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AVERAGING IN INFINITE DIMENSIONS

J.K. HALE AND S.M. VERDUYN LUNEL

ABSTRACT. In this paper we study the method of aver-
aging for functional differential equations and classes of par-
tial differential equations when subjected to high frequency
perturbations.

1. Introduction. It is a well-known fact that the motions described
by systems modeled by ordinary differential equations (ODE) may
change drastically when subjected to high frequency forcing functions.
A classical example is the stabilization of a pendulum at the vertical
position by rapidly oscillating the support. The amplitude of an
undesirable limit cycle of an autonomous ODE may be decreased or
the limit cycle even may be eliminated by such appropriately applied
forces (see, for example, Andronov, Khaikin and Witt [2], Bogoliubov
and Mitropolsky [5] or Hale [14] for these as well as other illustrations
of similar phenomena).

The appropriate tool for understanding the effects of high frequency
input functions is the method of averaging. It is the purpose of
this paper to give an extension of this method to infinite dimensional
systems which will include some types of partial differential equations
(PDE) as well as functional differential equations (FDE). We give a
few illustrations of the method. Further applications to the control of
mechanical systems can be found in a forthcoming paper of Lehman
and Verduyn Lunel.

To understand why new ideas are needed in our situation, it is
worthwhile to present a brief summary of the method of averaging
for ODE. Consider the system of ODE in Rn,

(1.1) ẋ(t) = f(t/ε, x),

where ε is a small parameter and f(s, x) is periodic in s of period one,
the nonlinearity f(s, x) is continuous together with its derivative with
respect to x. Our theory below will hold for f(s, x) which are almost
periodic in s, but we present the ideas in the periodic case in order to
avoid technical difficulties.
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The averaged equation corresponding to (1.1) is

(1.2) ẏ = f0(y) with f0(y) =
∫ 1

0

f(τ, y) dτ.

To show that there is a relationship between the solutions of (1.1) and
(1.2) for ε small, we make a transformation of variables which is close
to the identity which carries the vector field in (1.1) close to the one in
(1.2). More specifically, we let

(1.3) u(s, x) =
∫ s

0

[f(τ, x) − f0(x)] dτ,

observe that u(s, x) has period one in s and let

(1.4) x = z + ε u(t/ε, z).

If we restrict x to a fixed bounded set B, then there is an ε0 = ε0(B)
such that this is a well-defined transformation for 0 ≤ ε ≤ ε0 and takes
(1.1) into the equation

(1.5) ż = f0(z) + g(t/ε, z, ε),

where g(s, z, ε) has period one in s and g(s, z, 0) = 0. The vectorfield
in (1.5) is, therefore, close to the one in (1.2), and one expects the
dynamics of the two equations to be approximately the same.

The classical results on averaging compare the solution x of (1.1),
where x(0) = x0, with the approximate function x∗ = y∗ + εu(t/ε, y∗),
where y∗ is a solution of the averaged equation (1.2) and y∗(0) the
solution of the equation x∗(0) = y∗(0) + εu(0, y∗(0)). It is shown that,
if y∗(t) is bounded for t ≥ 0, then, for any η and L, there is an ε0 such
that, for 0 ≤ ε ≤ ε0, the difference

|x(t) − x∗(t)| ≤ η

for 0 ≤ t ≤ L. This is an easy consequence of the fact that (1.5) is
equivalent to (1.1) through the transformation (1.4) (see Bogoliubov
and Mitropolsky [5]).

It is also possible to deduce interesting information from the aver-
aged equation on the infinite time interval [0,∞) provided that more
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is known about the solutions of (1.2). For example, to each hyperbolic
equilibrium point (periodic orbit), there corresponds a hyperbolic peri-
odic solution (invariant torus) for the original equation (1.1) if ε is small
(see, for example, Bogoliubov and Mitropolsky [5] or Hale [14]). The
examples mentioned in the first part of the introduction are discussed
rather easily from this observation.

Let us now consider extensions of this method to abstract evolu-
tionary equations in a Banach space X. More precisely, consider the
equation

(1.6) u̇ = Au+ F (t/ε, u, ε),

where A is the generator of a C0-semigroup TA(t) on X and F (t, u, ε) is
continuous in t, u, ε, continuously differentiable in u and almost periodic
in t uniformly for u in compact subsets of X. Formally, we can consider
the averaged equation

(1.7) v̇ = Av + F0(v)

and attempt the same type of transformation as above to relate the
vectorfields of the two equations.

If (1.6) corresponds to a PDE, then A is an unbounded operator and
X is infinite dimensional. Therefore, it becomes difficult to justify the
transformation.

For the case in which A generates a group such that eAtu0 is almost
periodic for each u0 ∈ X and F (t, u, ε) = εG(u) is independent of t,
previous work on averaging has been done (Mitropolsky [23], Dumas
and Ellison [10], Dumas, Ellison and Sáenz [11], Lemlin and Ellison
[22]). In this case, one can make an almost periodic transformation
u = eAtw to obtain the equation in “normal” form:

(1.8) ẇ = ε e−AtG(eAtw).

Equation (1.1) has this normal form under the transformation t �→ ε t.
Since (1.8) is almost periodic, it is reasonable to consider the equation
averaged with respect to t. Applications of this procedure are contained
in the references mentioned above.

In our situation, we are interested primarily in the effect of the forcing
term. Now the operator TA(t) may contain dissipation so that it is not
almost periodic and the above transformation is not natural.
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Our approach is to use the variation of constants formula for (1.6);
that is,

(1.9) u(t) = TA(t− s)u0 +
∫ t

s

TA(t− τ )F (τ/ε, u(τ ), ε) dτ.

If T ε(t, s)u0 = u(t) with u(s) = u0 is the solution operator, then we
show in Section 2 that there is a nice function G(t, v, ε) such that

(1.10) T ε(t, s)u0 = Sε(t, s)u0 + εG(t, Sε(t, s)u0, ε),

where Sε(t, s) is the solution operator of the averaged equation (1.7)
up to terms of order ε.

Of course, specific computations must be performed on the vector
fields. If the initial data u0 belongs to the domain D(A) of A in
(1.7), then Sε(t, s)u0 is a strong solution of the averaged equation up
to terms of order ε and T ε(t, s)u0 is a solution of (1.6). We show
how the estimates between the solutions with initial data in D(A)
yield estimates for any initial data. In Sections 4 and 5, these results
are extended to (FDE), again working with the variation of constants
formula rather than the differential equation. However, the presence of
delays leads to additional complications. Let us explain. We consider
the delay equation in X = C([−r, 0];Rn):

(1.11) ẋ(t) = f(t/ε, x(t), x(t− r)),

where r is a nonnegative constant independent of ε and f(t, x, y) is 1-
periodic in t and smooth in x, y. We consider (1.11) as a perturbation
of the delay equation ẋ(t) = 0. If T0(t) is the semigroup generated by
ẋ(t) = 0, then the infinitesimal generator A0 is given by (A0ϕ)(θ) =
dϕ(θ)/dθ with the domain D(A0) given by the C1-functions which
satisfy ϕ̇(0) = 0. It is therefore tempting to write (1.11) as an abstract
evolutionary equation,

(1.12)
dxt

dt
= A0xt + F (t/ε, xt),

where

(1.13) F (t/ε, ϕ)(θ) =
{

0, for θ < 0
f(t/ε, ϕ), for θ = 0
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and xt(θ) = x(t + θ) for −r ≤ θ ≤ 0. Of course, we must be careful
about the space in which (1.1) is to be considered. If the operator
F (t/ε, ·) can be considered as a bounded perturbation of the operator
A0, then (1.12) will generate a good evolutionary operator T (t, s)
which takes the initial data at s to the solution at t. Unfortunately,
the operator F (t/ε, ·) is not bounded as a map from X into X!
Consequently, we must find a larger space Y so that it is bounded
from X to Y . A natural choice for Y is Rn × L∞([−r, 0];Rn). Of
course, the operator A0 must be extended to an operator A�∗

0 from Y
into Y . It is shown in Clément, Diekmann et al. [6] that this can be
done, that A�∗

0 generates a weak∗-continuous semigroup {T�∗(t)} on
Y and the variation of constants formula applied to elements ϕ ∈ X
gives solutions of (1.11); that is, the solution x(t) = x(t, s, ϕ) through
ϕ at s satisfies the integral equation

(1.14) xt = T0(t− s)ϕ+
∫ t

s

T�∗
0 (t− s)F (s/ε, xs) ds.

Thus, even though the map F (t/ε, ·) takes X into the larger space Y ,
the convolution integral is in X and one obtains solutions of (1.11).

In this more general framework, it is possible to show that the solution
operator T ε(t, s) defined by (1.14) is represented in the form (1.10),
where Sε(t, s) is the solution operator of the averaged equation

(1.15) ẏ(t) = f0(y(t), y(t− r)) with f0(y, z) =
∫ 1

0

f(τ, y, z) dτ

up to terms of order ε.

In Section 5, we show how these results give comparisons of the
solutions of the averaged and original equation on an interval [0, L].
We also give results on an infinite time interval for special types of
hyperbolic sets and show upper semicontinuity in ε of global attractors
for the averaged and original equation.

Section 6 is devoted to some applications to parabolic PDE and FDE.

We end this introduction with the remark that the averaging method
in delay equations has been justified when the equations are considered
in normal form:

(1.16) ẋ(t) = εf(t, x(t), x(t− r̄))
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(see Halanay [12], Hale [13], and Akmerov [1]). We remark that (1.11)
is equivalent to (1.16) through the transformation t �→ εt if and only if
r = εr̄; that is, the delay in (1.11) is small and approaches zero in ε.
Therefore, results on averaging which can be justified only through the
study of (1.16) are of limited application (see Lehman et al. [4] where
control of a delayed mechanical system is obtained by rapidly oscillating
forces). This remark was our primary motivation for extending the
method of averaging in the manner mentioned above.

2. The method of averaging. Let (X, ‖ · ‖) be a Banach space
and consider the Cauchy problem

(2.1) ẇ = Aw + F (t/ε, w),

where w(0) = w0 ∈ X, the operator A generates a strongly continuous
semigroup TA(t) on X and the nonlinearity F : R+ × X → X with
w �→ F (t, w) is Fréchet differentiable in w, strongly continuous and
almost periodic in t uniformly with respect to w in compact subsets of
X. Let M and ω be such that ‖TA(t)‖ ≤Meωt.

Along with this Cauchy problem, we consider the averaged equation

(2.2) v̇ = Av + F0(v),

where

(2.3) F0(v) = lim
T→0

1
T

∫ T

0

F (τ, v) dτ.

The basic problem in the method of averaging is to determine in what
sense the behavior of the solutions of the averaged Cauchy problem
approximate the solutions of (2.1).

We shall assume the following smoothing property (H) of TA(t):

(H) If h : [s,∞) → X is norm continuous, then

(i)
∫ t

s

TA(t− τ )h(τ ) dτ ∈ D(A), for s ≤ t;

(ii)
∥∥∥A ∫ t

s

TA(t− τ )h(τ ) dτ
∥∥∥ ≤Meωt sup

s≤τ≤t
‖h(τ )‖, for s ≤ t.
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In this section, we prove that there exists a transformation of variables
that takes a solution of (2.1) into a solution of the averaged problem
(2.2) up to terms of order ε. Furthermore, this transformation of
variables is almost periodic in t and is close to the identity if ε is
sufficiently small.

This result, together with (H), enables us to prove the classical
theorems on averaging for the Cauchy problem (2.1) which we will
do in Section 5.

If h : [s,∞) → X is continuously differentiable, then (H) holds and

(2.4)
d

dt

∫ t

s

TA(t− τ )h(τ ) dτ = A

∫ t

s

TA(t− τ )h(τ ) dτ + h(t).

Thus, the smoothing property (H) means that (2.4) is satisfied for
norm continuous functions h and does allow to perturb A with certain
classes of unbounded operators (compare Desch and Schappacher [9]).
In concrete examples the hypothesis (H) can be replaced by weaker
versions if we know more about the perturbation F (e.g., finite rank in
the FDE case).

In this section we work with bounded perturbations from X into X;
thus, all integrals are strong integrals. Without difficulties, we can
handle the larger class of perturbations allowed in the “perturbed dual
semigroup” framework (see Section 4). In this case, all integrals are
still well defined (now in the weak∗ topology) and the proofs go over
immediately. In order to support this larger class of perturbations, we
have made references to [8] for general results from the perturbation
theory for nonlinear Lipschitz perturbations. In Section 4, when we
discuss delay equations, we will explain this generalization.

Assume at first that the operator U(t, ·) : X → X, given by

(2.5) U(t, w) =
∫ t

0

(F (τ, w)− F0(w)) dτ,

is almost periodic. Since the operator F (t, ·) is almost periodic, too,
this means that the operator U(t, ·) is uniformly bounded in t. Thus,
in this case, ε U(t, w) and εDwU(t, w) approach 0 in norm as ε → 0,
uniformly with respect to t and w in compact subsets of X.

In general, the operator U(t, ·) is not almost periodic but we can
always make an almost periodic approximation of U(t, ·). This is
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the content of a classical result by Bogoliubov concerned with almost
periodic approximation to the solution of the equation ẏ − f(t, x) = 0.
The proof can be found in the appendix on almost periodic functions
of the book by Hale [14]. Define

(2.6) U(t, ·) =
∫ t

−∞
e−ε(t−τ)(F (τ, ·)− F0(·)) dτ,

that is, U(t, ·) satisfies the differential equation

∂U

∂t
(t, ·) = −ε U(t, ·) + F (t, ·) − F0(·).

For the approximation given by (2.6), we can prove that ε U(t, w) and
εDwU(t, w) approach 0 in norm as ε→ 0, uniformly, with respect to t
and w in compact subsets of X. However, we are not able to conclude
that these functions are of order ε as ε → 0. Since this modification
only makes the results more difficult to state, we prefer to make the
following hypothesis.

HYPOTHESIS 2.1. The operator function U(t, ·), defined by (2.5),
as well as Dw(t, ·) are almost periodic uniformly with respect to w in
compact sets; that is, for any compact set W in X, there is a constant
KW such that

(2.7) ‖U(t/ε, w)‖ ≤ KW , ‖DwU(t/ε, w)‖ ≤ KW

uniformly with respect to t in R and w in W .

Next, we consider a mild solution w of (2.1); that is, a solution of the
integral equation associated with (2.1),

(2.8) w(t) = TA(t− s)w0 +
∫ t

s

TA(t− τ )F (τ/ε, w(τ )) dτ.

To study the connection between the solutions of (2.1) and the solutions
of the averaged equation (2.2), we introduce two function spaces. Define
BC([s, T ];X) to be the Banach space of bounded continuous functions
with values in X provided with the supremum norm

‖v‖0 = sup
s≤τ≤T

‖v(τ )‖,
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and define BC1([s, T ];X) to be the Banach space of bounded continu-
ous differentiable functions provided with the norm

‖v‖1 = ‖v‖0 + ‖v̇‖0.

LEMMA 2.2. If v ∈ BC1([s, T ];S), then

∫ t

s

TA(t− τ )(F (τ/ε, v(τ ))− F0(v(τ ))) dτ

= εA

∫ t

s

TA(t− τ )U(τ/ε, v(τ )) dτ

− ε

∫ t

s

TA(t− τ )H(τ/ε, v(τ )) dτ

+ ε U(t/ε, v(t)) − ε TA(t− s)U(s, v(s)),

where

(2.9) H(t, v) = DvU(t, v)
dv

dt
.

PROOF. We compute εA
∫ t

s
TA(t− τ )U(τ/ε, v(τ )) dτ explicitly. So,

1
h

(TA(h) − I)
∫ t

s

TA(t− τ )U(τ/ε, v(τ )) dτ

=
1
h

∫ s

s−h

TA(t− τ )U((τ + h)/ε, v(τ + h)) dτ

− 1
h

∫ t

t−h

TA(t− τ )U((τ + h)/ε, v(τ + h)) dτ

+
1
h

∫ t

s

TA(t− τ )[U((τ + h)/ε, v(τ + h))

− U((τ/ε, v(τ + h))] dτ

+
1
h

∫ t

s

TA(t− τ )[U((τ/ε, v(τ + h)) − U((τ/ε, v(τ ))] dτ.
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By definition, taking the limit h ↓ 0 yields

εA

∫ t

s

TA(t− τ )U(τ/ε, v(τ )) dτ

= ε TA(t− s)U(s/ε, v(s)) − ε U(t/ε, v(t))

+
∫ t

s

TA(t− τ )(F (τ/ε, v(τ ))− F0(v(τ ))) dτ

+ ε

∫ t

s

TA(t− τ )DvU(τ/ε, v(τ ))v̇(τ ) dτ,

where we used that U(t, ·) satisfies the differential equation

∂U

∂t
(t, ·) = +F (t, ·) − F0(·).

We define the following transformation of variables w(t) = Fv(t) with
F : BC([s, T ];X) → BC([s, T ];X) and

(2.10) Fv(t) = v(t)− εA

∫ t

s

TA(t− τ )U(τ/ε, v(τ )) dτ + ε U(t/ε, v(t)).

LEMMA 2.3. The transformation w = Fv given by (2.10) is well
defined, almost periodic and close to the identity; that is, there is a
constant K = K(v) and an ε0 > 0 such that, for 0 ≤ ε ≤ ε0, the
difference

sup
s≤t≤T

‖w(t) − v(t)‖ < εK.

PROOF. From (H), we find

∥∥∥∥εA
∫ t

s

TA(t− τ )U(τ/ε, v(τ )) dτ
∥∥∥∥ ≤ εMeωt sup

s≤τ≤t
‖U(τ/ε, v(τ ))‖.

So, from (2.4) and the conditions on the nonlinearity F , we derive that
F is well defined. The function v remains in a compact subset of X,
thus Hypothesis 2.1 yields that F is almost the identity. Finally, the
existence of v ∈ BC([s, T ];X) such that w = Fv now follows from an
easy contraction argument.
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Next we derive the integral equation for v when w satisfies (2.8).
If we substitute (2.10) into (2.8) and use Lemma 2.2 to rewrite the
expression, we obtain

(2.11)
v(t) = TA(t− s)v0 +

∫ t

s

TA(t− τ )F0(v(τ )) dτ

+
∫ t

s

TA(t− τ )N(τ/ε, v(τ ), ε) dτ,

where w0 = v0 + ε U(s/ε, v0) and

(2.12) N(t, v, ε) = − εH(t, v) + F (t,Fv) − F (t, v).

To prove that v is a solution of the averaged equation up to terms of
order ε, it remains to analyze the nonlinearity N(t, v, ε).

LEMMA 2.4. For v ∈ BC1([s, T ];X), there is a constant C > 0 such
that

(2.13)
∥∥∥∥
∫ t

s

TA(t− τ )N(τ/ε, v(τ ), ε) dτ
∥∥∥∥ ≤ ε

M

ω
(eωt − 1)C‖v‖1.

PROOF. For v ∈ BC1([s, T ];X) the function N(τ/ε, v(τ ), ε) is norm
continuous in τ . So, we can estimate
(2.14)∥∥∥∥
∫ t

s

TA(t− τ )N(τ/ε, v(τ ), ε) dτ
∥∥∥∥ ≤ M

ω
(eωt−1) sup

s≤τ≤t
‖N(τ/ε, v(τ ), ε)‖.

The nonlinearity F is continuously differentiable and almost periodic,
and v(τ ) remains in a compact subset of X for all s ≤ τ ≤ t. Therefore,
the derivatives DvU and DvF are uniformly bounded, say by K. This
shows

sup
s≤τ≤t

‖N(τ/ε, v(τ ), ε)‖ ≤ εK‖v‖1 +K‖Fv − v‖.

and (2.13) follows from Lemma 2.3.

Thus, if w = Fv, then v is a solution of the averaged equation up
to terms of order ε. As a first application of Lemmas 2.3 and 2.4,
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we compare the solution w of (2.1), with w(s) = w0 ∈ X, with the
approximate solution w∗ = Fv∗ where v∗ is a solution of the averaged
equation with v∗(s) = v0 and w0 = v0 + ε U(s/ε, v0).

THEOREM 2.5. If, for w0 ∈ X, the solution v∗ of the averaged
equation (2.2) with v(s) = v0 and w0 = v0 + ε U(s/ε, v0) is uniformly
bounded for t ≥ s, then, for any η and L, there is an ε0 such that, for
0 < ε < ε0, the difference

(2.15) ‖w(t) − w∗(t)‖ ≤ η

for s ≤ t ≤ L.

PROOF. The transformation F is close to the identity for ε sufficiently
small. So,

‖w − w∗‖0 ≤ ‖v − v∗‖0 +K1 ε,

where K1 = K1(‖v‖). Next we approximate v by ṽ ∈ BC1([s, T ];X)
and derive from Lemma 2.4,

‖ṽ − v∗‖ ≤
∫ t

s

Mew(t−τ)K2‖ṽ − v∗‖ dτ + εK3‖ṽ‖1.

The Gronwall inequality yields

‖ṽ − v∗‖ ≤ εK4‖ṽ‖1.

Thus
‖w − w∗‖0 ≤ εK1 + εK4‖ṽ‖1 + ‖v − ṽ‖0

and we can choose ṽ such that ‖v − ṽ‖0 < η2 and ε so small such that

εK1 + εK4‖ṽ‖1 < η/2.

Since v∗ depends on t through t rather than ε t, we have (2.15) for
s ≤ t ≤ L rather than s ≤ t ≤ L/ε.

3. An invariant manifold theorem. To compare the solution w
with the approximate solution w∗ for all time we need more structure
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in the equations. We start with some more precise estimates for the
integral equation (2.11) for v. The nonlinearity F0 : X → X is a Fréchet
differentiable perturbation. Thus, the operator A + F0(·) generates a
Fréchet differentiable nonlinear semigroup S0(t). If we assume (without
loss of generality) that F0(0) = 0, then the derivative of this nonlinear
semigroup is just the linear semigroup S0(t) with generatorA+DwF0(0)
associated with the linearization around zero. Therefore, to study the
variation of constants formula (2.11), we also can view N(t, v, ε) as
a nonlinear perturbation of the nonlinear semigroup S0(t) associated
with the averaged equation (2.2). This yields the following integral
equation for v (see Proposition 2.5 of Clément et al. [8]):

(3.1) v(t) = S0(t− s)v0 +
∫ t

s

S0(t− τ )R(τ/ε, v(τ ), ε) dτ,

where
R(t, v, ε) = N(t, v, ε) = F0(v) −DvF0(0)v.

LEMMA 3.1. The mapping R(t, ε, ·) : BC1([s, T ];X) → BC([s, T ];X)
is bounded and Lipschitzian. More precisely, for ‖v1‖1, ‖v2‖1 < ρ and
|ε| < σ,

‖R(t, 0, ε)‖ ≤M(|ε|),
‖R(t, v1, ε) −R(t, v2, ε)‖ ≤ η(ρ, σ)(‖v − w‖1),

where η(0, 0) = 0, M(0) = 0 and the functions η and M are nonde-
creasing.

PROOF. For v = 0, we find R(t, 0, ε) = εH(t, 0) = ε U(t, 0). So, the
first part follows form Lemma 2.1. Recall that

H(t, v) = DvU(t, v)
dv

dt
+ U(t, v)

and write

R(t, v1, ε) −R(t, v2, ε) = ε (H(t, v1) −H(t, v2))
+ F (t,Fv1) − F (t, v1)
+ F (t, v2) − F (t,Fv2)
+ F0(v1) − F0(v2)
+DvF0(0)(v2 − v1).



476 J.K. HALE AND S.M. VERDUYN LUNEL

The operators F (t, ·) and U(t, ·) are Fréchet differentiable and almost
periodic, uniformly on compact subsets of X. So, we can estimate, for
v ∈ BC1([s, T ];X),

‖R(t, v1, ε)−R(t, v2, ε)‖ ≤ εC‖v1−v2‖1+ η̃(ρ, σ) sup
s≤τ≤T

‖v1(τ )−v2(τ )‖,

where η̃(0, 0) = 0 and η̃ is nondecreasing.

LEMMA 3.2. The mapping

v �→
∫ t

s

S0(t− τ )R(τ/ε, v(τ ), ε) dτ

is bounded from BC1([s, T ];X) into BC1([s, T ;X).

PROOF. Since v ∈ BC1([s, T ];X) we have that R(τ, v(τ ), ε) is con-
tinuous in τ . Thus,

(3.2)∥∥∥∥
∫ t

s

S0(t− τ )R(τ/ε, v(τ ), ε) dτ
∥∥∥∥ ≤ M

ω
(eωt − 1) sup

s≤τ≤t
‖R(τ/ε, v(τ ), ε)‖,

where ‖S0(t)‖ ≤Meωt. Furthermore, DvF0(0) is a bounded perturba-
tion of A. So, the semigroup S0(t) satisfies (H) as well and

(3.3)∥∥∥∥A
∫ t

s

S0(t− τ )R(τ/ε, v(τ ), ε) dτ
∥∥∥∥ ≤Meωt sup

s≤τ≤t
‖R(τ/ε, v(τ ), ε)‖.

If we realize that

d

dt

∫ t

s

S0(t− τ )R(τ/ε, v(τ ), ε) dτ = A

∫ t

s

S0(t− τ )R(τ/ε, v(τ ), ε) dτ

+R(t/ε, v(t), ε),

the proof follows from Lemma 3.1.
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Introduce the space XA = (D(A), ‖ · ‖A), where ‖ · ‖A denotes the
graph norm and is defined by

‖w‖A := ‖w‖ + ‖Aw‖.

We will identify XA with its embedding into X. The closed graph
theorem shows that the linear operator Ωλ(A) = λI − A is a bounded
invertible operator from XA into X. We therefore conclude that XA is
a Banach space.

Define the solution operator T ε(t, s) : X→X for (2.8) by T ε(t, s)w0 :=
w(t) with w(s) = w0 and w given by (2.8). The transformation F
maps the solution operator T ε(t, s) for (2.8) into another solution op-
erator Sε(t, s) : X → X, where Sε(t, s)v0 := v(t) with v(s) = v0 and
w0 = v0 + ε U(s/ε, v0). For the solution operators, Lemma 3.2 states
that there is a well-defined variation of constants formula for Sε(t, s)
on the Banach space XA given by

(3.4) Sε(t, s)v0 = S0(t− s)v0 +
∫ t

s

S0(t− s)R(τ/ε, Sε(τ, s)v0, ε) dτ.

Thus, for v0 ∈ XA, we have Sε(t, s)v0 ∈ XA, and v(t) = Sε(t, s)v0 is a
strong solution of the averaged equation (2.2) up to terms of order ε.
For further references, we state the following theorem.

THEOREM 3.3. The transformation F : X → X given by (2.10) maps
the solution operator T ε(t, s) associated with (2.1) into a new solution
operator Sε(t, s) : X → X. Furthermore, for v0 ∈ XA, the variation
of constants formula (3.4) holds, the solution v(t) = Sε(t, s)v0 is in
BC1([s, T ];X) and is a strong solution of the averaged equation up to
terms of order ε.

Thus, because of the hypothesis (H), we can handle the relatively
bounded perturbation R(t, ·, ε) of A, and there is a variation of con-
stants formula on XA of the resulting solution operator. The idea now
is to analyze Sε(t, s) on XA through the variation of constants formula.

To prove the existence of a solution of (3.1) that remains in a small
neighborhood of 0 (the equilibrium of the averaged equation) for all
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time, we need more structure. More precisely, we need hyperbolicity of
the semigroup S0(t) and the existence of an exponential dichotomy:

(i) There is a decomposition X = X+ ⊕ X− with continuous
projections P± : X → X± such that

P±S0(t) = S0(t)P±, for t ≥ 0;

(ii) P±(XA) ⊂ XA;

(iii) S0(t) can be extended to a group on X+;

(iv) There are positive constants M,α, β so that

‖S0(t)P+x‖A ≤Meαt‖x‖A, t ≤ 0, x ∈ XA,

and
‖S0(t)P−x‖A ≤Me−βt‖x‖A, t ≥ 0, x ∈ XA.

A basic lemma is that the dichotomy interacts nicely with the varia-
tion of constants formula.

LEMMA 3.4. (i) If v(t, v0) is a bounded solution of (3.1) for t ≤ 0,
then v(t, v0) satisfies the integral equation

v(t) =S0(t− s)P+v0 +
∫ t

0

S0(t− τ )P+R(τ/ε, v(τ ), ε) dτ

+
∫ t

−∞
S0(t− τ )P−R(τ/ε, v(τ ), ε) dτ ;

(ii) If v(t, v0) is a bounded solution of (3.1) for t ≥ 0, then v(t, v0)
satisfies the integral equation

v(t) =S0(t− s)P v0 +
∫ t

0

S0(t− τ )P−R(τ/ε, v(τ ), ε) dτ

−
∫ ∞

t

S0(t− τ )P+R(τ/ε, v(τ ), ε) dτ ;
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(iii) If v(t, v0) is a bounded solution of (3.1) on R, then v(t, v0)
satisfies the integral equation

(3.5)
v(t) = (T v)(t) = +

∫ t

∞
S0(t− τ )P+R(τ/ε, v(τ ), ε) dτ

−
∫ t

−∞
S0(t− τ )P−R(τ/ε, v(τ ), ε) dτ.

Let AP ⊂ BC(R;X) be the class of almost periodic functions and
Pp ⊂ BC(R;X) the class of periodic functions of period p (in case
t �→ F (t, ·) is periodic of period p).

We can now prove the existence of a continuous bounded, almost
periodic (or periodic) solution of (2.1). The proof is similar to the ODE
case [14, Theorem IV.2.1], but, in this case, we make the transformation
through F and work with respect to the BC1(R;X) topology.

THEOREM 3.5. Suppose D is one of the classes BC(R;X), AP or Pp.
There are constants ρ > 0, ε1 > 0 and a function w∗ : R × [0, ε0] → X
with

(i) (t, ε) �→ w∗(t, ε) is continuous and w∗(t, 0) = 0;

(ii) w∗(·, ε) ∈ D and ‖w∗(·, ε)‖0 ≤ ρ for 0 ≤ ε ≤ ε1;

and such that t �→ w∗(t, ε) is a unique solution of (3.1) in D which has
norm ≤ ρ.

PROOF. We first make the transformation w = Fv given by (2.10).
Set D1 to be one of the classes

P1
p ⊂ AP1 ⊂ BC1(R;X).

The proof is a standard application of the uniform contraction principle.
Because of (H) the range of the mapping given by (3.5) is contained in
BC1([s, T ];X). Thus consider the mapping T : D1 → D1 and we have
to verify that the contraction mapping is well defined. From Lemma
3.2, we conclude that T : BC1(R;X) → BC1(R;X). Furthermore,
from the representation (3.5), it follows that the subspace AP1 or P1

T
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is invariant under T . Thus T is a well-defined mapping from D1 into
D1.

Define D1
ρ = {v ∈ D1 : ‖v‖1 < ρ}. To prove the theorem we have to

show that T : D1
ρ → D1

ρ is a contraction, but this now follows from the
estimates for R(t, v, ε) derived in Lemma 3.2. This shows the existence
of the solution v∗(·, ε) ∈ D1

ρ of (3.1) and, hence, the theorem follows.

To discuss the stability properties of w∗(t, ε) or v∗(t, ε), we linearize
around v∗(t, ε) and use the general saddle point property for bounded
perturbations on XA. Similar to the proof above, using Lemma
3.4, one can prove the existence of stable and unstable manifolds in
BC1(R±;X). Thus, in this space, the solution v∗(t, ε) has the same
stability properties as the zero solution of the averaged equation. A
similar approximation as in the proof of Theorem 2.5 yields that w∗(·, ε)
has the same stability properties as the zero solution of the averaged
equation in BC(R±;X).

THEOREM 3.6. The unique solution w∗(·, ε) of (2.1) in D with norm
less than ρ has the same stability properties as the zero solution of the
averaged equation (2.2).

4. Functional differential equations. Let Ω be a neighborhood
of 0 in X = C([−r, 0];Rn), the supremum normed Banach space of
continuous functions from [−r, 0] to Rn. Suppose f : R × Ω → Rn

is continuous. For ϕ ∈ Ω, we assume that f(t, ϕ) is almost periodic
in t uniformly with respect to ϕ in compact subsets of Ω and f has a
continuous Fréchet derivative ∂f(t, ϕ)/∂ϕ in ϕ on R × Ω. Let ε be a
real parameter and xt(θ) = x(t + θ). Along with the system of delay
equations

(4.1)
ẋ(t) = f(t/ε, xt), for t > 0,
x0 = ϕ,

we consider the averaged system

(4.2)
ẋ(t) = f0(xt), for t > 0,
x0 = ϕ,
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where

f0(ϕ) = lim
T→∞

1
T

∫ T

0

f(s, ϕ) ds.

In this section, we shall apply the result from Section 2 and show
that there exists an almost periodic transformation of variables. This
transformation is close to the identity, for ε small, and takes system
(4.1) into the averaged system (4.2) up to terms of order ε:

(4.3) ż(t) = f0(zt) +O(ε) as ε→ 0.

This result enables us to prove the classical theorems on averaging for
delay equations of the type (4.1) which we will do in the next section.

It is tempting to try an almost periodic transformation of variables
of the form {

x(t) = z(t) + εu(t/ε, yt), for θ = 0,
x(t+ θ) = z(t+ θ), for − r ≤ θ < 0,

and then study the behavior of the transformed equation through a
variation of constants formula. However, a rigorous proof is not that
easy. First of all, because this is not a transformation from the state
space C into itself, and, secondly, how does the variation of constants
formula appear in this particular case?

To overcome these problems, we shall work within the abstract
framework developed by Clément, Diekmann et al. [6], and then we
use the abstract result from Section 2. Let us start to recall this so-
called perturbed dual semigroup approach in the case of nonlinear delay
equations.

As the unperturbed equation, we take

(4.4) ẋ(t) = 0

considered as a delay equation. This gives rise to a C0-semigroup
{T0(t)} on X defined by

(T0(t)ϕ)(θ) =
{
ϕ(t+ θ), for t+ θ ≤ 0,
ϕ(0), for t+ θ > 0.
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Next we develop the framework for the unperturbed equation with
the result in mind that it should be invariant under the class of
perturbations we consider shortly.

The dual spaceX∗ is represented byNBV [0, r], the space of functions
of bounded variation f , normalized such that f(0) = 0, f is left
continuous and f(t) = f(r) for t ≥ r. The duality pairing is given
by

〈ϕ, f〉 =
∫ r

0

df(σ)ϕ(−σ), for ϕ ∈ X and f ∈ X∗.

The dual semigroup {T ∗(t)} is a translation in the other direction and
is a weak∗ continuous semigroup. The subspace X� of X∗ will be
defined by the largest closed invariant subspace on which {T ∗(t)} is
actually strongly continuous. From the general theory, it follows that
X� is the norm closure of D(A∗) in X∗ and given by the space of all
functions f of the form

f(θ) =
{ 0, for θ ≤ 0,

c+
∫ θ

0
g(τ ) dτ, for θ > 0,

for some row vector c ∈ Rn and g ∈ L1(R+) with supp (g) ⊂ [0, r].
Thus, X� can be represented by Rn × L1[0, r], and {T�

0 (t)}, the
restriction of {T ∗

0 (t)} to X�, is given by

T�
0 (t)(c, g) =

(
c+

∫ θ

0

g(τ ) dτ, g(t+ ·)
)
,

for (c, g) ∈ X�. The dual space X�∗ can be represented by Rn ×
L∞[−r, 0] with pairing

〈(α, ϕ), (c, g)〉 = cα+
∫ r

0

g(τ )ϕ(−τ ) dτ,

for (α, ϕ) ∈ X�∗ and (c, g) ∈ X�.

Thus, we arrive at a weak∗ continuous semigroup {T�∗
0 (t)} given by

(T�∗
0 (t)ϕ)(θ) =

{
ϕ(t+ θ), for t+ θ ≤ 0,
α, for t+ θ > 0,
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and we can repeat the above procedure. The space X is called �-
reflexive with respect to T0(t) if and only if X�� ≡ X. Clearly, the
infinitesimal generator A�∗

0 is given by

A�∗
0 (α, ϕ) = (0, ϕ̇)

with domain the equivalence classes that contain a Lipschitz ϕ with
ϕ(0) = α. Therefore, the norm closure of D(A�∗

0 ) is isomorphic to X,
and X is called sun-reflexive with respect to T0(t).

From Clément, Diekmann et al. [6], we have the following perturba-
tion result. If the perturbation F (t, ·) : X → X�∗ is defined by

(4.5) F (t, ϕ) = (f(t, ϕ), 0),

then there is a one-to-one correspondence between the solutions of (4.1)
and the solutions of the integral equation

(4.6) u(t) = T0(t−s)u(s)+
∫ t

s

T�∗
0 (t− τ )F (τ/ε, u(τ )) dτ, for t > s,

where the integral should be interpreted as a weak∗ integral. Thus,
the solution operator T ε(t, s)ϕ := u(t) with u(s) = ϕ of (4.6) is an
evolutionary system for (4.1), and the variation of constants formula

(4.7) T ε(t, s)ϕ = T0(t− s)ϕ+
∫ t

s

T�∗
0 (t− τ )F (τ/ε, T ε(τ, s)ϕ) dτ

holds for t ≥ s on X. So, although the perturbation F (t, ·) maps out of
the space X into the larger space X�∗, the convolution in (4.7) maps
the result back into X.

In this special case even more is true (see Example 4.9 of [7]). Let
h : [s,∞) → Rn ×L∞[−r, 0] be norm continuous so that the range of h
is contained in Rn, i.e., h(t) = (α(t), 0). From the representations for
T�∗

0 (t) derived earlier, we see that

(4.8)
∫ t

s

T�∗
0 (t− τ )h(τ ) dτ = (ψ(0), ψ),

where

(4.9) ψ(θ) =

{∫ t+θ

s
α(τ ) dτ, for −min{r, t− s} < θ ≤ 0,

0, for − r ≤ θ ≤ −min{r, t− s}.
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Since ψ is Lipschitz continuous, we have

∫ t

s

T�∗
0 (t− τ )h(τ ) dτ ∈ D(A�∗

0 )

and

(4.10) A�∗
0

∫ t

s

T�∗
0 (t− τ )h(τ ) dτ = (0, ψ̇).

Thus, we have proved

LEMMA 4.1. Let h : [s,∞) → Rn ×L∞[−r, 0] be norm continuous. If
the range of h is contained in Rn, then

(i)
∫ t

s
T�∗

0 (t− τ )h(τ ) dτ ∈ D(A�∗
0 ), for s ≤ t.

(ii) ‖A�∗
0

∫ t

s
T�∗

0 (t− τ )h(τ ) dτ‖ ≤M sups≤τ≤t ‖h(τ )‖, for s ≤ t.

This is not exactly the hypothesis (H) since we restrict the class of
continuous functions h to those with finite dimensional range. But
this is all that we need to obtain a variation of constants formula for
the perturbation R, given the special nature of the perturbations we
consider (i.e., finite rank). Since we work with the weak∗ topology,
not only the integrals but also the derivatives have to be considered
with respect to this topology. Thus, the function space BC1([s, T ];X)
denotes the bounded weakly∗ continuously differentiable functions.

The transformation F : BC1([s, T ];X) → BC([s, T ];X) is well
defined [7, 2.2] and given by
(4.11)

FSε(t, s)ϕ = Sε(t, s)ϕ− εA�∗
0

∫ t

s

T�∗
0 (t− τ )U(τ/ε, Sε(τ, s)ϕ) dτ

+ ε U(t/ε, Sε(t, s)ϕ),

where U(t, ϕ) = (u(t, ϕ), 0) and u(t, ϕ) =
∫ t

0
(f(τ, ϕ) − f0(ϕ)) dτ . In

coordinates, the transformation reads

x(t+θ) =
{
z(t+θ)+εu((t+θ)/ε, z(t+θ)), for −min{r, t−s}< θ≤ 0,
z(t+θ), for − r≤θ≤−min{r, t−s},
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where x(t+ θ) = (T ε(t, s)ϕ)(θ) and z(t+ θ) = (Sε(t, s)ϕ)(θ).

Now we will analyze the operators H and R in the FDE case. Let

XA�∗
0

= (D(A�∗
0 ), ‖ · ‖A�∗

0
).

If we substitute T ε(t, s)ϕ = FSε(t, s)ϕ into (4.7), we obtain a variation
of constants formula for the perturbation R on XA�∗

0
(see (2.11)):

(4.12)
Sε(t, s)ϕ = T0(t− s)ϕ+

∫ t

s

T�∗
0 (t− τ )

∂F0

∂ϕ
(0)Sε(t, s)ϕdτ

+
∫ t

s

T�∗
0 (t− τ )R(τ/ε, Sε(t, s)ϕ, ε) dτ,

where

R(t, ϕ, ε) = − εH(t, ϕ) + F (t,Fϕ) − F (t, ϕ) + F0(ϕ) − ∂F0

∂ϕ
(0)ϕ

and
H(t, ϕ) = (h(t, ϕ), 0),

with
h(t, ϕ) =

∂u

∂ϕ
(t, ϕ)(0)

dϕ

dt
+ u(t, ϕ)

and

u(t, ϕ) =
∫ t

0

(f(τ, ϕ)− f0(ϕ)) dτ.

Thus, we conclude from Lemma 4.1 that the variation of constants
formula for Sε(t, s) holds on XA�∗

0
, and we can apply the abstract

results from Sections 2 and 3 to the FDE (4.1).

5. The classical theorems on averaging for FDE. In this section
we present the classical result on averaging for FDE. We first recall the
conditions on the nonlinearity from Section 4.

Let Ω be a neighborhood of 0 in X = C([−r, 0];Rn), the supremum
normed Banach space of continuous functions from [−r, 0] to Rn.
Suppose f : R × Ω → Rn is continuous. For ϕ ∈ Ω we assume that
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f(t, ϕ) is almost periodic in t uniformly with respect to ϕ in compact
subsets of Ω and f has a continuous Fréchet derivative (∂f(t, ϕ)/∂ϕ)
in ϕ on R× Ω. Let ε be a real parameter and xt(θ) = x(t+ θ). Along
with the system of delay equations

(5.1)
ẋ(t) = f(t/ε, xt), for t > 0,
x0 = ϕ

we consider the averaged system

(5.2)
ẏ(t) = f0(yt), for t > 0,
y0 = ϕ,

where

f0(ϕ) = lim
T→∞

1
T

∫ T

0

f(s, ϕ) ds.

As a first result, we compare the solution x(t;ϕ) = (T ε(t, s)ϕ)(0) of
(5.1) with the approximate solution x∗(t;ϕ∗) = (FS0(t−s)ϕ∗)(0), with

ϕ = ϕ∗ + ε U(s/ε, ϕ∗),

where S0(t) is the nonlinear semigroup associated with the averaged
equation (5.2).

THEOREM 5.1. If the solution y(·;ϕ∗) of the averaged equation is
bounded, then, for any η and L, there is an ε0 such that, for 0 ≤ ε ≤ ε0,
we have

(5.3) |x(t) − x∗(t)| ≤ η,

for s ≤ t ≤ L.

PROOF. Set w(t) = T ε(t, s)ϕ with w(s) = ϕ, v∗(t) = S0(t−s)ϕ∗ with
v∗(s) = ϕ∗. The result follows from Theorem 2.5.

Since the transformation F is close to the identity, we can also
compare the solution x(·;ϕ) with the corresponding solution of the
averaged equation directly.
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COROLLARY 5.2. If the solution y(·;ϕ) of the averaged equation is
bounded, then, for any η and L, there is an ε0 such that, for 0 ≤ ε ≤ ε0,
the difference

|x(t;ϕ) − y(t;ϕ)| ≤ η,

for s ≤ t ≤ L.

To give estimates for all time, we assume that y = y0 is an equilibrium
solution for the averaged equation. Thus, f0(y0) = 0, and, from the
general theory [15], it follows that the semigroup S0(t) associated with
the variational equation has a hyperbolic structure if and only if the
generator of S0(t) has no spectrum on the imaginary axis. Therefore,
we can apply the results from Sections 3 and 4 and compare the solution
x with the approximate solution x∗ for all time.

THEOREM 5.3. If y = y0 is a hyperbolic equilibrium for the averaged
equation (5.2), then, for some ε0 > 0 and 0 < ε ≤ ε0, there is a unique
almost periodic solution t �→ x∗(t, ε) of (5.1) continuous in t and ε
with x∗(t, 0) = y0 and |x∗(t, ε) − y0| ≤ ρ for t ∈ R, which has the
same stability properties as the equilibrium y0 of (5.2). If, in addition,
the nonlinearity f is periodic f(s + p, ϕ) = f(s, ϕ), then the solution
s �→ x∗(t, ε) is periodic in t of period p.

COROLLARY 5.4. If y = y0 is hyperbolic and uniformly asymptotically
stable, then the unique almost periodic solution t �→ x∗(t, ε) is hyperbolic
and uniformly asymptotically stable, and there is a ρ > 0 such that

(i) If x(·;ϕ) is a solution of (5.1) with x(s) = ϕ and ‖ϕ− y0‖ < ρ,
then

(5.4) |x(t) − x∗(t, ε)| ≤ Ce−γ(t−s).

(ii) If y(·;ϕ) is the solution of the averaged equation, then

(5.5) |x(t;ϕ) − y(t;ϕ)| < η,

for t ≥ s.

The proofs of these theorems are immediate consequences of the pre-
vious results. In Section 2, we proved the existence of a transformation
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F that is close to the identity and maps a solution x(·;ϕ) of (5.1) with
ϕ ∈ X into a solution z(·;ϕ∗) of the averaged equation (5.2) up to
terms of the order ε. In Section 3, we used the transformation F to
prove the existence of an almost periodic solution x∗(·, ε) of (5.1) with
the properties listed in Theorem 5.3. The exponential estimate in (5.4)
follows from the standard stable manifold theorem, and a combination
of this result with the finite time result from Corollary 5.2 yields (5.5).

As an illustration of these results, we can study the effect of rapid
oscillations in the linear system

(5.6) ẋ(t) =
m∑

j=0

Fj(t/ε)x(t− rj),

where 0 = r0 < r1 < · · · < rm = r and the coefficients Fj are
almost periodic n × n-matrices. Along with equation (5.6), consider
the autonomous equation

(5.7) ẋ(t) = A0x(t) +
m∑

j=1

Ajx(t− rj),

where

Aj = lim
T→∞

1
T

∫ T

0

Fj(s) ds

and the characteristic equation

(5.8) det
[
λI −

m∑
j=0

Aje
−λrj

]
= 0.

Thus, if the characteristic equation (5.8) has no roots on the imaginary
axis, then the zero solution of (5.6) has the same stability properties
as the zero solution of (5.7). In particular, the zero solution of (5.7)
is uniformly asymptotically stable if all the roots of the characteristic
equation (5.8) have negative real part and unstable if the characteristic
equation has a root with positive real part.

Next we will assume that the nonlinearity is periodic in time of period
p and study the relation between the dynamics of (5.1) and (5.2) more
closely. Let S0(t) be the semigroup generated by the averaged equation
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(5.2), and let T ε(t, s) be the solution operator for (5.1). Since we are
assuming that f(t, ϕ) is periodic in t of period p, the operator T ε(t, s)
satisfies

(5.9) T ε(t+ ε p, s+ ε p) = T ε(t, s).

The Poincaré map Πε for (5.1) is defined by be Πε ≡ T ε(ε p, 0).

A subset A0 ⊂ C is said to be a local attractor for (5.2) if A0 is
compact, invariant and there is an open neighborhood U of A0 such
that

dist (S0(t)U,A0) → 0 as t→ ∞
(A0 is attracting under time evolution of the solution operator).

A set Aε ⊂ C is said to be a local attractor for the Poincaré map
Πε if Aε is compact, invariant (ΠεAε = Aε) and there is an open
neighborhood V of Aε such that

dist (Πn
ε V,Aε) → 0 as n→ ∞

(Aε is attracting under iteration of the Poincaré map).

We then have

THEOREM 5.5. If the averaged equation (5.2) has a local attractor
A0, then there is an ε0 > 0 such that, for 0 < ε ≤ ε0, the Poincaré map
of (5.1) has a local attractor Aε and dist (Aε,A0) → 0 as ε→ 0.

PROOF. From the assumption that the averaged equation has a local
attractor, we derive that there exists a δ2 neighborhood

Bδ2(A0) = {ϕ ∈ X : dist (ϕ,A0) < δ2}

with the property that, for any 0 < δ1 < δ2, there is a t0 > 0 such that

S0(t)Bδ2(A0) ⊂ Bδ1(A0)

for t ≥ t0. Thus, from Theorem 3.3 and the Gronwall inequality, we
find that, for any η > 0, there is an N0 and an ε0 > 0 such that

(5.10) T ε(nε p, s)Bδ1/2(A0) ⊂ Bη(A0)
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for n ≥ N0 and 0 ≤ ε ≤ ε0. The variation of constants formula for
T ε(t, s) shows that the map T ε(ε p, s) is an α-contraction, and from
(5.10), we conclude that the orbits T ε(nε p, s)Bδ1/2(A0) are bounded.
Thus, Lemma 2.2.3 of Hale [16] implies that the ω-limit set is compact
and attractsBδ1/2(A0). So, the ω-limit set is a local attractor Aε for the
Poincaré map Πε in X. Finally, equation (5.10) yields Aε ⊂ Bη(A0),
and since η is arbitrary, this implies the theorem.

If, in addition, y = 0 is a hyperbolic equilibrium for the averaged
equation and A0 equals this equilibrium, then, from the upper semi-
continuity of Aε, we find

COROLLARY 5.6. If A0 is the hyperbolic equilibrium y = 0, then
Aε = {ϕε} is a singleton and ϕε → 0 as ε→ 0.

Further investigations are needed to study other applications of these
results. For example, what happens if the attractor of the averaged
equation consists of a single hyperbolic periodic orbit? From the upper
semicontinuity we expect Aε to be a torus for ε sufficiently small.

6. Applications. In this last section we present some applications
to FDE and PDE.

EXAMPLE 6.1. Consider the equation

(6.1) ẋ(t) = (A1 + f(t/ε))x(t) + (A2 + f(t/ε))x(t− r),

where f is almost periodic with average zero. There is a result by
Hale [13] which states: If r = O(ε) and the matrix (A1 + A2) has no
eigenvalues on the imaginary axis, then there exists an ε0 such that,
for 0 ≤ ε ≤ ε0, the stability properties of (6.1) and the ODE

(6.2) ẋ = (A1 +A2)x

are the same. Let us show how this result is related to the results from
Section 5. The averaged equation for (6.1) is given by

(6.3) ẋ(t) = A1x(t) +A2x(t− r).
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Thus, the set of eigenvalues is given by the solutions of the transcen-
dental equation

(6.4) detΔ(z) = det
[
zI −A1 −A2e

−zr
]

= 0.

It is an easy estimate to show that the characteristic equation (6.4)
has finitely many solutions in any right-half plane �(z) > 0, we derive
that, for ε sufficiently small, the equations (6.2) and (6.3) have the
same stability properties.

EXAMPLE 6.2. In the theory of vibrational control for nonlinear
systems, one studies stabilizability of nonlinear systems using zero
mean parametric excitation (see [3] and [4]). To explain the idea, we
consider the nonlinear system of FDE,

(6.5) ẋ(t) = f(x(t), x(t− r)),

where x0 = ϕ ∈ X and f is continuously differentiable. Introduce
linear multiplicative vibrations into the system

(6.6) ẋ(t) = ε−1B(t/ε)x+ f(x(t), x(t− r)),

where s �→ B(s) is periodic with average zero such that the fundamental
solution Y (t, 0) of ẋ = B(t)x is almost periodic. Now make the
transformation of variables x(t) = Y (t/ε,−r)y(t) for t ≥ −r to obtain

(6.7) ẏ(t) = Y −1(t/ε,−r)f(Y (t/ε,−r)y(t), Y ((t− r)/ε,−r)y(t− r)).

Thus, we obtain an almost periodic system of FDE that satisfies the
conditions from Section 5. Therefore, we can average (6.7) and study
the averaged equation. For example, if x = 0 is an unstable hyperbolic
equilibrium of (6.5), then the goal is to find a parametric excitation B
such that the solution x = 0 of (6.6) is stable. Thus, from the averaging
results it is sufficient to analyze the autonomous equation derived from
averaging (6.7).

EXAMPLE 6.3. As an illustration of Theorem 5.5, consider,

(6.8) ẋ(t) = −x(t) + b
x(t− r)

1 + x(t− r)n
,

where n is a fixed even integer and b > 0 is a parameter.
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The solution map is point dissipative; that is, there is a bounded set
B ⊂ C such that, for any state ϕ, the solution x(·;ϕ) of (5.10) satisfies
T (t)ϕ ∈ B for t ≥ t0 = t0(ϕ). Thus, there exists a global attractor A
for (6.8).

This equation was introduced and studied by Mackey as a model to
describe different periodic diseases. It is known that, for n even with
n ≥ 8, there exists a b0 such that, for b ≥ b0 (at least numerically, see
Hale and Sternberg [17], Glass and Mackey [20]), there is some chaotic
motion on A. Consider the class of rapidly oscillating disturbances of
(6.8),

(6.9) ẋ(t) = −x(t) + b
α cos(t/ε) + x(t− r)

1 + (α cos(t/ε) + x(t− r))n
,

where α measures the energy of the disturbance. We can show the
following quenching chaos result [18]: For ε sufficiently small, the at-
tractor Aε of the Poincaré map for (5.11) is just a singleton provided
that α > max{2b, 3}. So, the result states that high frequency per-
turbations through the feedback mechanism can eliminate complicated
motion on the attractor with relatively low energy. To prove the result
we average the equation (6.9) and estimate the nonlinearity in the av-
eraged equation. A Razumikhin-type theorem yields the result for the
averaged equation and, hence, Corollary 5.6 completes the proof.

EXAMPLE 6.4. Let A be a sectorial operator and consider the
parabolic PDE

(6.10) ẋ+Ax = F (t/ε, x)

on a Banach spaceX (see Henry [19] for the general theory). Suppose F
is almost periodic and satisfies the smoothness conditions from Section
2. Since A is sectorial, the semigroup TA(t) generated by A is analytic
and hypothesis (H) is trivially satisfied. Thus, the results from Section
3 hold. In particular, equation (6.10) has an almost periodic solution
x∗(t, ε) on R with ‖x∗(t, ε)‖ ≤ ρ, that has the same stability properties
as the equilibrium solution y = 0 of the averaged equation

(6.11) ẏ +Ay = F0(y)
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of (6.10). Similarly, we can apply the results from Sections 2 and 3
to the interpolation spaces Xα and study relatively bounded pertur-
bations of A, where the results about existence and stability of the
almost periodic solution x∗(t, ε) are now in the Xα space and topology
(compare Henry [19]).

Applications to hyperbolic problems are currently under investiga-
tion. Here the condition (H) is not trivially satisfied, but, like in the
FDE case, we can analyze the perturbation R from Section 3 and re-
strict the class of continuous functions h for which (H) must be satisfied.
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