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GLOBAL EXISTENCE AND BLOWUP FOR A
SEMILINEAR INTEGRAL EQUATION

H. HATTORI AND J.H. LIGHTBOURNE

I. Introduction. Several authors have investigated the “parabolic”
properties of the integrodifferential equation

(L)
u′(t) =

∫ t

0

a(t − τ )Au(τ ) dτ, t > 0,

u(0) = u0,

where A : D(A) ⊂ X → X is a linear closed operator with domain
D(A), a dense subset of the Banach space X, and the scalar function
a : (0,∞) → R is singular at t = 0. The abstract setting is discussed
in DaPrato and Iannelli [1] and discussions of specific examples of
related equations are found in Grimmer and Pritchard [2], Hannsgen
and Wheeler [3], Hrusa and Renardy [5], Renardy [8], and references
cited therein. The results establish that rough initial data is smoothed
as the solution evolves.

In this paper we consider the semilinear problem

(SL)
u′(t) =

∫ t

0

a(t − τ )Au(τ ) dτ + F (u(t)), t > 0,

u(0) = u0,

where F : D(F ) ⊂ X → X is nonlinear. The singularity of F is
expressed in terms of a fractional power of A. In Section II, we give
preliminary definitions and establish a growth estimate of a fractional
power of A acting on the solution map associated with the linear initial
value problem (L). For the semilinear initial value problem (SL), a local
existence result is given and global existence for small, smooth initial
data is established in Section III. An example is given in Section IV to
illustrate that blow-up may occur in the setting of (SL) if the kernel
a(t) is smooth, even though the initial data is small and smooth.

II. Linear results. Throughout this paper we make the following
assumptions on A. X is a Banach space with norm || · ||. We also
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use || · || to denote the induced norm on B(X), the Banach space of
bounded linear maps from X to X.

(H1) (i) A : D(A) ⊂ X → X is a closed linear operator, densely
defined on X.

(ii) The resolvent set of A, ρ(A), satisfies ρ(A) ⊃ {λ ∈ C : | arg λ| <
φ} ∪ V where π/2 < φ < π and V is a neighborhood of zero.

(iii) There exists M > 0 such that, for λ ∈ ρ(A), the resolvent of
A, R(λ; A) = (λI − A)−1, satisfies ||R(λ; A)|| ≤ M/(1 + |λ|).

If the hypotheses (H1) are satisfied, then the fractional powers of
(−A) are defined [7] for 0 < α < 1 by the formula

(−A)αx = (−A)((−A)α−1x)

=
sin πα

π

∫ ∞

0

tα−1(−A)(tI − A)−1x dt

=
−1
2πi

∫
Γ

tα−1(−A)(tI − A)−1x dt,

where Γ ⊂ ρ(A) with Γ ∩ {t ∈ R : t ≤ 0} = φ.

Let D((−A)α) = {x ∈ X : (−A)αx ∈ X}.
We also make the following assumptions on the kernel a : (0,∞) →

R .

(H2) There exists φ̃ ∈ (π/2, π) such that â(λ), the Laplace transform
of a, is analytic and bounded in

∑
(φ̃), â(λ) 
= 0 for λ ∈ ∑

(φ̃), and
λ(â(λ))−1 ∈ ρ(A) for λ ∈ ∑

(φ̃), where∑
(φ̃) = {λ ∈ C : | arg λ| < φ̃}.

As shown in [1],

T (t) =
∫

γ(η,ε)

eλt(λ − â(λ)A)−1 dλ

is absolutely convergent for t ≥ 0, where η ∈ (π/2, φ̃), ε > 0, and

γ(η, ε) = {λ = ρe±iη; ρ ≥ ε} ∪ {λ = εeiτ : τ ∈ (−η, η)}.

Furthermore, T (t) has the following properties:
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(a) T (0) = I, the identity on X;

(b) T (·)x : [0,∞) → X is continuous for each x ∈ X. If x ∈ D(A),
then

T (·)x ∈ C 1([0,∞); X) ∩ C ([0,∞); D(A))

and u(t) = T (t)x is a solution to (1). It is further established in [1] that
if |â(λ)|−1 ≤ C1 +C2|λ|r for r ≥ 0 then, for every x ∈ X, T (t)x ∈ D(A)
and ||AT (t)|| ≤ C(t−1 + t−1−r).

THEOREM 1. Let (H1) and (H2) hold and define T (·) as above. Then,
for each 0 < α < 1, there exists a constant C such that

||(−A)α(λ − â(λ)A)−1|| ≤ C|â(λ)|−1|λ(â(λ))−1|α−1.

Furthermore, if |â(λ)|−1 ≤ L|λ|r, r > 0, for λ ∈ ∑
(φ̃), then there exist

positive constants M and δ such that

||(−A)αT (t)|| ≤ Mt−α(1+r)e−δt, for t > 0.

PROOF. Let λ ∈ ∑
(φ̃). Then, using the resolvent identity,

R(λ; A) − R(μ; A) = (μ − λ)R(λ; A)R(μ; A),

we obtain

(−A)α(λ − â(λ)A)−1x = − 1
2πi

∫
Γ

tα−1(−A)(tI − A)−1(λ − â(λ)A)−1x dt

= − 1
2πi

(â(λ))−1

∫
Γ

tα−1

(
λ

â(λ)
− t

)−1

(−A)[
(tI − A)−1 −

(
λ

â(λ)
− A

)−1
]

x dt

for any Γ satisfying Γ ⊂ ρ(A) with Γ ∩ {t ∈ R : t ≤ 0} = φ. In
particular, let l = 3csc φ where φ is given in (H1) and Γ : l + re±iφ, 0 ≤
r < ∞. Then, for all r ≥ 0,

∣∣∣ λ

â(λ)
− l

∣∣∣ λ

â(λ)

∣∣∣ − re±iφ
∣∣∣ ≥ ∣∣∣ λ

â(λ)

∣∣∣.
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Also, for r ≥ 4l|λ/â(λ)|,

|re±iφ + l
∣∣∣ λ

â(λ)

∣∣∣ − | λ

â(λ)

∣∣∣ ≥ r

2
+

r

2
− l

∣∣∣ λ

â(λ)

∣∣∣ − ∣∣∣ λ

â(λ)

∣∣∣ ≥ r

2
.

Thus,

||(−A)α(λ − â(λ)A)−1||
≤ C|â(λ)|−1

∫ ∞

0

∣∣∣re±iφ + l
∣∣∣ λ

â(λ)

∣∣∣ ∣∣∣α−1

·
∣∣∣ λ

â(λ)
− l

∣∣∣ λ

â(λ)

∣∣∣ − re±iφ
∣∣∣−1

dr

≤ C|â(λ)|−1

∫ 4l| λ
â(λ) |

0

|r sin φ|α−1
∣∣∣ λ

â(λ)

∣∣∣−1

dr

+
∫ ∞

4l| λ
â(λ) |

|r sin φ|α−1|r
2
|−1 dr

≤ C|â(λ)|−1
∣∣∣ λ

â(λ)

∣∣∣α−1

.

Assume that |â(λ)|−1 ≤ L|λ|r. Then

||(−A)αT (t)|| ≤
∫

γ(η,ε)

||eλt(−A)α(λ − â(λ)A)−1|| dλ

≤ C · L
∫

γ(η,ε)

|eλt| |λ|rα+α−1 dλ

≤ C · Lt−(α+rd)e−δt

∫
γ(η,ε)

|e(λ+δ)t| |tλ|rα+α−1d(tλ)

≤ Mt−(α+rα)e−δt.

III. Local and global existence for semilinear problem. In
this section, we establish local and global existence for the semilinear
initial value problem (SL). The nonlinear operator F is assumed to
satisfy the following hypothesis:

(H3) F : D((−A)α) → X is such that, for every open set V ⊂
D((−A)α), there exists a constant L such that

||F (u) − F (v)|| ≤ L||u − v||α
for all u, v ∈ V and ||u||α = ||(−A)αu||.
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As established in [1], if f is Hölder continuous and u is a solution to

u(t) = T (t)u0 +
∫ t

0

T (t − τ )f(τ ) dτ,

then u ∈ C ([0, t1); X) ∩ C 1((0, t1); X) and is a solution to (SL).
Consequently, we consider the variation of parameters equation:

(VP) u(t) = T (t)u0 +
∫ t

0

T (t − τ )F (u(τ )) dτ.

THEOREM 2. Assume the hypotheses of Theorem 1 and (H3) hold
with α + rα < 1 and u0 ∈ V . Then there exists a unique local solution
u : (0, t1) → D(A), u ∈ C ([0, t1); X) ∩ C 1((0, t1); X) satisfying (SL).
Furthermore, if limt→t−1

||u(t)||α < ∞, then u can be continued.

PROOF. The proof of this theorem is routine and, therefore, only
indicated below. For δ > 0, let t1 > 0 such that

||T (t)(−A)αu0 − (−A)αu0|| ≤ 1
2
δ for t0 < t < t1.

Let Y be the Banach space C ([0, t1] : X) with

||u||Y = sup
0≤t≤t1

||u(t)||.

Define H : Y → Y by

[Hy](t) = T (t)(−A)αu0 +
∫ t

0

(−A)αT (t − τ )F ((−A)−αy(τ )) dτ.

Let S ⊂ Y be defined by

S = {y ∈ Y : y(0) = (−A)αu0, ||y(t) − (−A)αu0|| ≤ δ}.
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||H(y)(t) − (−A)αu0||

=
∥∥∥T (t)(−A)αu0 +

∫ t

0

(−A)αT (t − τ )F ((−A)−αy(τ )) dτ

− (−A)αu0

∥∥∥
≤ δ

2
+

∫ t

0

||(−A)αT (t − τ )[F ((−A)−αy(τ )) − F ((−A)−αu0)]||dτ

+
∫ t

0

||(−A)αT (t − τ )F ((−A)−αu0)|| dτ

≤ δ

2
+ LM

∫ t

0

(t − τ )−(α+rα)||y(τ ) − u0|| dτ

+ M

∫ t

0

(t − τ )−(α+rα)||F ((−A)−αu0)|| dτ

≤ δ

2
+(1−α−rα)−1MLδt1−(α+rα)+M ||F ((−A)−αu0||t1−(α+rα)

< δ for 0 < t < t1, t1 sufficiently small.
Thus H : S → S. Similarly, one can establish that H is a contraction
map for t1 sufficiently small. Consequently, H has a fixed point y ∈ S
such that

((VP)α) y(t) = T (t)(−A)αu0 +
∫ t

0

(−A)αT (t− τ )F ((−A)−αy(τ )) dτ,

and, defining u(t) = (−A)−αy(t), we obtain a solution to (VP).

Suppose u is a solution to (VP) on [0, t1) and limt→t−1
||(−A)αu(t)|| <

∞. By the above argument there exists a unique solution v(t) on [0, t′)
for some t′ > 0 to the equations

v(t)=T (t + t1)u0 +
∫ t

0

T (t − τ )F (v(τ )) dτ+
∫ t1

0

T (t + t1 − τ )F (u(τ ))dτ

v(0) = T (t1)u0 +
∫ t1

0

T (t1 − τ )F (u(τ )) dτ

= u(t1).

Then ũ defined on [0, t1 + t′) is the solution to (VP) which extends u,
where

ũ(t) =
{

u(t), 0 ≤ t ≤ t1,
v(t − t1), t1 ≤ t < t1 + t′.
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We now establish the necessary regularity of a solution u to (VP) to
obtain that u ∈ C ([0, t1); X) ∩ C 1((0, t1); X) and u satisfies (SL). We
first establish that a solution y to ((VP)α) is locally Hölder continuous.
Let 0 < t < t1, h > 0, and β = α + rα < 1. It follows from the proof
of Theorem 1 that there exists M > 0 such that ||T ′(t)|| ≤ Mt−1

and ||(−A)αT ′(t)|| ≤ Mt−1−β for t > 0. Since F ((−A)−αy(t)) is
continuous, there exists N > 0 such that ||F (−A)−αy(t)|| ≤ N for
all t ∈ [0, t1].

||y(t+h)−y(t)|| =
∥∥∥T (t + h)(−A)αu0

+
∫ t+h

0

(−A)αT (t + h − τ )F ((−A)−αy(τ )) dτ

−T (t)(−A)αu0 −
∫ t

0

(−A)αT (t−τ )F ((−A)−αy(τ ))dτ
∥∥∥

≤ ||(−A)αu0||
∫ t+h

t

||T ′(τ )|| dτ

+ N

∫ t+h

t

||((−A)αT (t + h − τ ))|| dτ

+ N

∫ t

0

∫ t+h−τ

t−τ

||(−A)αT ′(s)|| ds dτ

≤ M ||(−A)αu0||tβ−1

∫ t+h

t

τ−β−1

∫ t+h

t

τ−β dτ

+ MN

∫ t+h

t

(t + h − τ )−β dτ

+ MN

∫ t

0

∫ t+h−τ

t−τ

s−1−β ds dτ

≤ M ||(−A)αu0|| ∗ 1 − β)−1tβ−1h1−β

+ MN(1 − β)−1h1−β

+ MN [β(1 − β)]−1h1−β

It follows that y(t) is locally Hölder continuous and, by (H3), F ((−A)−α

y(t)) is locally Hölder continuous. Defining u(t) = (−A)−αy(t)
and applying results obtained in [1], we have that u(t) ∈ D(A) for
t > 0, u ∈ C ([0, t1); X)∩C 1((0, t1); X), and u is the unique solution to
the initial value problem (SL).
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THEOREM 3. Suppose hypotheses of Theorem 2 hold with β = α+ rα
satisfying 0 < β < 1. If there exist positive constants γ, C and p > 1
such that ||F (u)|| ≤ C||(−A)αu||p for ||(−A)αu|| ≤ γ, then there exists
ρ > 0 such that if ||(−A)αu0|| ≤ ρ then there is a global solution to
(SL).

PROOF. By the previous theorem, it suffices to show that ||(−A)αu(t)||
remains bounded. Suppose u is a solution to (VP). Then

||(−A)αu(t)|| ≤ ||T (t)(−A)αu0|| +
∫ t

0

||(−A)αT (t − τ )F (u(τ ))|| dτ

≤ M ||(−A)αu0||+M

∫ t

0

(t−τ )−βe−δ(t−τ)||(−A)αu(τ)||pdτ.

Let K(t) = max0≤τ≤t{||(−A)αu(τ )||}. Then

K(t) ≤ M ||(−A)αu0|| + M

(∫ ∞

0

r−βe−δr dr

)
[K(t)]p.

It follows that if ||(−A)αu0|| is sufficiently small, then there exists η > 0
such that ||K(t)|| ≤ η for t > 0.

Example. Examples for which the preceding results apply are readily
found in the literature. For example, let

X = L 2(0, 1), A = −d2

dx2 , D(A) = H2(0, 1) ∩ H1
0 (0, 1), F (u) = d

dxu2,

a(t) = t−η, γ > 0 and η ∈ (0, 1). The verification that the required
assumptions are satisfied in this example may be found in [1] and [7].
In this example, α > 1/2 and 0 < α + rα < 1 implies (2 − η)α < 1.
Increased regularity of solutions is obtained by an increase in α and,
consequently, an increase in η.

IV. Breakdown of smooth solutions. In this section we discuss
the breakdown of smooth solutions to the differential equation

(4.1) ut + f(u)x =
∫ t

−∞
a(t − τ )uxx dτ,
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with initial datum

(4.2) u(x, 0) = u0(x).

Here, we assume that the kernel a(t) is regular and a(0) = 1, and that
f ′ > 0 and f ′′ > 0 so that f is monotone and genuinely nonlinear. We
also normalize f so that f(0) = 0.

In order to discuss the breakdown of smooth solutions, it turns out
that it is convenient to rewrite the equation in the following form.
Setting

(4.3) v(x, t) =
∫ t

−∞
a(t − τ )ux dτ,

we obtain

(4.4)
ut + f(u)x − vx = 0,

vt − ux =
∫ t

−∞
a′(t − τ )ux dτ.

Notice that

v(x, 0) =
∫ 0

−∞
a(−τ )ux dτ.

Therefore, this gives the initial datum for v and we assume that this
past history can be controlled so that we can prescribe arbitrary initial
datum for v.

REMARK. Actually it is not natural to think this way. It is more
natural to think that we have the breakdown of smooth solutions if the
past history satisfies the conditions which come from the initial data
(4.14).

We now apply the transformation due to MacCamy [6]. Let r(t)
be the resolvent kernel associated with the solution of linear Volterra
equation

r(t) +
∫ t

0

a′(t − τ )r(τ ) dτ = a′(t), t ≥ 0.
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Then, convoluting (4.4)2 with r(t), we obtain

(4.5)
ut + f(u)x − vx = 0,

vt − ux = F [v],

where

F [v] = −αv + φ(x, t) +
∫ t

0

r′(t − τ )v(x, τ) dτ,

φ(x, t) = −r(t)v0(x) +
∫ t

0

r(t − τ )
∫ 0

−∞
a′(τ − s)ux(x, s) ds dτ,

and −α = r(0) = a′(0) < 0. In what follows, for simplicity we assume
that r′(t) is bounded and set

K0 = sup
0≤t≤∞

|r′(t)|.

System (4.5) has a structure similar to the viscoelasticity model
considered in [4]. It turns out that the proof is essentially the same.
Therefore, we indicate the modification necessary to prove the a priori
estimate and the proof of breakdown.

The characteristics of system (4.5) are

λ

μ

)
= (f ′ ±

√
(f ′)2 + 4)/2,

and in what follows we assume that

(4.6) λ′ = λf ′′/√
(f ′)2 + 4 > ε > 0.

The Riemann invariants for (4.5) can be taken as

(4.7)
r

s

)
=

∫ (
f ′ ±

√
(f ′)2 + 4

)/
2 du − v.

The transformation given by (4.7) is one-to-one. These Riemann
invariants satisfy the diagonal system

(4.8)
rt + λrx = G(r, s) + φ(x, t),
st + μsx = G(r, s) + φ(x, t),
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where G(r, s) is given by

G(r, s) = −αg(r, s) +
∫ t

0

r′(t − τ )g(r, s) dτ

and g(r, s) is given by

g(r, s) = −(r + s)/2 − h(r − s)/2.

In the above relation, h(r− s) is given by h(r− s) = f(k(r− s)), where
u = k(r − s) is the solution of r − s =

∫ u

0

√
(f ′)2 + 4 du. It is not

difficult to show that h(0) = 0 and h′(0) is finite. If we write

′ =
∂

∂t
+ λ

∂

∂x
, � =

∂

∂t
+ μ

∂

∂x
,

(4.8) can be written as

(4.9) r′ = G(r, s) + φ, s� = G(r, s) + φ.

Modifying Nishida’s argument, we have the following a priori estimate
of sup norm for the smooth solutions.

LEMMA 4.1. Suppose

|r0| = sup
−∞<x<∞

|r0(x)|, |s0| = sup
−∞<x<∞

|s0(x)|,

|Φ(t)| = sup
0≤τ≤t,−∞<x<∞

|φ(x, τ)|,

and that
|h(r − s)| ≤ K|r − s|

on the interval −A ≤ r − s ≤ B, where K, A, and B are positive
constants. Then, if |r0| + |s0| < min(A, B), there is a T0 such that the
estimate

|r| + |s| ≤
(
|r0| + |s0| + 2

∫ t

0

|Φ| dτ

)
exp{Kt + K0(α/2 + K)t2/2}

holds on 0 ≤ t ≤ T0.
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PROOF. We introduce the characteristic curves

(4.10) x1 = x1(p, m) = m +
∫ p

0

λdq, −∞ < m < ∞,

(4.11) x2 = x2(p, n) = n +
∫ p

0

μdq, −∞ < n < ∞.

Then, along the characteristic curve defined by (4.10), from (4.9) we
see

eαt/2r′ + αeαt/2r/2 = − eαt/2[{αs + h(r − s)}/2 + φ]

+ eαt/2

∫ t

0

r′(t − τ )g(x1(τ, m), τ ) dτ.

Therefore, after the integration,

eαp/2r = r0(m) −
∫ p

0

eατ/2[{αs + h(r − s)}/2 + φ](x1(τ, m), τ ) dτ

+
∫ p

0

eαt/2

∫ t

0

r′(t − τ )g(x1(τ, m), τ ) dτ dt.

Since we assume the existence of smooth solutions, using the mean
value theorem, we obtain

eαp/2r(x1(p, m), p) = r0(m)

−
∫ p

0

eατ/2[{αs + h(r − s)}/2 + φ](x1(τ, m), τ )dτ

+
∫ p

0

eατ/2τr′(τ − q)g(x1(τ, m), q(τ )) dτ,

where q(τ ) satisfies 0 ≤ q(τ ) ≤ τ . Define

r(x1(t, m), t) = max
0≤p≤t

eαp/2|r(x1(p, m), p)|,

s(x2(t, n), t) = max
0≤p≤t

eαp/2|s(x2(p, n), p)|.
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y

y = h(r — s) y = K(r — s)

(r — s)
B

FIGURE 4.1. A typical example of h.

Then,

r(x1(t, m), t) ≤ |r0| +
∫ t

0

eατ/2[{α|s| + |h(r − s)|}/2 + |φ|] dτ

+
∫ t

0

eατ/2τ |r′(τ − q)g(x1(τ, m), q(τ ))| dτ.

Since h(0) = 0 and h′(0) is finite, we estimate h by

|h(r − s)| ≤ K|r − s|.
A typical example of h is given in Figure 4.1. Since h′′ is positive, B
is finite and A is infinite. If the initial data is small in the supremum
norm, there is a time interval in which this majorization holds. Then
in this time interval, we have

r(x1(t, m), t)

≤ |r0| +
∫ t

0

eατ/2{α|s|/2 + |φ|}(x1(τ, m), τ ) dτ

+ 1/2
∫ t

0

eατ/2(K + K0(α/2 + Kτ ) [(|r| + |s|)(x1(τ, m), τ ] dτ,
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Define

R(t) = sup
−∞<x<∞,0≤p≤t

eαp/2|r(x, p)|,

S(t) = sup
−∞<x<∞,0≤p≤t

eαp/2|s(s, p)|.

Then the above inequality implies

r(x1(t, m), t) ≤ |r0| +
∫ t

0

{αS(τ )/2 + |Φ(τ )|} dτ

+ 1/2
∫ t

0

(K + K0(α/2 + K)τ )(R(τ ) + S(τ )) dτ.

We can go through the same argument for s along the characteristic
curve defined by (4.11) and obtain

s(x2(t, n), t) ≤ |s0| +
∫ t

0

{αR(τ )/2 + |Φ(τ )|} dτ

+ 1/2
∫ t

0

(K + K0(α/2 + K)τ )(R(τ ) + S(τ )) dτ.

Since we assume that the solution is smooth, the slopes of characteris-
tics are finite. So, for each t, there are characteristic curves so that

r(x1(t, m), t) = R(t), s(x2(t, n), t) = S(t).

If we choose these m, n for each t, we have

R(t) + S(t) ≤ |r0| + |s0| + 2
∫ t

0

|Φ(τ )| dτ

+
∫ t

0

(α/2 + K + K0(α/2 + K)τ )(R(τ ) + S(τ )) dτ.

Then, setting

β(t) = |r0| + |s0| + 2
∫ t

0

|φ(τ )| dτ,

γ(t) = (α/2 + K + K0(α/2 + K)t)
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and using the generalized Gronwall inequality, we obtain

R(t) + S(t) ≤ β(t) +
∫ t

0

γ(τ )β(τ )
(

exp
∫ t

τ

γ(ξ) dξ
)

dτ

≤ β(t) exp
∫ t

0

γ(ξ) dξ.

Therefore,

(4.12) |r(t)| + |s(t)| ≤ β(t) exp{Kt + K0(α/2 + K)t2/2}.

As β(0) = |r0| + |s0|, if β(0) < min(A, B), there is a T0 > 0 such that
the majorization and, hence, the a priori estimate is valid. If min(A, B)
exists, we can find an estimate for T0 by solving

min(A, B) = β(T0) exp
{

KT0 +
K0

2

(α

2
+ K

)
T 2

0

}
.

Now we state the theorem for the breakdown of smooth solutions.

THEOREM 4.2. Suppose the condition in (4.6) is satisfied. Then, for
an appropriate smooth initial datum and the past history, the breakdown
of smooth solutions to (4.1) will occur in finite time.

PROOF. The proof is basically the same as in [4]. The idea of proof is
to show that two characteristic curves of the same family will cross each
other and have the different values of the solutions, which indicates that
the solution is not smooth. Suppose x1(t) and x2(t) are r-characteristic
curves with x1(0) = x0

1 and x2(0) = x0
2 and that x0

1 < x0
2. Then, this

is equivalent to finding a positive t1(< T0) such that

(4.13) r1(t) > r2(t), 0 ≤ t ≤ t1,

(4.14) x1(t1) ≥ x2(t1).

To show the above we choose points (x0
1, 0) and (x0

2, 0) on the initial
line such that x0

2 − x0
1 = δ, where δ is a small positive constant which
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will be determined later in this proof. On the initial line we give the
smooth and bounded data r0(x) and s0(x) which take the values

(4.15) r0(x0
1) = r0 + Δr/2, r0(x0

2) = r0 − Δr/2,

s0(x) = s0,

where r0, s0, and Δr(> 0) are constants.

By making use of the a priori estimate, we define

M0 = β(T0) exp(KT0 + K0(α/2 + K)T 2
0 /2),

where T0 is the constant obtained in Lemma 4.1. We also define the
values

(4.16)

M1 = max
|r|+|s|≤M0

α|g(r, s)| + |Φ(T0)|,
M2 = max

|r|+|s|≤M0

|λ′(r, s)|,
M3 = max

|r|+|s|≤M0

|λ(r, s)|,
M4 = max

|r|+|s|≤M0

K0|g(r, s)|.

Now we can obtain the following inequalities along r-characteristic
curves x1(t) and x2(t). Along x1(t) we have

r1(t) = r0 + Δr/2 +
∫ t

0

{−αg(r, s) + φ} dt

−
∫ t

0

∫ t

0

r′(t − τ )g(r, s)(x, τ) dτ dt,

(4.17) r0 + Δr/2 − M1t − M2t
2 ≤ r1(t) ≤ r0 + Δr/2 + M1t + M2t

2,

(4.18) s0 − M1t − M2t
2 ≤ s1(t) ≤ s0 + M1t + M2t

2,

(4.19) x1(t) = x1 +
∫ t

0

λ(r1 − s1) dt.
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And along x2(t),

(4.20) r0 − Δr/2 − M1t − M2t
2 ≤ r2(t) ≤ r0 − Δr/2 + M1t + M2t

2,

(4.21) s0 − M1t − M2t
2 ≤ s2(t) ≤ s0 + M1t + M2t

2,

(4.22) x2(t) = x2 +
∫ t

0

λ(r2 − s2) dt.

From (4.17) and (4.20), if

(4.23) r1 − r2 > Δr − 2M1t − 2M4t
2 > 0,

then (4.12) is satisfied. And, from (4.18) and (4.21), we obtain

x2(t) − x1(t) = x0
2 − x0

1 +
∫ t

0

{λ(r2 − s2) − λ(r1 − s1)} dt

= x0
2 − x0

1 +
∫ t

0

λ′(ξ)(r2 − r1 + s1 − s2) dt,

where ξ is between (r2 − s2) and (r1 − s1). The condition (4.14) is
equivalent to∫ t

0

λ′(ξ)(r2 − r1 + s1 − s2) dt ≤ x0
1 − x0

2 = − δ.

We estimate the above integral. From (4.6), (4.16), and (4.20),

λ′(ξ)(r2 − r1) ≤ − ε(Δr − 2M1t − M4t
2),

and, from (4.16), (4.18), and (4.21),

λ′(ξ)(s1 − s2) ≤ 2M2(M1t + M2t
2).

Thus, if
(4.24)∫ t

0

λ′(ξ)(r2 − r1 + s1 − s2) dt

≥ − εΔrt + M1(ε + M2)t2 + 2M4(ε + M2)t3/3 ≤ x0
1 − x0

2 = − δ
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is satisfied, (4.14) is satisfied. If we choose small enough δ, it is easy
to find t1 ≤ T0 which satisfies (4.23) and (4.24). Since the a priori
estimate in Lemma 3.1 depends only on the maximum absolute values
|r0| and |s0| of initial data, we can change δ without changing |r0| and
|s0|.
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