ). Let
W 1,0

2 (QT ) denote the space of all measurable functions u : QT → R
such that the distributional derivatives ∂r

xu ∈ L2(QT ) for r = 0, 1.
When equipped with the norm

‖u‖2
W 1,0

2 (Qt)
=

∫
QT

(u2 + u2
x) dx dt,

the space W 1,0
2 (QT ) is a Hilbert space. Since QT is a rectangle, we can

reverse the roles of x and t and define the Hilbert space W 0,1
2 (QT ) in

a similar manner with norm

‖u‖2
W 0,1

2 (QT )
=

∫
QT

(u2 + u2
t ) dx dt.
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Let W 2,1
p (QT ) denote the space of all measurable functions u : QT → R

whose distributional derivatives ∂s
x∂

r
t u ∈ Lp(QT ) for all 2r + s ≤ 2.

When equipped with the norm

‖u‖W 2,1
p (QT ) =

∑
2r+s≤2

‖∂s
x∂

r
t u‖p,

the space W 2,1
p (QT ) is a Banach space.

If X is any Banach space and J is an interval of real numbers, let
Cb(J,X) denote the Banach space of all bounded continuous functions
u : J → X with norm

‖u‖Cb(J;X) = sup
t∈J

‖u(t)‖X .

When J Is a compact interval, we simply write C(J ;X) instead of
Cb(J ;X).

In the sequel, we will consider various Green’s functions associated
with the linear heat equation. We let

(2.1) K(x, t) =
1√
4πt

exp
(
− x2

4ηt

)
, x ∈ R, t > 0,

and define the theta-function by

(2.2) θ(x, t) =
+∞∑

n=−∞
K(x+ 2n, t), x ∈ R, t > 0.

We define
G(x, ξ, t) = θ(x− ξ, t) − θ(x+ ξ, t)
H(x, ξ, t) = θ(x− ξ, t) + θ(x+ ξ, t)

for x, ξ ∈ R and 0 < t < ∞. Then G(x, ξ, t) and H(x, ξ, t) represent
Green’s functions for the linear heat equation with Dirichlet and Neu-
mann boundary conditions, respectively, in the strip (0, 1)× (0,∞) (cf.
[4]).

From results in (8; Chapter IV, Section 9]), if ψ ∈ Lp(QT ) with
p > 3/2, then the function

(2.3) w(x, t) =
∫ t

0

∫ 1

0

G(x, ξ, t− τ )ψ(ξ, τ) dξ dτ
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belongs to W 2,1
p (QT ) and is the unique solution almost everywhere on

QT of the problem

wt(x, t) − ηwxx(x, t) = ψ(x, t), (x, t) ∈ QT ,

w(0, t) = w(1, t) = 0, t > 0,
w(x, 0) = 0, 0 < x < 1.

Furthermore, there is a constant C(T ) > 0 such that

(2.4)
∫ t

0

∫ 1

0

|G(x, ξ, t− τ )ψ(ξ, τ)| dξ dτ ≤ C(T )‖ψ‖p, (x, t) ∈ QT ,

and w(x, t) is Hölder continuous in x and t. If p > 3, then we also have

(2.5)
∫ t

0

∫ 1

0

|Gx(x, ξ, t− τ )ψ(ξ, τ)| dξ dτ ≤ C(T )‖ψ‖p, (x, t) ∈ QT ,

and wx(x, t) is Hölder continuous in x and t. Using methods similar to
[1], we can also show that

sup
0≤x≤1

∫ 1

0

|G(x, ξ, t)ϕ(ξ)| dξ ≤ √
η‖ϕ‖∞, 0 < t <∞,(2.6)

sup
0≤x≤1

∫ 1

0

|Gx(x, ξ, t)ϕ(ξ)| dξ ≤ 1√
πt

‖ϕ‖∞, 0 < t <∞,(2.7)

for all ϕ ∈ L∞(0, 1).

Next, consider the linear heat equation with Neumann boundary
conditions:

vt(x, t) − ηvxx(x, t) = ψ(x, t), (x, t) ∈ QT(2.8)
vx(0, t) = h0(t), vx(1, t) = h1(t), t ∈ (0, T )(2.9)
v(x, 0) = v0(x), 0 < x < 1.(2.10)
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A formal representation of a solution v(x, t) of (2.8), (2.9), (2.10) is
given by

(2.11)

v(x, t) =
∫ t

0

∫ 1

0

H(x, ξ, t− τ )ψ(ξ, τ) dξ dτ

+
∫ 1

0

H(x, ξ, t)v0(ξ) dξ

+ 2
∫ t

0

θ(x− 1, t− τ )h1(τ )hτ

− 2
∫ t

0

θ(x, t− τ )h0(τ ) dτ.

Without giving the most optimal result possible, it will be sufficient for
our purpose to state

LEMMA 1. Suppose that T > 0 is fixed, and assume that the following
conditions are satisfied:

(i) ψ ∈ Lp(QT ) for some p ∈ (3,∞),

(ii) v0 ∈ L∞(0, 1),

(iii) h0, h1 ∈ L1(0, T ).

Then the function v(x, t) given by (2.11) satisfies (2.8) almost every-
where in QT and also satisfies the initial-boundary conditions (2.9),
(2.10) in the sense that

lim
x→j

vx(j, t) = hj(t) a.e. t ∈ (0, T ), j = 0, 1,

lim
t→0+

v(x, t) = v(x, t) a.e. x ∈ (0, 1).

We also have

(2.12) sup
(x,t)∈QT

|v(x, t)| <∞, sup
(x,t)∈QT

∫ t

0

|vx(x, s)| ds <∞.

In addition, if we replace (ii), (iii) by

(ii)′ v0 ∈W 1,∞(0, 1),

(iii)′ h0, h1 ∈ L∞(0, T ),
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then we have

(2.13) sup
(x,t)∈QT

|vx(x, t)| <∞.

PROOF. With the possible exception of the second inequality in
(2.12), the results of Lemma 1 are quite well known. Their validity
may be inferred from standard sources [6, 8], or the results may be
proven directly from the basic definitions (2.1), (2.2). So we shall only
comment on the estimation of the integral

(2.14)
∫ t

0

vx(x, s) ds.

It suffices to consider each term in (2.11) separately. Since (2.4) (2.7)
are also valid for the Green’s function H(x, ξ, t), the first two terms are
easy to estimate. We concentrate on the last term, which we define by

(2.15) ṽ(x, t) = (−2)
∫ t

0

θ(x, t− τ )h0(τ ) dτ,

since the third term is handled in a similar way. From (2.2), one may
differentiate ṽ(x, t) with respect to x and obtain

ṽx(x, t) = (−2)
∫ t

0

Kx(x, t− τ )h0(τ )hτ − 2
∫ t

0

J(x, t− τ )h0(τ ) dτ,

where J(x, t) is a function in L∞(QT ). Therefore

(2.16)
∫ t

0

|ṽx(x, s)| ds

≤ 2
∫ t

0

∫ s

0

|Kx(x, s− τ )h0(τ )| dτ ds+ T‖J‖∞
∫ t

0

|h0(τ )| dτ.

Assuming x > 0, the double integral in (2.16) is absolutely convergent
and then, by Fubini’s Theorem,∫ t

s

∫ s

0

|Kx(x, s− τ )h0(τ )| dτ ds

≤ x

4η
√
π

∫ t

0

|h0(τ )|
∫ t−τ

0

1
s3/2

exp
(
− x2

4ηs

)
ds dτ

≤ 1
η
√
π

∫ t

0

|h0(τ )| dτ ·
∫ ∞

0

1
y1/2

e−y dy.
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Since this expression is finite and independent of x, the estimate is
proven.

Later on in the sequel, we shall use the approximation arguments
that are based on properties of the spaces W 1,0

2 (QT ) and W 0,1
2 (QT ).

We state the results that we need in the next two lemmas.

LEMMA 2. Let u ∈ W 1,0
2 (QT ) be given. Then there is a sequence

ϕn ∈ C∞(QT ) such that

(i) ϕn → u in W 1,0
2 (QT ) as n→ ∞,

(ii) ϕn(x, ·) → u(x, ·) in L2(0, T ) as n→ ∞ for each 0 ≤ x ≤ 1.

PROOF. From [9, p. 159] the space C∞(QT ) is dense in W 1,0
2 (QT ).

This gives (i) and the Sobolev Imbedding Theorem gives (ii).

Using similar arguments, we can also prove the following result.

LEMMA 3. Let u ∈ W 0,1
2 (QT ) ∩ L∞(QT ) be given. Then there is a

sequence ϕn ∈ C∞(QT ) such that

(i) ϕn → u in W 0,1
2 (QT ) as n→ ∞,

(ii) ϕn(·, t) → u(·, t) in L2(0, 1) as n→ ∞ for each 0 ≤ t ≤ T ,

(iii) ϕn(x, t) → u(x, t) a.e. (x, t) ∈ QT ,

(iv) {ϕn} is uniformly bounded on QT .

3. Existence and uniqueness. In this section we define generalized
solutions of (IDE), (BC), (IC), (IH) be means of an integral equation.
Under suitable assumptions on the data, we show that generalized
solutions exist and are unique and have certain regularity properties.
The derivation of the integral equation is facilitated by first considering
the following related initial-boundary value problem:
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utt(x, t) − ηuxxt(x, t) =
∫ ∞

0

g(s, ux(x, t) − ux(x, t− s))x ds

(3.1)

+ f(x, t), 0 < x < 1, t > 0,
ux(0, t) = ϕ0(t), ux(1, t) = ϕ1(t), t > 0,(3.2)
u(x, 0+) = u0(x), ut(x, 0+) = u1(x), 0 < x < 1,(3.3)
u(x, t) = ũ(x, t), 0 < x < 1, t < 0.(3.4)

Suppose u(x, t) is a smooth solution of (3.1) (3.4) with smooth data.
We introduce the operator Γ defined by

(3.5)
Γ(v)(x, t) =

∫ t

0

g(t− s, v(x, t) − v(x, s)) ds

+
∫ 0

−∞
g(t− s, v(x, t) − ũx(x, s)) ds

and combine (3.1) (3.4) into a single equation,(
∂

∂t
− η

∂2

∂x2

)
ut(x, t) =

∂

∂x
Γ(ux)(x, t) + f(x, t).

Using the Green’s function H(x, ξ, t), one can write ut(x, t) in the form

(3.6) ut(x, t) = Φ(x, t) −
∫ t

0

∫ 1

0

Hξ(x, ξ, t− τ )Γ(ux)(ξ, τ) dξ dτ,

where

(3.7)

Φ(x, t) =
∫ t

0

∫ 1

0

H(x, ξ, t− τ )f(ξ, τ) dξ dτ

+
∫ 1

0

H(x, ξ, t)u1(ξ) dξ

+ 2
∫ t

0

θ(x− 1, t− τ )h1(τ ) dτ

− 2
∫ t

0

θ(x, t− τ )h0(τ ) dτ.
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The functions h0, h1 are defined by

(3.8)

hj(t) = ϕ′
j(y)

+
∫ t

0

g(t− s, ϕj(t) − ϕj(s)) ds

+
∫ 0

−∞
g(t− s, ϕj(t) − ũx(j, s)) ds, t > 0, j = 0, 1.

Integrate (3.6) with respect to t to obtain the following integral equa-
tion satisfied by all smooth solutions of (3.1) (3.4):

(3.9)
u(x, t) = u0(x) +

∫ t

0

Φ(x, s) ds

−
∫ t

0

∫ s

0

∫ 1

0

Hξ(x, ξ, s− τ )Γ(ux)(ξ, τ) dξ dτ, ds

for 0 ≤ x ≤ 1, 0 ≤ t <∞.

Now relax the smoothness assumptions on (3.1) (3.4) and consider
solutions u(x, t) of (3.9) from a larger class of functions. We temporarily
ignore the formal connection between h0, h1 and ϕ0, ϕ1 given by (3.8)
and make the following assumptions:

(A1) Let p ∈ (3,∞) be given. Assume that the data (f, h0, u0, u1, ũ)
satisfies the following conditions:

(i) f ∈ Lp
loc ((0, 1) × (0,∞));

(ii) h0, h1 ∈ L1
loc (0,∞), where 1 ≤ q <∞;

(iii) u0, u1 ∈W 1,∞(0, 1);

(iv) ũ ∈ Cb(−∞, 0;W 1,∞(0, 1)).

(G1) The function g : [0,∞] × R → R is continuous and, for each
R > 0, there is a positive function aR ∈ L1(0,∞) such that if |u| ≤ R,
|v| ≤ R, then

|g(t, u) − g(t, v)| ≤ aR(t)|u− v|, 0 ≤ t <∞.

Furthermore, the mapping t→ g(t, 0) belongs to L1(0,∞).

From Lemma 1, observe that assumption (A1) implies that Φ(x, t)
satisfies problems (2.8) (2.10) with ψ = f , v0 = u1 and has the
estimates (2.12) if q = 1.
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Definition 1. Let assumptions (A1), (G1) be satisfied. A function
u(x, t) will be called a generalized solution of (IDE), (BC), (IC), (IH)
on a rectangle QT if (i) u ∈ C([0, T ];W 1,∞(0, 1)); (ii) u = ũ on
[0, 1] × (−∞, 0); and (iii) u satisfies (3.9) on QT .

The next result gives the local existence and uniqueness of generalized
solutions.

THEOREM 1. Let T0 > 0 be given, and let (f, h0, h1, u0, u1, ũ) satisfy
assumption (A1) with q = 1. Let

M0 = ess sup
{
|u′0(x)| +

∫ t

0

|Φx(x, s)| ds : (x, t) ∈ QT0

}
,

and define constants R,C by

R = 2 max{M0, ‖ũ‖Cb(−∞,0;W 1,∞(0,1))},
C = max{√η, π−1/2}.

Assume that g satisfies (G1), and let T be a positive number such that

(3.10)

⎧⎪⎨⎪⎩
0 < T ≤ T0,
T
η (1 + C)‖a2R‖1 < 1,
T
η (1 + C)(2R‖a2R‖1 +

∫ ∞
0

|g(s, 0)| ds) ≤ R −M0.

Then there exists a generalized solution u on QT having the following
regularity properties:

(3.11)
{
u ∈ C([0, T ];L∞(0, 1)), ux ∈ C([0, T ];L∞(0, 1))
ut ∈ C(QT ), uxt ∈ L∞(QT ), ‖ux‖L∞(QT ) ≤ R

PROOF. Assume that (3.10) holds, and let BR = {v ∈ L∞(QT ) :
‖v‖∞ ≤ R}. Define an operator F on L∞(QT ) by

(3.12)

F(v)(x, t) = u′0(x) +
∫ t

0

Φx(x, s) ds

+
1
η

∫ t

0

∫ 1

0

G(x, ξ, t− τ )Γ(v)(ξ, τ) dξ dτ

− 1
η

∫ t

0

Γ(v)(x, s) ds, (x, t) ∈ QT .
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We first show that F has a fixed point in BR. Let v ∈ BR, then, by
(G1),

|g(t− s, v(x, t) − v(x, s))| ≤ 2Ra2R(t− s) + |g(t− s, 0)|,
|g(t− s, v(x, t) − ũ(x, s))| ≤ 2Ra2R(t− s) + |g(t− s, 0)|.

From (3.5) it follows that

(3.13) |Γ(v)(x, t)| ≤ 2R‖a2R‖1 +
∫ ∞

0

|g(s, 0) ds, (x, t) ∈ QT ,

and, therefore,

|F(v)(x, t)| ≤M0 +
T

η
(1 + C)

(
2R‖a2R‖1 +

∫ ∞

0

|g(s, 0)| ds
)

≤ R

for almost all (x, t) ∈ QT . This shows that F maps BR into itself.

Next, let u1, u2 ∈ BR; then, by (3.12),

F(u1)(x, t) −F(u2)(x, t)

=
1
η

∫ t

0

∫ 1

0

G(x, ξ, t− τ )[Γ(u1)(ξ, τ)− Γ(u2)(ξ, τ)] dξ dτ

− 1
η

∫ t

0

[Γ(u1)(x, s) − Γ(u2)(x, s)] ds.

From (2.4) and (G1),

‖F(u1) −F(u2)‖∞ ≤ 2T
η

(1 + C)‖a2R‖1‖u1 − u2‖∞.

So, by (3.10), it follows that F is a contraction mapping on BR, and
there is a unique function v ∈ BR such that v = F(v).

Using the fixed point v ∈ BR, define a function

w(x, t) =
∫ t

0

∫ 1

0

G(x, ξ, t− τ )Γ(v)(ξ, τ) dξ dτ, (x, t) ∈ QT .
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From (3.13) we have that Γ(v) ∈ L∞(QT ), and so, from our remarks
in Section 2 concerning (2.3),

v(x, t) = u′0(x) +
∫ t

0

Φx(x, s) ds+
1
η
w(x, t) − 1

η

∫ t

0

Γ(v)(x, s) ds

=
∂

∂x

{
u0(x) +

∫ t

0

Φ(x, s) ds+
∫ t

0

wx(x, s) ds
}

for almost all (x, t) ∈ QT . Define

(3.14) u(x, t) = u0(x) +
∫ t

0

Φ(x, s) ds+
∫ t

0

wx(x, s) ds;

then v = ux a.e. on QT and, by (2.5)

wx(x, t) =
∫ t

0

∫ 1

0

Gx(x, ξ, t− τ )Γ(v)(ξ, τ) dξ dτ

= −
∫ t

0

∫ 1

0

Hξ(x, ξ, t− τ )Γ(ux)(ξ, τ) dξ dτ, (x, t) ∈ QT .

It follows that u(x, t) satisfies (3.9) on QT .

Since ux ∈ BR, it follows from (3.9) that u ∈ W 1,∞(0, T ;L∞(0, 1))
with ux ∈ C([0, T ];L∞(0, 1)). From (3.6) we get ut ∈ C(QT ), and,
from (3.14), it follows that

uxt(x, t) = Φx(x, t) +
1
η
wt(x, t) − 1

η
Γ(ux)(x, t), a.e. (x, t) ∈ QT .

Therefore, uxt ∈ L2(QT ) and this proves (3.11).

COROLLARY 1. Let u(x, t) be a generalized solution given by Theorem
1. Then

lim
t→0+

u(x, t) = u0(x), uniformly on 0 ≤ x ≤ 1,(3.15)

lim
t→0+

ut(x, t) = u1(x), uniformly on 0 ≤ x ≤ 1.(3.16)
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In addition, suppose there is a point x0 ∈ [0, 1] such that

lim
x→x0

u′0(x) = u′0(x0),
(3.17)

lim
x→x0

ũx(x, t) = ũx(x0, t), uniformly for −∞ < t ≤ 0.
(3.18)

Then

(3.19) lim
x→x0

ux(x, t) = ux(x0, t), uniformly for 0 ≤ t ≤ T.

In particular, if (3.17), (3.18) occur at the endpoints x0 = 0, 1, then
u(x, t) satisfies the traction boundary condition (BC) a.e. t ∈ [0, T ].

PROOF. By (3.14),

(3.20)
u(x, t) = u0(x) +

∫ t

0

Φ(x, s) ds

+ η

∫ t

0

∫ s

0

∫ 1

0

Gx(x, ξ, s− τ ) · Γ(ux)(ξ, τ) dξ dτ ds

so that, by (2.5),

|u(x, t) − u0(x)| ≤
∫ t

0

|Φ(x, s)| ds+ tηC(T )‖Γ(ux)‖p, (x, t) ∈ QT .

This proves (3.15). From (3.20) we have

ut(x, t) = Φ(x, t) + η

∫ t

0

∫ 1

0

Gx(x, ξ, t− τ )Γ(ux)(ξ, τ) dξ dτ,

so that

|ut(x, t) − u1(x)|

≤ |Φ(x, t) − u1(x)| + ηC(T )
{∫ t

0

∫ 1

0

|Γ(ux)(ξ, τ)|p dξ dτ
}1/p

for all (x, t) ∈ QT . This proves (3.16).
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Now suppose (3.17), (3.18) hold and consider (3.14). We have

(3.21)
ux(x, t) = u′0(x) +

∫ t

0

Φx(x, s) ds+ w(x, t)

−
∫ t

0

Γ(ux)(x, s) ds, a.e. (x, t) ∈ QT .

Let S ⊂ QT be the set where (3.21) makes sense for all (x, t) ∈ S. For
any pair (λ, t) ∈ S, define

zλ(t) = ux(λ, t),

hλ(t) = u′0(λ) +
∫ t

0

Φx(λ; s) ds+ w(λ, t),

for t ∈ [0, T ]. Then zλ, hλ ∈ C([0, T ]) by (3.11) and

zλ(t) +
∫ t

0

{∫ s

0

g(s− τ, zλ(t) − zλ(τ )) dτ

+
∫ 0

−∞
g(s− τ, zλ(s) − ũx(λ, τ )) dτ

}
ds

= hλ(t), 0 ≤ t ≤ T.

Since |zλ(t)| ≤ R for t ∈ [0, T ], it follows from assumption (G1) that

|zλ(t) − zμ(t) ≤
∫ t

0

(‖a2R‖1 + A(t− τ ))|zλ(τ ) − zμ(τ )| dτ
+ T‖a2R‖1 sup

−∞<τ≤0
|ũx(μ, τ) − ũx(μ, τ)|

+ |hλ(t) − hμ(t)|, 0 ≤ t ≤ T,

where

A(t) =
∫ t

0

a2R(s) ds.

Now let μ = x0 and put

ω(t, λ) = |zλ(t) − zx0(t)|,
H(t, λ) = T‖a2R‖1 sup

−∞<τ≤0
|ũx(λ, τ ) − ũx(x0, τ )| + |hλ(t) − hx0(t)|,

K(t) = ‖a2R‖1 +A(t).
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Then

(3.22) ω(t, λ) ≤ H(t, λ) +
∫ t

0

K(t− τ )ω(τ, λ) dτ, 0 ≤ t ≤ T.

If R(t) denotes the resolvent corresponding to K(t), then (3.22) implies
that

ω(t, λ) ≤ H(t, λ) +
∫ t

0

|R(t− τ )|H(τ, λ) dτ, 0 ≤ t ≤ T.

It follows that ω(t, λ) → 0 as λ → x0, uniformly on [0, T ], and this
proves (3.19).

Next, we suppose that (3.17), (3.18) hold for x0 = 0. Then, by (3.5),

lim
x→0

Γ(ux)(x, t) = Γ(ux)(0, t), 0 ≤ t ≤ T.

So, (3.13) obtains

lim
x→0

∫ t

0

Γ(ux)(x, s) ds =
∫ t

0

Γ(ux)(0, s) ds, 0 ≤ t ≤ T.

Letting x→ 0 in (3.21) gives

ux(0, t) = u′0(0) +
∫ t

0

h0(s) ds−
∫ t

0

Γ(ux)(0, s) ds,

and so, for almost all t ∈ [0, T ],

uxt(0, t) = h0(t) − Γ(ux)(0, t).

Thus, ux(0, t) satisfies (BC) for almost all t ∈ [0, T ]. A similar argument
works for the case x0 = 1.

COROLLARY 2. Let the assumptions of Theorem 1 be satisfied. Then
there exists only one generalized solution satisfying (3.11).

PROOF. Suppose u(x, t) and u1(x, t) are two solutions of (3.9) which
satisfy (3.11). Then ux = u1

x a.e. on QT so that there is a function
χ ∈ C1([0, T ]) such that

u(x, t) − u1(x, t) = χ(t), (x, t) ∈ QT .
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By (3.6) this implies that χ′(t) = 0 for all 0 ≤ t ≤ T . So χ(t) ≡ χ0 is
constant on [0, T ] and, by (3.15),

χ0 = lim
t→0+

(u(x, t) − u1(x, t)) = 0.

Hence, u = u1 on QT and this proves uniqueness.

4. A priori estimates. In order to obtain a global generalized
solution u(x, t) of (IDE), (BC), (IC), (IH), it is clear from Theorem
1 that we must control the size of the constant R in (3.10). This
implies that we must obtain an a priori estimate in L∞(QT ) for the
gradient ux(x, t). The main effort in this section is to prove such an
estimate. We first begin by establishing a variational property shared
by all generalized solutions.

LEMMA 4. Let the data (f, h0, h1, u0, u1, ũ) satisfy assumption (A1)
with q = 1, and let g satisfy (G1). Let u be the corresponding
generalized solution on QT . Then, for all ψ ∈ C∞(QT ), we have

(4.1)

−
∫ T

0

∫ 1

0

ut(x, t)ψt(x, t) dx dt

+
∫ T

0

∫ 1

0

uxt(x, t)ψx(x, t) dx dt

+
∫ T

0

∫ 1

0

Γ(ux(x, t)ψx(x, t) dx dt

=
∫ 1

0

u1(x)ψ(x, 0) dx−
∫ 1

0

ut(x, T )ψ(x, T ) dx

+
∫ T

0

h1(t)ψ(1, t) dt−
∫ T

0

h0(t)ψ(0, t) dt

+
∫ T

0

∫ 1

0

f(x, t)ψ(x, t) dx dt.

PROOF. The proof of (4.1) is long and tedious, but only involves
integration by parts, which can be justified using (3.11). The boundary
terms in the integrals are easily evaluated if on the left side of (4.1) we
use the representations (see (3.14))
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ut(x, t) = Φ(x, t) + wx(x, t),(4.2)
uxt(x, t) = Φx(x, t) + wxx(x, t)(4.3)

for almost all (x, t) ∈ QT . We omit the details.

Using the variational equation (4.1), we next show that all generalized
solutions satisfy an energy equation.

THEOREM 2. Let the data (f, h0, h1, u0, u1, ũ) satisfy assumption
(A1) with q = 2, and let g satisfy (G1). Let u be the corresponding
generalized solution on QT . Then, for almost all t ∈ [0, T ],

(4.4)

1
2
d

dt

∫ 1

0

u2
t (x, t) dx+

∫ 1

0

u2
xt(x, t) dx

∫ 1

0

Γ(ux)(x, t)uxt(x, t) dx

= h1(t)ut(1, t) − h0(t)ut(0, t) +
∫ t

0

f(x, t)ut(x, t) dx

PROOF. Because of a lack of regularity, the proof of (4.4) is accom-
plished through approximations. The method of [8, pp. 141 143] can
be used, which is based on the Steklov average

vh(x, t) =
1
h

∫ t+h

t

v(x, s) ds, h > 0,

of a function v(x, t). The basic property of Steklov averages is that if
v ∈ L2(QT ), then, for each 0 < δ < T ,

vh, ∂tvh ∈ L2(QT−δ), for all 0 < h < δ,

and
vh → v in L2(QT−δ) as h→ 0.

We will not give the details of the proof of (4.4) since the arguments
require very little change from those used in [8]. We only remark that
it is convenient to use Lemma 2 to approximate the Steklov average
uth of ut.
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Now consider the primitive

(4.5) F (t, u) =
∫ u

0

g(t, ξ) dξ, (t, u) ∈ [0,∞) × R.

If g satisfies (G1), then, for each R > 0, there is a function aR ∈
L1(0,∞) such that if |u| ≤ R, |v| ≤ R, then

(4.6) |F (t, u) − F (t, v)| ≤ bR(t)|u− v|, 0 < t <∞,

where bR(t) = RaR(t) + |g(t, 0)|. We make the following additional
hypotheses:

(G2) The mapping t→ g(t, u) is continuously differentiable on (0,∞)
for each u ∈ R.

(F1) For each R > 0, there is a function dR ∈ L1(0,∞) such that, for
all 0 < t <∞, |u| ≤ R, we have

|F,1(t, u)|min(1, t) ≤ dR(t),

where F,1 = ∂F
∂t .

(F2) There is a constant C0 ≥ 0 and a function C1 ∈ L1(0,∞) such
that, for all 0 < t <∞, u ∈ R, we have

F (t, u) ≥ −C1(t)(1 + |u|2),
F,1(t, u) ≤ C0{F (t, u) + C1(t)(1 + |u|2)}.

REMARK . Let a(t) be a nonnegative, nonincreasing function on
[0,∞) with both a, a′ integrable on (0,∞). In the separated kernel
case, assumptions (G2), (F1), (F2) are broad enough to allow memory
functions of the form

g(t, ξ) = a(t)(g0(ξ) − a1ξ − a1), (t, ξ) ∈ [0,∞) × R,

where a1, a2 are constants and g0 is nondecreasing and locally Lipschitz
continuous on R with g0(0) = 0

LEMMA 5. Let u be a generalized solution of (IDE), (BC), (IC), (IH)
on QT given by Theorem 1. Suppose that assumptions (G2) and (F1)
are satisfied. Then, for each 0 < t < T , we have
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(4.7)

∫ t

0

∫ 1

0

Γ(ux)(x, τ)uxt(x, τ) dx dτ

=
∫ ∞

0

∫ 1

0

F (s, ux(x, t) − ux(x, t− s)) dx ds

−
∫ ∞

0

∫ 1

0

F (s, ux(x, 0+) − ux(x,−s)) dx ds

−
∫ t

0

∫ ∞

0

∫ 1

0

F,1(s, ux(x, τ) − ux(x, τ − s)) dx ds dτ.

PROOF. We first note that, for any function ϕ ∈ C∞(QT ) such that
ϕ(x, t) = ũx(x, t) a.e. (x, t) ∈ (0, 1) × (−∞, 0), we have

Γ(ϕ)(x, t)ϕt(x, t) =
∂

∂t

∫ t

−∞
F (t− s, ϕ(x, t) − ϕ(x, s)) ds

−
∫ t

−∞
F,1(t− s, ϕ(x, t) − ϕ(x, s)) ds

for 0 < t ≤ T , 0 ≤ x ≤ 1. So, if 0 < ε ≤ t ≤ T , then

(4.8)

∫ t

ε

∫ 1

0

Γ(ϕ)(x, τ)ϕt(x, τ) dx ds

=
∫ ∞

0

∫ 1

0

F (s, ϕ(x, t)− ϕ(x, t− s) dx ds

−
∫ ∞

0

∫ 1

0

F (s, ϕ(x, ε) − ϕ(x, ε− s)) dx ds

−
∫ t

ε

∫ ∞

0

∫ 1

0

F,1(s, ϕ(x, τ)− ϕ(x, τ − s)) dx ds dτ.

Since ux ∈ W 0,1
2 (QT ) ∩ L∞(QT ), we may apply Lemma 2 and obtain

an approximating sequence {ϕn} for ux such that (4.8) holds for each
function ϕ = ϕn. Passing to the limit as n→ ∞ gives
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(4.9)

∫ t

ε

∫ 1

0

Γ(ux)(x, τ)uxt(x, τ) dx dτ

=
∫ ∞

0

∫ 1

0

(s, ux(x, t) − ux(x, t− s)) dx ds

−
∫ ∞

0

∫ 1

0

F (s, ux(x, ε) − ux(x, ε− s)) dx ds

−
∫ t

ε

∫ ∞

0

∫ 1

0

F,1(s, ux(x, τ) − ux(x, τ − s)) dx ds dτ.

We wish to pass to the limit in (4.9) as ε→ 0+. The only troublesome
term is the second integral on the right-hand side. We write∫ ∞

0

∫ 1

0

F (s, ux(x, ε) − ux(x, ε− s)) dx ds

=
∫ ε

0

∫ 1

0

F (ε− s, u1(x, ε) − ux(x, s)) dx ds

+
∫ 0

−∞

∫ 1

0

F (ε− s, ux(x, ε) − ux(x, s)) dx ds.

Let R = sup{|ux(x, s)| : (x, s) ∈ QT }; then, by (4.6),∫ ε

0

∫ 1

0

|F (ε−s, ux(x, ε)−ux(x, s))| dx ds ≤ 2R
∫ ε

0

bR(t) dr → 0 as ε→ 0.

By (3.11) and Lebesque’s Dominated Convergence Theorem,

lim
ε→0+

∫ 0

−∞

∫ 1

0

F (ε− s, ux(x, ε) − ux(x, s)) dx ds

=
∫ 0

∞

∫ 1

0

F (−s, ux(x, 0+) − ux(x, s)) dx ds.

So one may let ε→ 0+ in (4.9) to obtain (4.7).

THEOREM 3. Let the data (f, h0, h1, u0, u1, ũ) satisfy (A1) with
q = 2, and let g satisfy (G1), (G2). Assume hypotheses (F1), (F2)
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are satisfied, and let u be the corresponding generalized solution on
QT . Define

(4.10)

E(t) =
1
2

∫ 1

0

u2
t (x, t) dx

+
∫ ∞

0

∫ 1

0

{F (s, ux(x, t) − ux(x, t− s))

+ C(s)(1 + |ux(x, t) − ux(x, t− s)|2)} dx ds
Then there is a constant Λ > 0 depending only on the data and T such
that

(4.11) E(t) +
∫ t

0

∫ 1

0

|uxt(x, s)|2 dx ds ≤ Λ, 0 ≤ t ≤ T.

PROOF. From Theorem 2 and Lemma 2, we see that u satisfies the
energy equation

(4.12)

1
2

∫ 1

0

u2
t (x, t) dx+

∫ t

0

∫ 1

0

u2
xt(x, τ) dx dτ

+
∫ ∞

0

∫ 1

0

F (s, ux(x, t) − ux(x, t− s)) dx ds

=
1
2

∫ 1

0

u2
1(x) dx+

∫ ∞

0

∫ 1

0

F (s, u′0(x) − ũx(x,−s)) dx ds

+
∫ t

0

h1(τ )ut(1, τ ) dτ −
∫ t

0

h0(τ )ut(0, τ ) dτ

+
∫ t

0

∫ ∞

0

∫ 1

0

F,1(s, ux(x, τ) − xux(x, τ − s)) dx ds dτ

+
∫ t

0

∫ 1

0

f(x, τ)ut(x, τ) dx dτ.

For any ε > 0, we have the estimates∫ t

0

|hj(τ )ut(j, τ)| dτ

≤ 1
ε

∫ t

0

|hj(τ )|2 dτ + 2ε
∫ t

0

∫ 1

0

(u2
t (x, τ) + u2

xt(x, τ)) dx dτ
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for j = 0, 1. Substituting this into (4.12), taking 0 < ε < 1/4, and
using (F2) gives

E(t) +
1
2

∫ t

0

∫ 1

0

u2
xt(x, τ) dx dτ

≤ C(T ) + C2

∫ t

0

E(τ ) dτ

+
∫ ∞

0

∫ 1

0

C1(s)(1 + |ux(x, t) − ux(x, t− s)|2) dx ds,

where

C(T ) =
1
2

∫ 1

0

u2
1(x) dx+

∫ ∞

0

∫ 1

0

F (s, u′0(x) − ũx(x,−s)) dx ds

+
1
ε

∫ T

0

(|h0(τ )|2 + |h1(τ )|2) dτ +
∫ T

0

∫ 1

0

|f(x, τ)|2 dx dτ

and C2 = max(3/2, C0). Following the arguments of [5, Lemma 2.1],
leads to the inequality

E(t) +
1
4

∫ t

0

‖uxτ (·, τ )‖2
2 dτ ≤ C

{
1+

∫ t

0

(1 + C1(t−s))(E(s)

+
∫ s

0

‖uxτ (·, τ )‖2
2 dτ ) ds

}
, 0≤t≤T.

By Gronwall’s inequality, we obtain (4.11).

Having established the energy estimate (4.11), we can proceed to
obtain an L∞ estimate on the gradient ux(x, t). We shall use the
integral equation method.

THEOREM 4. Let T > 0 be given. Assume (A1) with q = 2, (G1),
(G2), (F1), (F2) are satisfied. In addition, suppose that

(4.13) g(t, u) = g0(t, u) + L(t)u,

where L ∈ L1(0,∞)∩C([0,∞]) and g0(t, u) is nondecreasing in u. Let
u(x, t) be the corresponding generalized solution on Qt0 = (0, 1)×(0, t0)
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for some t0 ∈ [0, T ). Then there is a constant M > 0, depending on
the data and T but not on t0, such that

(4.14) |ux(x, t)| ≤M a.e. (x, t) ∈ Qt0 .

PROOF. Let u(x, t) be the generalized solution on Qt0 corresponding
to the data (f, h0, h1, u0, u1, ũ). Define

q(x, t) =
∫ x

0

ut(y, t) dy, (x, t) ∈ Qt0 .

Then, from (3.14), (4.11), we have

q(x, t) =
∫ x

0

Φ(y, t) dy + w(x, t),

|q(x, t)| ≤ ‖ut(·, t)‖2 ≤
√

2Λ

for all (x, t) ∈ Qt0 . It follows that

(4.15)
ηux(x, t) − q(x, t) = ηu′0(x) + η

∫ t

0

Φx(x, s) ds−
∫ x

0

Φ(y, t) dy

−
∫ t

0

Γ(ux)(x, s) ds.

From the initial-boundary value problem satisfied by Φ(x, t), we have∫ x

0

Φ(y, t) dy − η

∫ t

0

Φx(x, s) ds =
∫ x

0

u1(y) dy − η

∫ t

0

h0(s) ds

+
∫ t

0

∫ x

0

f(y, s) dy ds.

Also, by (4.13),

Γ(ux)(x, t) =
∫ t

0

g0(t− s, ux(x, t) − ux(x, s)) ds

+
∫ 0

−∞
g0(t− s, ux(x, t) − ũx(x, s)) ds

+ L0ux(x, t) −
∫ t

0

L(t− s)ux(x, s) ds,
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where L0 =
∫ ∞
0
L(t) dt. So (4.15) can be written as

(4.16)

η ux(x, t) − q(x, t) +
∫ t

0

K(t− s)ux(x, s) ds

+
∫ t

0

∫ s

0

g0(s− τ, ux(x, s) − ux(x, τ)) dτ ds

+
∫ t

0

∫ 0

−∞
g0(s− τ, ux(x, s) − ũx(x, τ)) dτ ds = k(x, t),

where

K(t) = L0 −
∫ t

0

L(s) ds, t ≥ 0,

k(x, t) = ηu′0(x) −
∫ x

0

u1(y) dy + η

∫ t

0

h0(s) ds−
∫ t

0

∫ x

0

f(y, s) dy ds

+
∫ t

0

∫ 0

−∞
L(s− τ )ũx(x, τ) dτ ds, (x, t) ∈ QT .

It is clear that the functions k(x, t) and q(x, t) are bounded on QT . So,
in order to prove (4.14), it suffices to show that the function ψ(x, t),
defined by

(4.17) ψ(x, t) = ηux(x, t) − q(x, t) − k(x, t), a.e. (x, t) ∈ Qt0 ,

is bounded on Qt0 .

We fix x ∈ [0, 1] where u′0(x) is defined and ux(x, ·), ũx(x, ·) are
continuous functions of t. We use the notation

ψ(t) = ψ(x, t), q(t) = q(x, t)
k(t) = k(x, t), ũx(t) = ũx(x, t).

From equation (4.16), we see that ψ ∈ C1([0, t0]) and satisfies
(4.18)

ψ̇(t) +
∫ t

0

g0

(
t− s,

1
η
(ψ(t) − ψ(s) + k(t) − k(s) + q(t) − q(s))

)
ds

+
∫ 0

−∞
g0

(
t− s,

1
η
(ψ(t) + k(t) + q(t)) − ũx(s)

)
ds

+
L0

η
(ψ(t) + k(t) + q(t))

=
1
η

∫ t

0

L(t− s)(ψ(s) + k(s) + q(s)) ds, 0 ≤ t ≤ t0.
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We shall show that there is constant M0 > 0 such that

(4.19) |ψ(t)| ≤ eM0t, for all 0 ≤ t ≤ t0,

and M0 does not depend on x or t0. Indeed, let

C ′
T = sup

0≤t≤T

{∫ t

0

∣∣∣∣g0 (
t− s,

1
η
(k(t) + q(t) − k(s) − q(s))

) ∣∣∣∣ ds
+

∫ 0

−∞

∣∣∣∣g0 (
t− s,

1
η
(k(t) + q(t)) − ũx(s)

)∣∣∣∣ ds},
C ′′

T = sup
0≤t≤T

∫ t

0

|L(t− s)(k(s) + q(s))| ds+ sup
0≤t≤T

|L0||k(t) + q(t)|.

Choose M0 such that

(4.20) M0 >
|L0|
η

+
1
η
C ′′

T + C ′
T +

1
η

∫ ∞

0

|L(s)| ds.

We prove that (4.19) holds for this choice of M0. Let

t1 = sup{0 ≤ t < t0 : |ψ(s)| ≤ eM0s, 0 ≤ s ≤ t}.

Since ψ(0) = 0, the number t1 is well defined, and it suffices to show
that t1 = t0. If this is false, then t1 < t0 and either we have

(4.21) ψ̇(t1) ≥M0e
M0t1 if ψ(t1) = eM0t1 ,

or else we have

(4.22) ψ̇(t1) ≤ −M0e
M0t1 if ψ(t1) = − eM0t1 .

We only consider the case (4.21) since the other case is handled in an
identical manner.

Assuming that (4.21) holds, it follows that ψ(t1) ≥ ψ(t) for all
0 ≤ t ≤ t1. Using the fact that g0(t, u) is nondecreasing in u, it follows
from (4.18) that

M0e
M0t1 − C ′

T ≤ |L0|
η
eM0t1 +

eM0t1

η

∫ t1

0

|L(s)| ds+
1
η
C ′′

T .
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Therefore,

M0 ≤ |L0|
η

+
(

1
η
C ′′

T + C ′
T

)
e−M0t1 +

1
η

∫ ∞

0

|L(s)| ds,

and this contradicts the definition of M0. So (4.19) holds and the
Theorem is proved.

COROLLARY 3. Let the data (f, h0, h1, u0, u1, ũ) satisfy assumption
(A1) with q = 2. Assume also that (G1), (G2), (F1), (F2) are satisfied
and that g(t, u) can be written in the form of equation (4.13). Then
there exists a unique global generalized solution u(x, t) of (IDE), (BC),
(IC), (IH) define on Q∞ = (0, 1) × (0,∞) and having the regularity
given by (3.11) for each T > 0.

PROOF. This is an immediate consequence of Theorem 1, especially
(3.10) and Theorem 4.

5. Asymptotic behavior. In this section we assume that the
hypotheses of Corollary 3 are satisfied and u(x, t) is the corresponding
globally defined generalized solution of (IDE), (BC), (IC), (IH). We let
U(t) denote the mean displacement function

(5.1) U(t) =
∫ 1

0

u(x, t) dx, t ≥ 0,

and we introduce a new function

(5.2) u∗(x, t) = u(x, t) − U(t).

Then ∫ 1

0

u∗(x, t) dx = 0, t ≥ 0,

and we have the inequalities

|u∗t (x, t)| ≤ ‖u∗xt(·, t)‖2, 0 ≤ x ≤ 1, t ≥ 0,(5.3)
‖u∗t (·, t)‖2 ≤ ‖u∗xt(·, t)‖2, t ≥ 0.(5.4)
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From (3.14),

(5.5)

{
u∗t (x, t) = ut(x, t) −

∫ 1

0
Φ(x, t) dx

U ′′(t) =
∫ 1

0
Φt(x, t) dx = h0(t) − h1(t) +

∫ 1

0
f(x, t) dx

for almost all (x, t). We substitute (5.2) into (4.2) (noting that u∗x = ux)
and use (5.5) to obtain
(5.6)
1
2
d

dt
|u∗t (x, t)|2 dx+

∫ 1

0

|u∗xt(x, t)|2 dx+
∫ 1

0

Γ(u∗x)(x, t)u∗xt(x, t) dx

= h1(t)u∗t (1, t) − h0(t)u∗t (0, t) +
∫ 1

0

f̃(x, t)u∗t (x, t) dx, a.e. t ≥ 0,

where

f̃(x, t) = f(x, t) − h1(t) + h0(t) −
∫ 1

0

f(x, t) dx.

We use the energy equation (5.6) to obtain weighted estimates on
u∗(x, t) needed to examine asymptotic behavior. We need an additional
assumption on the primitive F (t, u).

(F3) F (t, u) ≥ 0 and there is a constant δ ∈ (0, 1/2) such that
F,1(t, u) + δF (t, u) ≤ 0 for all y ∈ R, t > 0.

THEOREM 5. Assume hypotheses (A1) with q = 2, (G1), (G2), (F1),
(F2), (F3) are satisfied. Suppose g satisfies (4.13), and let u be the
corresponding globally defined generalized solution. Let b ∈ C1([0,∞))
be a function such that

(5.8) b(0) = 1 and 0 ≤ b′(t) ≤ δb(t) for all t ≥ 0.

Define ε0 = 1/4 − δ/2 and

(5.9)

K(t) =
{
‖u1‖2

2 + ‖u0‖2
1 + 2

∫ ∞

0

∫ 1

0

F (s, u′0(x) − ũx(x,−s)) dx ds

+
1
ε0

∫ t

0

b(τ )(|h0(τ )|2 + |h1(τ )|2) dτ
}1/2

, t ≥ 0.
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Then we have the estimates

(5.10) b1/2(t)‖u∗t (·, t)‖2 ≤ K(t) +
∫ t

0

b1/2(τ )‖f̃(·, τ )‖2 dτ,

(5.11)
1
2

∫ t

0

b1/2(τ )‖u∗xt(·, τ )‖2
2 dτ

≤ K2(t) +
{∫ t

0

b1/2(τ )‖f̃(·, τ )‖2 dτ

}2

for all t ≥ 0.

PROOF. We multiply (5.6) by b(t) and integrate the resulting equation
from 0 to t:

(5.12)

1
2
b(t)‖u∗t (·, t)‖2

2 −
∫ t

0

b′(τ )‖u∗t (·, τ )‖2
2 dτ

+
∫ t

0

b(τ )‖u∗xt(·, τ )‖2
2 dτ

+
∫ t

0

b(τ )
∫ 1

0

Γ(u∗x)(x, τ)u∗xt(x, τ) dx dτ

=
1
2
‖u∗t (·, 0)‖2

2 +
∫ t

0

b(τ )(h1(τ )u∗t (1, t) − h0(τ )u∗t (0, τ )) dτ

+
∫ t

0

b(τ )
∫ 1

0

f̃(x, τ)u∗t (x, τ) dx dτ.

If we multiply both sides of (4.4) by b(t) and differentiate with respect
to t, we have, a.e. t ≥ 0,

b(t)
∫ 1

0

Γ(ux)(x, t)uxt(x, t) dx

=
d

dt

∫ ∞

0

b(t)
∫ 1

0

F (s, ux(x, t) − ux(x, t− s)) dx ds

− b′(t)
∫ ∞

0

∫ 1

0

F (s, ux(x, t) − η(x)(s, t− s)) dx ds

− b(t)
∫ ∞

0

∫ 1

0

F,1(s, ux, (x, t) − ux(x, t− s)) dx ds.
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So, by (5.8) and (F3), it follows that for almost all t ≥ 0,

(5.13)
b(t)

∫ 1

0

Γ(ux)(x, t)uxt(x, t) dx

≥ d

dt

∫ ∞

0

b(t)
∫ 1

0

F (s, ux(x, t) − ux(x, t− s)) dx ds.

From (5.4), (5.8), we also have

− b′(t)‖u∗t (·, t)‖2
2 + b(t)‖u∗xt(·, t)‖2

2(5.14)
≥ (1 − δ)b(t)‖u∗xt(·, t)‖2

2 ≥ 0,

|b(t)hj(t)u∗t (j, t)|(5.15)

≤ 1
ε
b(t)|hj(t)|2 + εb(t)‖u∗tx(·, t)‖2

2,

for ε > 0 constant. Choosing ε = ε0 and substituting (5.13), (5.14),
(5.15) into (5.12) gives

(5.16)
1
2
b(t)‖u∗t (·, t)‖2

2 +
1
2

∫ t

0

b(τ )‖u∗xt(·, τ )‖2
2 dτ

+
∫ ∞

0

b(t)
∫ 1

0

F (s, ux(x, t) − ux(x, t− s)) dx ds

≤ 1
2
K2(t) +

∫ t

0

b(τ )‖f̃(·, τ )‖2‖u∗t (·, τ )‖2 dτ, t ≥ 0.

Since F ≥ 0 by assumption (F3), one may apply Gronwall’s inequality
[3, Lemma A.5] to obtain (5.10). Then write

1
2

∫ t

0

b(τ )‖u∗xt(·, τ )‖2
2 dτ

≤ 1
2
K2(t) +

∫ t

0

b1/2(τ )‖f̃(·, τ )‖2b
1/2(τ )‖u∗t (·, τ )‖2 dτ

and use (5.10) to obtain the inequality (5.9).

The next Theorem contains the principle result on asymptotic behav-
ior. It is stated somewhat differently from [5, Corollary 4.4] because
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of assumption (5.21). Since in most cases we choose b(t) = eδt, this
integrability condition does not seem to be too restrictive.

THEOREM 6. Assume hypotheses (A1) with q = 2, (G1), (G2), (F1),
(F2), (F3) are satisfied. Suppose g satisfies (4.13), and let u be the
corresponding globally defined generalized solution. Let U(t) be the
mean displacement function given by (5.1). Suppose also that∫ ∞

0

1
b(t)

dt <∞,(5.17) ∫ ∞

0

b(t)|hj(t)|2 dt <∞, for j = 0, 1,(5.18) ∫ ∞

0

b1/2(t)‖f̃(·, t)‖2 dt <∞.(5.19)

Then there is a function u∞,x ∈ L2(0, 1) such that

(5.20) ‖ux(·, t) − u∞,x‖2
2 = O

(∫ ∞

t

1
b(σ)

dσ

)
as t→ ∞.

If we also assume that

(5.21)
∫ ∞

0

1
b1/2(t)

dt <∞

then there is a function u∞ ∈ W 1,2(0, 1) such that u′∞(x) = u∞,x(x)
a.e. 0 ≤ x ≤ 1 and

(5.22) ‖u(·, t) − U(t) − u∞‖2 = O

(∫ ∞

t

1
b1/2(σ)

dσ

)
as t→ ∞.

PROOF. Let

M∞ = K(∞) +
∫ ∞

0

b1/2(τ )‖f̃(·, τ )‖2 dτ.

By (3.11), we have ux ∈ W 1/2(0, T ;L2(0, 1)), and so ux(x, t) is abso-
lutely continuous in t. So if 0 ≤ s < t <∞, then, by (5.11),∫ 1

0

|ux(x, t) − ux(x, s)|2 dx ≤
{∫ t

s

b(σ)
∫ 1

0

|uxt(x, σ)|2 dx dσ
}

{∫ t

s

1
b(σ)

dσ

}
≤ 2M2

∞

∫ t

s

1
b(σ)

dσ.
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So ux(x, t) is Cauchy in the space C(0,∞;L2(0, 1)), and there is an
element u∞,x ∈ L2(0, 1) such that

‖ux(·, t) − u∞,x‖2
2 ≤ 2M2

∞

∫ ∞

t

1
b(σ)

dσ, 0 ≤ t <∞.

This proves (5.20).

Let u∗ be given by (5.2), then u∗ ∈ W 1/2(0, T ;L∞(0, 1)). So, by
absolute continuity and (5.10),

(∫ 1

0

|u∗(x, t) − u∗(x, s)|2 dx
)1/2

≤
∫ t

s

‖u∗t (·, σ)‖2 dσ

≤M∞
∫ t

s

1
b1/2(σ)

dσ

for all 0 ≤ s < t < ∞. Hence u∗ is also Cauchy in the space
C(0,∞;L2(0, 1)), and there is an element u∞ ∈ L2(0, 1) such that

‖u∗(·, t) − u∞‖2 ≤M∞
∫ ∞

t

1
b1/2(σ)

dσ, 0 ≤ t <∞.

This proves (5.21). Finally, if ϕ ∈ C∞
0 (0, 1), then, using the limits

(5.20), (5.21), it follows that∫ 1

0

u∞(x)ϕ′(x) dx = −
∫ 1

0

u∞,x(x)ϕ(x) dx.

Hence, u′∞(x) = u∞,x a.e. 0 ≤ x ≤ 1.
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