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ABSTRACT. We study the regularity properties of so-
lutions for various classes of Volterra functional integro-
differential equations with nonvanishing delays and weakly
singular kernels. In particular, we characterize equations in
which “supersmoothing,” smoothing, or no smoothing occurs
at the primary discontinuity points induced by the nonvanish-
ing delay. These results will play a crucial role in the design
and analysis of methods for the numerical solution of such
functional equations with nonsmooth solutions.

1. Introduction. In this paper we analyze the regularity prop-
erties of solutions to Volterra functional integro-differential equations
(VFIDEs) with weakly singular kernels and containing a delay function
θ = θ(t) := t − τ (t) satisfying the following conditions (D1) (D3) on a
given (compact) interval J := [t0, T ]:

(D1) τ ∈ Cd(J) for some d ≥ 0;

(D2) τ (t) ≥ τ0 > 0 for all t ∈ J ;

(D3) θ is strictly increasing on J .

The points {ξμ} induced by (D2) and defined implicitly by the recursion

(1.1) θ(ξμ) = ξμ − τ (ξμ) = ξμ−1 (μ = 1, . . . ), with ξ0 := t0,

are called the primary discontinuity points corresponding to θ; they
play a crucial role in the subsequent regularity analysis. Note that
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condition (D2) implies the “separation property” ξμ+1 − ξμ ≥ τ0 > 0
for all μ ≥ 0. We will assume, without loss of generality, that T in
J is such that T = ξM+1 for some M ≥ 1 and define the subintervals
J [μ] := (ξμ, ξμ+1], μ = 0, 1, . . . , M , with J̄ [μ] := [ξμ, ξμ+1].

As an illustration we present two typical examples of nonvanishing
delays that frequently arise in applications, see also [4, Section 1].

Example 1.1. Constant delay τ > 0:

θ(t) = t − τ =⇒ ξμ = t0 + μτ, μ = 0, 1, . . . , M + 1.

Example 1.2. Nonvanishing proportional delay τ (t) = (1 − q)t,
t0 > 0:

θ(t) = qt = t − (1 − q)t, 0 < q < 1

=⇒ ξμ =
1
qμ

t0, μ = 0, 1, . . . , M + 1.

It is well known that delay (or retarded) differential equations with
nonvanishing delays typically possess solutions exhibiting a significant
reduction in regularity locally, at the points {ξμ}: in J̄ [μ] the solution
y lies in Cd+1 (provided the given functions are in Cd(J)), but y(μ+1)

is not continuous at t = ξμ when μ < d; in the case of neutral DEs we
have y ∈ Cd+1(J̄ [μ]), with y′ discontinuous at t = ξμ, μ = 0, 1, . . . , M .
Details may be found in, e.g., Bellman and Cooke [2], El’sgol’ts and
Norkin [15], Neves and Feldstein [22], Hale [16], de Gee [14], Willé
and Baker [25], Hale and Verduyn Lunel [17], Bellen and Zennaro [1,
Chapter 2] and, for regular delay Volterra integro-differential equations,
in Brunner and Zhang [10].

In sharp contrast to the above, the presence of a Volterra integral
operator containing a nonvanishing delay and a weakly singular kernel
induces an additional local low-regularity phenomenon: solutions now
have unbounded derivatives at the points t = ξ+

μ . To be more precise,
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consider the Volterra (-Hammerstein) integral operators defined by

(Vθ,αf)(t) :=
∫ t

t0

kα(t − s)G(s, f(θ(s))) ds,(1.2)

(Uθ,αf)(t) :=
∫ t

t0

kα(t − s)U(s, f ′(θ(s))) ds,(1.3)

and

(Wθ,αf)(t) :=
∫ t

θ(t)

kα(t − s)G(s, f(s)) ds.(1.4)

(VFIDEs corresponding to more general (non-Hammerstein) nonlinear
Volterra integral operators can be shown to possess solutions with
analogous regularity properties.) Here, the convolution kernel has the
form

(1.5) kα(t − s) :=
{

k0(t − s) if α = 0,
(t − s)−α if 0 < α < 1,

and the functions k0, G and U are assumed to be smooth (more
precise conditions will be stated later). In this paper we will focus on
the following initial-value problems associated with the above integral
operators:

(1.6)
y′(t) = F (t, y(t), y(θ(t)) + (Vθ,αy)(t), t ∈ J,

y(t) = φ(t), t ≤ t0,

and

(1.7)
y′(t) = F (t, y(t), y(θ(t)) + (Uθ,αy)(t)), t ∈ J,

y(t) = φ(t), t ≤ t0

(Sections 2 and 3), and

(1.8)
d

dt
[y(t) − (Vθ,αy)(t)] = F (t, y(t), y(θ(t))), t ∈ J,

y(t) = φ(t), t ≤ t0.
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(Section 4). Motivated by a class of VFIDEs arising in applications,
see [3, 4, 11, 18, 19 and their references] we then turn, in Section 5,
to the “implicit” neutral-type initial-value problem,

(1.9)
d

dt
[y(t) − (Wθ,αy)(t)] = F (t, y(t), y(θ(t))), t ∈ I,

y(t) = φ(t), t ≤ t0.

Since, by (D2) and (D3), we have θ(t) ≥ θ(t0) = t0 − τ (t0) =: ϑ0,
t ∈ J , the initial function φ is defined on the interval [ϑ0, t0]. For brevity
we will usually not specify this interval explicitly but simply write (as in
the description of the above initial-value problems) t ≤ t0. It will always
be assumed that φ is at least continuous on the interval [ϑ0, t0] (more
precise regularity assumptions will be stated in the following sections);
hence, there will be no “secondary” discontinuity points induced by φ.

VFIDEs that are related to (1.6) (1.9) and whose solutions have
analogous regularity properties (for example, VFIDEs of the form (1.8)
and (1.9) in which F has the additional argument

(Vf)(t) :=
∫ t

t0

b(t, s)K(s, y(s)) ds,

with smooth b and K) will be briefly described in remarks following
the proofs of the various regularity theorems.

A summary of the regularity results, in the form of a table, is
presented in Section 6. Section 7 contains comments on related VFIDEs
and on open problems.

We conclude this section with some remarks. The first one concerns
notation. Typically, solutions to VFIDEs with (integrable) algebraic
kernel singularities, cf. (1.5), and nonvanishing delays have unbounded
(higher-order) derivatives at the points x = ξ+

μ but are smooth on the
subintervals J (μ) = (ξμ, ξμ+1]. Thus, in analogy to Brunner, Pedas and
Vainikko [7, 8], the setting for our subsequent regularity analysis of
(1.6) (1.9) is given by the particular Hölder spaces defined by
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(1.10)

Cd, 1+ν(J [μ])

:=
{

f ∈ Cd(J [μ]) : |f (j)(t)| ≤ Cj

{
1 if j < 1 + ν

(t − ξμ)1+ν−j if j > 1 + ν

}
,

t ∈ J [μ]

}
,

with d ∈ N, −1 < ν < ∞, ν /∈ N, and constants Cj < ∞. As we shall
see, the value of d may depend on μ in the case where the solution y
experiences smoothing along the (global) interval J . If d = 0, we will
write C0, 1+ν(J [μ]) =: C1+ν(J [μ]).

The second remark is to remind the reader of an important regularity
result for solutions of the “classical” VIDE with weakly singular kernel,
(1.11)

y′(t) = a(t)y(t) + g(t) + λ

∫ t

t0

kα(t − s)y(s) ds, t ∈ J ; y(t0) = y0,

with 0 < α < 1, corresponding to ν = −α. It was shown in
Brunner, Pedas and Vainikko [7], see also Brunner [5, Chapter 7], that
if a, g ∈ Cd, 1−α(t0, T ], then the unique solution y of this initial-value
problem lies in the space Cd+1, 2−α(t0, T ]. The same regularity result
is true when the data are in Cd(J). Thus, the second derivative of the
solution of (1.13) is unbounded at t = t+0 ; it behaves like

(1.12) |y′′(t)| ≤ C0(t − t0)−α, t ∈ (t0, T ].

These regularity results have been crucial in the design and analysis of
high-order numerical methods for weakly singular Volterra integral and
integro-differential equations; see, for example, Tang [23, 24], Brunner,
Pedas and Vainikko [7, 8], Cao, Herdman and Xu [12] and Brunner
[5, Chapter 7].

It is obvious that the above regularity property is inherited, on the
interval J [0], by the solutions of (1.6) and (1.7) and, with y′′ and 2−α
replaced respectively by y′ and 1−α, by the solutions of (1.8) and (1.9).
However, due to the presence of the primary discontinuity points {ξμ}
induced by the nonvanishing delay, analogous regularity results for the
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subintervals J [μ], μ ≥ 1, play an equally crucial role when extending
high-order numerical methods, e.g., hybrid collocation methods [12],
or discontinuous Galerkin methods [9], to Volterra functional integro-
differential equations with weakly singular kernels.

5. VFIDEs with supersmoothing. We start our regularity
analysis by first considering a particular case of the Volterra functional
integro-differential equation (1.6), namely,

(2.1)
y′(t) = F (t, y(t)) + (Vθ,αy)(t), t ∈ I, 0 < α < 1,

y(t) = φ(t), t ≤ t0.

On the first subinterval J̄ [0] = [t0, ξ1] the above problem reduces to an
initial-value problem for an ODE with nonsmooth forcing term,

(2.2) y′(t) = F (t, y(t)) + Φ0(t), t ∈ J̄ [0]; y(t0) = φ(t0),

where

Φ0(t) := (Vθ,αφ)(t) =
∫ t

t0

kα(t − s)G(s, φ(θ(s))) ds.

For Cd-data F , G, φ and θ, this function Φ0 lies in Cd, 1−α(J [0]); hence,
it follows that the solution y of (2.1) satisfies

(2.3) y ∈ Cd+1, 2−α(J [0]).

Note that if F (t, y) = a(t)y + g(t) and G(s, z) = λ(s)z, with a, g, λ ∈
Cd(J), then the variation-of-constants formula corresponding to the
linear version of (2.2),

y(t) = r(t, t0)φ(t0) +
∫ t

t0

r(t, s){g(s) + Φ0(s)} ds, t ∈ (J̄ [0]),

with r(t, s) := exp
(∫ t

s
a(v) dv

)
, explicitly reveals the Cd+1, 2−α-

regularity of y on J [0].

The local regularity properties of y on the subsequent subintervals
J [μ] are described in the following theorem.
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Theorem 2.1. Assume:

(i) θ is subject to the hypothesis (D1) (D3) of Section 1;

(ii) φ ∈ Cd[θ(t0), t0];

(iii) F = F (t, y) and G = G(s, z) possess continuous partial deriva-
tives of order d on I × R and are such that the initial-value problem
(2.1) possesses a unique solution y on J .

Then the (local) regularity of y is given by

y ∈ Cd+1, 2−α(J [0])

and, for μ = 1, . . . , M , by

y ∈ Cd+1, 2μ+1−α(J [μ]).

Remark 2.1. We note in passing that the (global) analogue of
Theorem 2.1 for α = 0 was established in Brunner and Zhang [10,
Theorem 3.1]: it essentially states that on (ξμ−1, ξμ+1), μ = 1, . . . , M ,
the solution corresponding to arbitrarily smooth data is in C2μ but not
in C2μ+1.

Proof. Set G(s) := G(s, y(θ(s))). The following lemma will prove use-
ful in the analysis of the degree of regularity of solutions to (2.1) and to
more general VFIDEs with weakly singular kernels. Its straightforward
proof is based on repeated integration by parts.

Lemma 2.2. For sufficiently smooth G, θ and φ,
(2.4)

Hμ(t) :=
∫ t

ξµ

(t − s)−αG(s) ds

=
1

1 − α
G(ξμ)(t − ξμ)1−α +

1
(1 − α)(2 − α)

G
′
(ξμ)(t − ξμ)2−α

+ · · · + 1
(1 − α)m+1

G
(m)

(ξμ)(t − ξμ)m+1−α

+
1

(1 − α)m+1

∫ t

ξµ

G
(m+1)

(s)(t − s)m+1−α ds, t ∈ J [μ],

with (1 − α)m := (1 − α)(2 − α) · · · (m − α).
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(1) As we have already observed, in (2.2) and (2.3), the regularity of
the solution to (2.1) on the interval J [0] is given by y ∈ Cd+1, 2−α(J [0])
(recall also the remark following (1.11)). Furthermore, we always have
y(t0) = φ(t0), while in general the equality y′(t+0 ) = φ′(t−0 ) is not true:
the continuity of the derivative of the solution at the initial point t = t0
is guaranteed only if φ(t) satisfies the condition φ′(t−0 ) = F (t0, φ(t0)).
This is analogous to the situation in delay differential equations.

(2) We now turn to the interval J [1]. Rewriting (2.1) on this interval
as

(2.5) y′(t) = F (t, y(t)) + H0(t), t ∈ J [1],

with given initial value y(ξ1), and recalling (2.4) we have

H0(t) =
1

1 − α
G(0)(t − t0)1−α +

1
1 − α

∫ t

t0

G
′
(s)(t − s)1−α ds.

Thus, we obtain

H ′
0(t) = G(0)(t − t0)−α +

∫ t

t0

G
′
(s)(t − s)−α ds,

implying that y′′ is continuous at the points ξμ, μ ≥ 1. But y(3) is
discontinuous at ξ1 and

(2.6)
∫ t

t0

G
′
(s)(t − s)−α ds ∈ C1−α(J [1]).

This is true since, for all t ∈ J [1],∣∣∣∣∣
∫ t

t0

G
′
(s)(t − s)−α ds −

∫ ξ1

t0

G
′
(s)(ξ1 − s)−α ds

∣∣∣∣∣
≤

∣∣∣∣
∫ t

ξ1

G
′
(s)(t − s)−α ds

∣∣∣∣
+

∣∣∣∣∣
∫ ξ1

t0

(
G

′
(s)(t − s)−α − G

′
(s)(ξ1 − s)−α

)
ds

∣∣∣∣∣
≤ L

G
′

{
2(t − ξ1)1−α

1 − α
+

ξ1
1−α

1 − α
− t1−α

1 − α

}

≤ 3L
G

′

1 − α
(t − ξ1)1−α,
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where L
G

′ denotes an upper bound of |G′
(s)| in J̄ [1]. Hence, y ∈

Cd+1, 3−α(J [1]).

(3) Suppose now that y ∈ Cd+1, 2μ+1−α(J [μ]), μ ≥ 1. To analyze the
regularity of y on the interval J [μ+1], we write (2.1) in the form

(2.7) y′(t) = F (t, y(t)) +
∫ ξµ

t0

(t − s)−αG(s) ds + Hμ(t), t ∈ J̄ [μ+1],

where

Hμ(t) :=
∫ t

ξµ

(t − s)−αG(s) ds.

By (2.4) we can express Hμ(t) in the form

(2.8)

Hμ(t) =
1

1 − α
G(ξμ)(t − ξμ)1−α

+
1

(1 − α)(2 − α)
G

′
(ξμ)(t − ξμ)2−α

+ · · · + 1
(1 − α)2μ+1

G
(2μ)

(ξμ)(t − ξμ)2μ+1−α

+
1

(1 − α)2μ+1

∫ t

ξµ

G
(2μ+1)

(s)(t − s)2μ+1−α ds.

Thus we can calculate the derivatives of order up to 2μ + 1 of Hμ(t):

H ′
μ(t) = G(ξμ)(t − ξμ)−α +

1
1 − α

G
′
(ξμ)(t − ξμ)1−α

+ · · · + 1
(1 − α)2μ

G
(2μ)

(ξμ)(t − ξμ)2μ−α

+
1

(1 − α)2μ

∫ t

ξµ

G
(2μ+1)

(s)(t − s)2μ−α ds.(2.9)

...

H(2μ+1)
μ (t) = (α)2μG(ξμ)(t − ξμ)−α−2μ + · · · + G

(2μ)
(ξμ)(t − ξμ)−α

+
1

(1 − α)2μ

∫ t

ξµ

G
(2μ+1)

(s)(t − s)−α ds.(2.10)

This reveals that y ∈ Cd+1, 2(μ+1)+1−α(J [μ+1]), as asserted.
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Remark 2.2. The (2μ + 1)st derivative of the solution of (2.1) is
unbounded at t = ξ+

μ : it behaves like

(2.11) |y(2μ+1)(t)| ≤ C (t − ξμ)−α, t ∈ J [μ].

Compare also Remark 2.1 for the case α = 0: here, y(2μ+1)is not
continuous at t = ξμ but is of course bounded at t = ξ±μ .

Remark 2.3. If the term y(s) is also present in the kernel function
G of the Volterra integral operator Vθ,α, that is, if in (1.2) G =
G(s, y(θ(s)) is replaced by G := G(s, y(s), y(θ(s)), then the regularity
of the corresponding solution does not change: it is the one given in
Theorem 2.1.

The following example shows that for special choices of F in (2.1),
the local regularity of y in J [μ] may even be higher, at least for certain
values of α ∈ (0, 1).

Example 2.1. Consider the initial-value problem

(2.12)
y′(t) = g(t) + λ

∫ t

t0

(t − s)−αy(θ(s)) ds, t ∈ J, 0 < α < 1,

y(t) = φ(t) = φ0 = const., t ≤ t0.

On J [0] the above VFIDE reduces to

y′(t) = g(t) + λφ0

∫ t

t0

(t − s)−α ds,

and hence we find

y(t) = φ0 +
∫ t

t0

g(s) ds +
λφ0

1 − α
(t − t0)2−α, t ∈ J [0].

On J [1], equation (2.12) may be written as

y′(t) = g(t) + λ

∫ ξ1

t0

(t − s)−αφ(θ(s)) ds + λ

∫ t

ξ1

(t − s)−αy(θ(s)) ds.
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A simple calculation shows that
(2.13)

y′(t) = g(t) +
λφ0

1 − α
(t − t0)1−α +

λ

1 − α

∫ θ(t)

t0

(t − θ−1(s))1−αg(s) ds

+
λ2φ0

(1 − α)(2 − α)

∫ t

ξ1

(t − s)−α(θ(s) − t0)2−α ds, t ∈ J [1].

This implies that, for any φ0 �= 0,

y ∈
{

Cd+1, 3−α(J [1]) if g �≡ 0,
Cd+1, 2(2−α)(J [1]) if g ≡ 0.

In particular, for the linear delay functions θ(t) = t − τ (Example
1.1) and θ(t) = qt, 0 < q < 1, (Example 1.2) we have, respectively,
θ−1(t) = t+τ and θ−1(t) = t/q; thus, the last integral in (2.13) becomes

∫ t

ξ1

(t − s)−α(s − ξ1)2−α ds = B(1 − α, 3 − α)(t − ξ1)3−2α,

with B(·, ·) denoting the Euler beta function. While the regularity
corresponding to g �≡ 0 confirms the result in Theorem 2.1, we see that
g ≡ 0 yields a higher regularity at t = ξ+

1 , since 3 − α < 4 − 2α,
0 < α < 1; in the latter case we have y ∈ C3(J̄ [1]) for 0 < α ≤ 1/2.
For general μ, we find that

y ∈ Cd+1,(μ+1)(2−α)(J [μ]),

whenever g(t) ≡ 0 and φ0 �= 0. This implies that in this case y exhibits
the higher degree of regularity (μ + 1)(2 − α) at t = ξ+

μ , compared to
2μ + 1 − α in Theorem 2.1, for all values of α satisfying α ∈ (0, 1/μ).

3. VFIDEs with regular smoothing. We now direct our
attention to the general initial-value problem (1.6) (which we recall
for the convenience of the reader),

(3.1)
y′(t) = F (t, y(t), y(θ(t))) + (Vθ,αy)(t), t ∈ J,

y(t) = φ(t), t ≤ t0,
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with

(3.2) (Vθ,αf)(t) :=
∫ t

t0

kα(t − s)G(s, f(θ(s))) ds, 0 < α < 1.

Since, in contrast to (2.1), the first term on the right-hand side of (3.1)
now also depends on y(θ(t)), we no longer have the supersmoothing
property of Theorem 2.1, as Theorem 3.1 reveals.

Theorem 3.1. Assume that θ and φ in (3.1) satisfy the assumptions
(i) (ii) of Theorem 2.1, and let F = F (t, y, z), G = G(t, z) possess
continuous partial derivatives of order d on J × R × R and J × R,
respectively, and be such that the initial-value problem (3.1) has a
unique solution on J . Then, for 0 < α < 1 and F with ∂F/∂z �≡ 0, the
local regularity of the solution of the initial-value problem (3.1) is given
by

y ∈ Cd+1, μ+2−α(J [μ]), μ = 0, 1, . . . , M.

Proof. Due to the presence of the term y(θ(t)) in F , the degree
of smoothing at t = ξμ of the solution to equation (3.1) is now
governed by the “DDE part” of the VFIDE (3.1): supersmoothing
is no longer possible, and we have only “regular” smoothing given by
y ∈ Cd+1, μ+1−α(J [μ]), μ = 0, 1, . . . , M . This can be readily verified by
combining the analysis of the regularity of solutions to delay differential
equations,

z′(t) = F (t, z(t), z(θ(t))),

see, e.g., Bellen and Zennaro [1], with the arguments employed in the
proof of Theorem 2.1.

Remark 3.1. The regularity result of Theorem 3.1 remains valid if
the function F in (4.1) also depends on the memory term (Vy)(t)
introduced in Section 1.

Consider now the initial-value problem (1.7): here, the Volterra
operator Uθ,α contains the kernel function U(s, y′(θ(s))), cf. (1.3), in
contrast to G(s, y(θ(s))) in Vθ,α in (1.6). It turns out that in this case
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there is a slight modification in the smoothing of y at the points {ξμ},
as Theorem 3.2 shows.

Theorem 3.2. Under the assumptions of Theorem3.1, with U
replacing G, the solution of the initial-value problem (1.7) possesses
the local regularity properties described by

y ∈ Cd+1, 2−α(J [0])

and, for μ = 1, . . . , M ,

y ∈ Cd+1, μ+1−α(J [μ]).

Proof. (1) We first consider the regularity of the solution of (1.7)
at the point ξ0 := t0. The initial condition implies that, for any φ,
we have y(t0) = φ(t0). In general, however, φ′(t−0 ) �= y′(t+0 ). Hence,
y is continuous at ξμ (μ ≥ 0), but the derivative y′ is in general not
continuous at ξ0. Moreover, for Cd-data F , G and φ, we have

y′ ∈ Cd,1−α(J [0]) =⇒ y ∈ Cd+1, 2−α(J [0]).

(2) Turning to the interval J [1], it is clear that y′ is continuous at
ξ1; hence y′ is continuous at ξμ for μ ≥ 2. Moreover, we can show, by
adapting the argument used to verify (2.6), that

H1(t) :=
∫ t

ξ1

(t − s)−αU(s) ds ∈ C1−α(J [1]),

where U(s) := U(s, y′(θ(s))). Hence the solution of (1.7) satisfies
y ∈ Cd+1, 2−α(J [1]).

(3) Suppose now that y ∈ Cd+1, μ+1−α(J [μ]), μ ≥ 1. In order to verify
that y ∈ Cd+1, μ+2−α(J [μ+1]), we rewrite the equation (1.7) in the form

y′(t) = F (t, y(t), y(θ(t))) +
∫ ξµ

t0

(t − s)−αU(s) ds + Hμ(t), t ≥ ξμ.
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In analogy to the proof of Theorem 2.1, we express the term Hμ(t) :=∫ t

ξµ
(t − s)−αU(s) ds as

(3.3)

Hμ(t) =
1

1 − α
U(ξμ)(t − ξμ)1−α

+
1

(1 − α)(2 − α)
U

′
(ξμ)(t − ξμ)2−α

+ · · · + 1
(1 − α)μ+1

U
(μ)

(ξμ)(t − ξμ)μ+1−α

+
1

(1 − α)μ+1

∫ t

ξµ

U
(μ)

(s)(t − s)μ+1−α ds.

Thus, we can calculate the derivatives of order up to μ + 1 of Hμ(t):
we obtain

(3.4)

H ′
μ(t) = U(ξμ)(t − ξμ)−α +

1
1 − α

U
′
(ξμ)(t − ξμ)1−α

+ · · · + 1
(1 − α)μ

U
(μ)

(ξμ)(t − ξμ)μ−α

+
1

(1 − α)μ

∫ t

ξµ

U
(μ+1)

(s)(t − s)μ−α ds,

and hence,
(3.5)

H(μ+1)
μ (t) = (α)μU(ξμ)(t − ξμ)−α−μ + · · · + U

(μ)
(ξμ)(t − ξμ)−α

+
1

(1 − α)μ

∫ t

ξµ

U
(μ)

(s)(t − s)−α ds.

Hence, y(μ+2)(t) is continuous at ξμ+1. Furthermore, we see that

∫ t

ξµ

U
(μ+1)

(s)(t − s)−α ds ∈ C1−α(J [μ+1]),

and this implies y ∈ Cd+1, μ+2−α(J [μ+1]). This completes the proof of
Theorem 3.2.
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Example 3.1. As an illustration we use the analogue of the VFIDE
of Example 2.1,

y′(t) = g(t) + λ

∫ t

t0

(t − s)−αy′(θ(s)) ds, t ∈ J,

y(t) = φ0 + φ1 · (t − t0), t ≤ t0.

On J [0] we have

y′(t) = g(t) +
λφ1

1 − α
(t − t0)1−α,

and this shows that y ∈ Cd+1, 2−α(J [0]).

A straightforward calculation then gives, for t ∈ J [1],

y′(t) = g(t) +
λφ1

1 − α
(t − t0)1−α − λφ1

1 − α
(t − ξ1)1−α

+
∫ t

ξ1

(t − s)−αg(θ(s)) ds

+
λ2φ1

1 − α

∫ t

ξ1

(t − s)−α(θ(s) − t0)1−α ds.

This yields y′ ∈ Cd, 1−α(J [1]), and thus y ∈ Cd+1, 2−α(J [1]). Smoothing
will take effect on J [2], as can readily be verified.

4. VFIDEs with no smoothing. We first consider the neutral
initial-value problem

(4.1)
y′(t) = F (t, y(t), y′(θ(t))) + (Vθ,αy)(t), t ∈ J,

y(t) = φ(t), t ≤ t0.

Theorem 4.1. Let θ be subject to the hypotheses (D1) (D3) of
Section 1; φ ∈ Cd[θ(t0), t0], withd ≥ 1; and assume that F = F (t, y, w)
and G = G(t, z) satisfies the assumptions of Theorem 3.1. Then the
solution y of (4.1) does not exhibit any smoothing at the points {ξμ}:
we have

y ∈ Cd, 2−α(J [μ]) for all μ = 0, 1, . . . , M.
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Proof. Since there is no smoothing in the solution of a neutral delay
differential equation at t = ξμ, as μ increases [1, 15, 16], the presence
of the Volterra integral operator Vθ,α in (4.1) will in general not change
this. In J [0], the initial-value problem (4.1) reduces to

y′(t) = F (t, y(t), φ′(t)) + (Vθ,αφ)(t), y(t0) = φ(t0),

and, for φ ∈ Cd(J), d ≥ 1, it follows, as in the proof of Theorem 2.1,
that

y′ ∈ Cd−1, 1−α(J [0]) =⇒ y ∈ Cd, 2−α(J [0]).

For μ ≥ 1 we readily see, by proceeding along the lines of the
proof of Theorem 1 and by recalling the remark at the start of the
present proof, that smoothing at t = ξμ is in general not possible
if ∂F (t, y, w)/∂w �≡ 0. In other words, the solution of (4.1) has the
property that y ∈ Cd, 2−α(J [μ]) for μ ≥ 1, too.

Remark 4.1. The regularity result of Theorem 4.1 remains true if in
(4.1) the operator Vθ,α is replaced by Uθ,α, cf. (1.3).

We now turn to the neutral VFIDE (1.8),

(4.2)
d

dt
[y(t) − (Vθ,αy)(t)] = F (t, y(t), y(θ(t))), t ∈ J, 0 < α < 1,

y(t) = φ(t), t ≤ t0,

where we encounter nonsmoothing similar to that in the solution to
(4.1).

Theorem 4.2. Under the assumptions of Theorem 3.1 the solution
y of the initial-value problem (4.2) satisfies

y ∈ Cd, 1−α(J [μ]) for μ = 0, 1, . . . , M.

Proof. (I) Setting

z(t) := y(t) − (Vθ,αy)(t),
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the initial-value problem (4.2) can be rewritten as

z′(t) = Q(t, z(t), y(θ(t))), t ∈ J,

z(t0) = φ(t0);
y(t) = z(t) + (Vθ,αy)(t), t ∈ J,

with y(t) = φ(t) if t ≤ t0. Here, the function Q is defined by

Q(t, z, w) := F (t, z(t) + (Vθ,αy)(t), w)

(compare also Brunner [6, Section 1]). Locally, on J̄ [μ], we have

(4.3)
z′(t) = Q(t, z(t), y(θ(t))), t ∈ J [μ]),
z(ξμ) = y(ξμ) − (Vθ,αy)(ξμ).

This shows that on each J [μ] we are faced with an initial-value problem
for an ODE with nonsmooth (C1−α) forcing function induced by the
term (Vθ,αy)(t). Hence, we can again resort to Lemma 2.2, as, e.g., in
the proof of Theorem 2.1; here, however, these forcing terms do not
become more regular at t = ξ+

μ as μ increases.

(II) Alternatively, the result of Theorem 4.2 can also be established
by considering the integrated form of (4.2),

(4.4)
y(t) = φ(t0) +

∫ t

t0

F (s, y(s), y(θ(s))) ds + (Vθ,αy)(t), t ∈ J,

y(t) = φ(t), t ≤ t0.

This is reminiscent of (1.6), with the difference that the role of y′(t)
in (1.6) is now assumed by y(t). Thus, the regularity of the solution
to (4.4) can again be established by resorting to Lemma 2.1: as a
consequence of the observation in the previous sentence, the degree of
regularity now decreases by one, and we obtain y ∈ Cd, 1−α(J [μ]) for
μ = 0, 1, . . . , M .

In order to make these arguments more transparent, the reader may
also wish to consider the linear version of (4.2),

d

dt
[y(t) − (Vθ,αy)(t)] = a(t)y(t) + b(t)y(θ(t)) + g(t),
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with Vθ,α as in Example 2.1, cf. (2.12). Equation (4.3) then becomes

z′(t) = a(t)z(t) + a(t)(Vθ,αy)(t) + b(t)y(θ(t)) + g(t).

Using the variation-of-constants formula, with r(t, s) :=exp(
∫ t

s
a(v) dv),

the solution on J̄ [μ] can be written as

z(t) = r(t, ξμ)z(ξμ) +
∫ t

ξµ

r(t, s){(Vθ,αy)(s) + b(s)y(θ(s)) + g(s)} ds.

This shows that z ∈ Cd+1, 2−α(J [0]). Hence, by definition of y,

y(t) = z(t) + (Vθ,αy)(t),

with y(t) = φ(t) when t ≤ t0, we obtain y ∈ Cd, 1−α(J [0]). An
analogous argument can be used on J [μ], μ = 1, . . . , M , to establish
the regularity result of Theorem 4.2.

Remark 4.2. The regularity result of Theorem 4.2 remains valid, un-
der appropriately modified regularity assumptions on F = F (t, y, z, w),
for solutions of the neutral VFIDEs

(4.5)
d

dt
[y(t) − (Vθ,αy)(t)] = F (t, y(t), y(θ(t)), (Vy)(t)).

This follows readily from either of the above proofs: the presence of
the Volterra integral operator V ,

(Vy)(t) :=
∫ t

t0

b(t, s)K(s, y(s)) ds,

with smooth kernel b(t, s) and smooth G, clearly does not affect the
regularity of the solution of this more general VFIDE.

5. “Implicit” neutral VFIDEs. This paper was motivated in
part by a class of VFIDEs arising in the mathematical modeling of
certain aeroelastic systems (see, e.g., [3, 11, 12, 18, 19] for details
and additional references). The generic form of the resulting initial-
value problem is

(5.1)
d

dt
[y(t) − (Wθ,αy)(t)] = F (t, y(t), y(θ(t))), t ∈ J := [t0, T ],

y(t) = φ(t), t ≤ t0,
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with Wθ,α defined in (1.4); it may be viewed as the “implicit” coun-
terpart of equation (1.8) (or (4.5) if F also depends on (Vy)(t)). The
regularity properties of its solution are, not too surprisingly, very sim-
ilar to those for (1.8) (Theorem 4.2).

Theorem 5.1. Assume that the given functions θ, G, F , φ in (5.1)
and (1.4) are subject to the assumptions in Theorem 4.2. Then there is
no smoothing in the solution y of (5.1): locally, we have

y ∈ Cd, 1−α(J [μ]) for all μ = 0, 1, . . . , M.

Proof. Consider first the regularity of the solution for (5.1) at the
point ξ0 := t0. It is possible to choose y(t0) = φ(t0). The continuity of
the derivative of the solution can be guaranteed at the initial point ξ0

only for φ(t) satisfying the condition

φ′(t−0 ) =
d

dt

( ∫ t

θ(t)

(t − s)−αG(s, φ(s)) ds

)
+ F (t0, φ(t0), φ(θ(t0))).

On the interval J [0] the initial-value problem (5.1) reduces to

d

dt
[y(t) − (Wθ,αy)(t)] = F (t, y(t)φ(t),

with

(Wθ,αy)(t) =
∫ t0

θ(t)

kα(t − s)G(s, φ(s)) ds +
∫ t

t0

kα(t − s)G(s, y(s)) ds.

Equivalently, we may use the integrated form of (5.1),

y(t) = Φ0 + (Wθ,αy)(t) +
∫ t

t0

F (s, y(s), y(θ(s))) ds,

with
Φ0 := φ(t0) − (Wθ,αy)(t0),

as the basis for our regularity analysis. In either case, it follows that
y ∈ Cd, 1−α(J [0]), see also Lubich [21] or Brunner [5, Section 6.1].
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Hence, at t = ξ+
0 the derivative of its solution y is unbounded: it

behaves like C(t − ξ0)−α for some C �= 0.

Consider now the regularity at the point t = ξ+
1 . We write (5.1) in

the form

y′(t) = F (t, y(t), y(θ(t))) +
d

dt
(H0(t)) , t ∈ J,

y(t) = φ(t), t ≤ t0,

with

H0(t) :=
∫ t

θ(t)

(t − s)−αG(s) ds,

and G(s) := G(s, y(s)). It follows from (2.4) (Lemma 2.2) that

H0(t) =
1

1 − α
G(θ(t))(t− θ(t))1−α +

1
1 − α

∫ t

θ(t)

G
′
(s)(t − s)1−α ds.

Thus,

d

dt
(H0(t)) = G(θ(t))(1 − θ′(t))(t − θ(t))−α

+
1

1 − α
G

′
(θ(t))θ′(t)(t − θ(t))1−α

+
∫ t

θ(t)

G
′
(s)(t − s)−α ds.

Hence, y′ is discontinuous at the point ξ1 and thus there is no smoothing
to the solution of (5.1).

To prove that y ∈ Cd, 1−α(J [μ]), it is sufficient to verify that

(5.2)

∣∣∣∣∣
∫ t

θ(t)

(t − s)−αG′(y(s)) ds

∣∣∣∣∣ ≤ C(t − ξ1)1−α.

Since G(t) = G(t, y(t)) is continuous for t ∈ J , we obtain

(5.3)

∣∣∣∣∣
∫ t

θ(t)

(t − s)−αG(s, y(s)) ds

∣∣∣∣∣ ≤ LG

∫ t

θ(t)

(t − s)−α ds

≤ C(t − θ(t))1−α ≤ C(t − ξ1)1−α.
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In the last step of (5.3), we have used the fact that θ is strictly increasing
in I, that is,

ξ1 = θ(ξ2) > θ(t) > θ(ξ1) = ξ0, ∀ t ∈ (ξ1, ξ2).

This allows us to establish the estimate

|y(t)| ≤ C(t − ξμ)1−α, t ∈ J [μ]

which is valid for μ = 0, 1, . . . , M .

Remark 5.1. The regularity result of Theorem 5.1 remains true if the
right-hand side F in (5.1) also depends on (Vy)(t).

6. Summary of regularity results. In Table 1 we provide an
overview of the regularity results derived in Sections 2 5.

TABLE 1. Regularity and smoothing of solutions to weakly singular VFIDEs.

VFIDE Eq. # Regularity in Theorem/

(Cd-data, d ≥ 0; 0 < α < 1) J [μ] := (ξμ, ξμ+1], μ≥0 Remark

y′(t) = F (t, y(t)) + (Vθ,αy)(t) (2.1) Cd+1, 2μ+1−α Thm. 2.1

(supersmoothing) Rem. 2.3

y′(t) = F (t, y(t), y(θ(t)))+(Vθ,αy)(t) (3.1) Cd+1, μ+2−α Thm. 3.1

Rem. 3.1

y′(t) = F (t, y(t), y(θ(t)))+(Uθ,αy)(t) (1.7) {Cd+1, 2−α if μ=0

Cd+1, μ+1−α if μ≥1
. Thm. 3.2

(regular smoothing)

y′(t) = F (t, y(t), y(θ(t)), y′(θ(t))) (4.1) Cd, 2−α Thm. 4.1

+(Vθ,αy)(t) Rem. 4.1

d[y(t) − (Vθ,αy)(t)]/dt (1.8) Cd, 1−α Thm. 4.2

= F (t, y(t), y(θ(t)), (Vy)(t)) Rem. 4.2

d[y(t) − (Wθ,αy)(t)]/dt (5.1) Cd, 1−α Thm. 5.1

= F (t, y(t), y(θ(t)), (Vy)(t)) Rem. 5.1

(no smoothing)
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7. Concluding remarks. Similar regularity and smoothing prop-
erties can be derived for solutions to initial-value problems for VFIDEs
with logarithmic kernels, k1(t−s) = log(t−s), cf. (1.5) with α = 1. On
J [0] these results follow from the ones in Brunner, Pedas and Vainikko
[7, 8]: if the given functions in the “classical” (linear) VIDE,

(7.1) y′(t) = a(t)y(t) + g(t) +
∫ t

t0

log(t − s)K(t, s)y(s) ds, t ∈ J

(with K(t, t) �= 0, t ∈ J) are in Cd, then the solutions of (7.1) satisfy

y ∈ Cd+1, 1(t0, T ]

:= {y ∈ Cd+1(t0, T ] : |y(j)(t)| ≤ Cj(t − t0)1−j if j ≥ 2, t > t0}.

Details on the extension of the results in Sections 2 6 to VFIDEs with
Volterra operators Vθ,1, Uθ,1 and Wθ,1 are left to the reader.

Due to limitations of space we defer the analysis of the regularity and
smoothing properties of solutions to the considerably more complex
VFIDE

(7.2)
d

dt
[(Wθ,αy)(t)] = F (t, y(t), y(θ(t)), (Vy)(t)), t ∈ (t0, T ],

y(t) = φ(t), t ≤ t0,

with Wθ,α given by (1.4). An important special case of (7.2) corre-
sponds to F (t, y, z) = g(t): the resulting VFIDE

(7.3)
d

dt
[(Wθ,αy)(t)] = g(t), t ∈ (t0, T ],

can be rewritten as

∫ t

θ(t)

kα(t − s)G(s, y(s)) ds = Φ0 +
∫ t

t0

g(s) ds, t ∈ (t0, T ],

with

Φ0 :=
∫ t0

θ(t0)

kα(t0 − s)G(s, φ(s)) ds.
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This is equivalent to

(7.4)
∫ t

t0

kα(t − s)G(s, y(s)) ds = h(t), t ∈ (t0, T ],

where

h(t) := Φ0 +
∫ t

t0

g(s) ds −
∫ t0

θ(t)

kα(t − s)G(s, φ(s)) ds.

Equation (7.4) represents a nonlinear first-kind Volterra integral equa-
tion with weakly singular kernel; since we have h(t0) = 0, it has a
bounded solution in J = [t0, T ], with y(t+0 ) �= φ(t0) in general.

For results on the existence of solutions of (7.2), with linear G(s, y) =
b(s)y and θ(t) = t − τ , the reader is referred to Kappel and Zhang
[20, equation (7.3)] and Ito and Turi [19]; see also Brunner [3] for
additional references. The existence and uniqueness of solutions for
nonlinear Volterra equations of the form (7.4) is studied in Deimling
[13].
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