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THE FINITE LAPLACE TRANSFORM FOR SOLVING
A WEAKLY SINGULAR INTEGRAL EQUATION

OCCURRING IN TRANSFER THEORY

B. RUTILY AND L. CHEVALLIER

ABSTRACT. We solve a weakly singular integral equa-
tion by Laplace transformation over a finite interval of R.
The equation is transformed into a Cauchy integral equation,
whose resolution amounts to solving two Fredholm integral
equations of the second kind with regular kernels. This clas-
sical scheme is used to clarify the emergence of the auxiliary
functions expressing the solution of the problem. There are
four such functions, two of them being classical ones. This
problem is encountered while studying the propagation of light
in strongly scattering media such as stellar atmospheres.

1. Introduction. The integral form of the equation describing the
radiative transfer of energy in a static, plane-parallel stellar atmosphere
is [1]

(1) S(a, b, τ) = S0(a, b, τ) + a

∫ b

0

K(τ − τ ′)S(a, b, τ ′) dτ ′,

where S is the source function of the radiation field and S0 describes the
radiation of the primary (internal or external) sources. These functions
depend on the two parameters of the problem: the albedo a ∈ ]0, 1[,
which characterizes the scattering properties of the stellar plasma and
the optical thickness b > 0 of the atmosphere. They also depend on
the optical depth τ ∈ [0, b], which is the space variable. Equation (1)
means that the radiation field at level τ is the sum of the direct field
from the primary sources, and the diffuse field having scattered at least
once.

In the simplest scattering process conceivable, i.e., a monochromatic
and isotropic one, the kernel of the integral equation (1) is the function

(2) K(τ ) : =
1
2

E1(|τ |), τ ∈ R∗,
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where E1 is the first exponential integral function

(3) E1(τ ) : =
∫ 1

0

exp(−τ/x)
dx

x
, τ > 0.

Since E1(|τ |) ∼ − ln(|τ |) when |τ | → 0+, the kernel of the integral equa-
tion (1) is weakly singular on its diagonal. The free term S0 includes
the thermal emission of the stellar plasma of the form (1 − a)B∗(τ ),
where B∗ is a known function and the contribution aJext

0 (b, τ ) of the
external sources via the boundary conditions, see the introduction of
[1]. Hence, S0(a, b, τ) = (1 − a)B∗(τ ) + aJext

0 (b, τ ). In a homogeneous
and isothermal atmosphere assumed to be in local thermodynamic equi-
librium, the function B∗ coincides with the Planck function B(T ) at
the (constant) temperature T . Moreover, Jext

0 = 0 in the absence of
external sources and thus

(4) S0(a, b, τ) = (1 − a)B(T ),

which shows that S0 is independent of τ in this model. The solution S
to the problem (1) is then

(5) S(a, b, τ) = (1 − a)B(T )Q(a, b, τ),

where Q solves the following integral equation:

(6) Q(a, b, τ) = 1 + a

∫ b

0

K(τ − τ ′)Q(a, b, τ ′) dτ ′.

It is proved in [2] that the space C0([0, b]) of the continuous functions
from [0, b] to R is invariant under the operator

(7) Λ : f → Λf(τ ) : =
∫ b

0

K(τ − τ ′)f(τ ′) dτ ′,

with norm

(8) ‖Λ‖∞ =
∫ b/2

0

E1(τ ) dτ = 1 − E2(b/2).



FINITE LAPLACE TRANSFORM IN TRANSFER THEORY 391

Here, E2(τ ) :=
∫ 1

0
exp(−τ/x) dx is the exponential integral function of

order 2. Equation (6), which can be written in the form

(9) Q = 1 + a Λ Q,

has therefore a unique solution in C0([0, b]) provided that a < 1 or
b < +∞.

This problem is a basic one in stellar atmospheres theory, and
more generally in transport theory. It describes in the simplest way
the multiple scattering of some type of particles (here photons) on
scattering centers distributed uniformly in a slab of finite thickness,
a very simple 1D-configuration. Its applications in astrophysics and
neutronics, among other fields, are presented in [9]. It is important
to solve this problem very accurately, thus providing a benchmark to
validate the numerical solutions of integral equations of the form (1).

Physicists and astrophysicists have developed many methods for
solving integral equations of the form (1) with a convolution kernel
defined by (2) [10]. The main steps for solving the prototype equation
(6) are summarized in a recent article [6], which contains accurate
tables of the function (1 − a)Q for different values of the parameters
a and b. While reading this paper, one is struck by the complexity of
the “classical” solution to equation (6). It requires the introduction
of many intricate auxiliary functions introduced in the literature over
more than 30 years. The reader quickly loses the thread of the solution,
which reduces his chances of exploiting it for solving problems of the
more general form (1).

The aim of the present article is to get around this difficulty by
solving equation (6) straightforwardly, introducing as few auxiliary
functions as possible to express its solution. These functions are
briefly studied in Appendix A. The method is based on the finite
Laplace transform, which reduces the problem (6) to solving a Cauchy
integral equation over [−1, +1], which in turn can be transformed
into two Fredholm integral equations over [0, 1]. This approach has
been developed in transport theory after the publication in 1953 of
the first English translation of Muskhelishvili’s monograph, Singular
Integral Equations [8]; see, e.g., [3, 5, 7]. It can be considered as an
extension of the Wiener-Hopf method [4] for solving integral equations
of the form (1) with b < ∞. Both methods are characterized by an
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intensive use of the theory of (sectionally) analytic functions, which
allows solution of equation (1) in a concise manner. This is obvious
when comparing the solution we derive here to the classical solution of
the particular problem (6), which does not use any calculation in the
complex plane. The former method clarifies the origin and the role of
the auxiliary functions expressing the solution to a problem of the form
(1). Since these functions are independent of the source term S0, they
are “universal” for a given scattering kernel.

The remainder of this article is organized as follows. In Section 2,
the finite Laplace transform of the Q-function is calculated on the basis
of some recent developments on Cauchy integral equations [11 13].
Then the Laplace transform is inverted and the solution achieved in
[6] is concisely retrieved with the help of the theorem of residues,
Section 3. It involves two functions F+ and F− with remarkable
properties, as shown in Appendix B. The difficulties arising from the
numerical evaluation of the latter functions are investigated in [6].

2. The calculation of the finite Laplace transform of the
Q-function. Supposing 0 < b < ∞, we plan to solve equation (9) by
Laplace transform (LT) over [0, b]. This operator is defined on C0([0, b])
by

(10) Lf(z) :=
∫ b

0

f(τ ) exp(−τz) dτ, z ∈ C.

Since b < ∞, the finite LT of a continuous function is defined and
analytic in the whole complex plane. The inversion formula

(11) f(τ ) =
1

2iπ
−
∫ c+i∞

c−i∞
Lf(z) exp(τz) dz

is valid at any τ ∈ ]0, b[, with no restriction on c ∈ R. The symbol
−∫ on the righthand side of equation (11) means that the integral is a
Cauchy principal value at infinity, i.e.,

−
∫ c+i∞

c−i∞
= lim

X→+∞

c+iX∫
c−iX

.
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With the intention of taking the LT of both members of equation (9),
we note that the LT of the function K, as defined by equations (2) (3),
exists on C \ {±1} and is

(12) LK(z)

= w(1/z) − 1
2

∫ 1

0

du

1−zu
− exp(−bz)

1
2

∫ 1

0

exp(−b/u)
du

1+zu
,

where w : C \ {±1} → C denotes the function

(13) w(z) : =
z

2

∫ +1

−1

du

u + z
.

The three integrals on the righthand side of equations (12) (13) are
Cauchy principal values over ]1, +∞[, ]−∞,−1[ and ]−1, +1[, respec-
tively. From the definition (7) of the Λ-operator, we infer that the finite
LT of Λf is

(14)
L(Λf)(z) = w(1/z)Lf(z) − 1

2

∫ 1

0

Lf(1/u)
du

1 − zu

− exp(−bz)
1
2

∫ 1

0

Lf(−1/u) exp(−b/u)
du

1 + zu
.

In addition, the finite LT of the unit function is z → (1/z)[1−exp(−bz)].
Taking the LT of both members of equation (9) and changing z into
1/z, we obtain the following integral equation for LQ:

(15)
T (a, z)LQ(a, b, 1/z) − a

2
z

∫ 1

0

LQ(a, b, 1/u)
du

u−z

+ exp(−b/z)
a

2
z

∫ 1

0

LQ(a, b,−1/u) exp(−b/u)
du

u+z
= c0(z),

where

T (a, z) : = 1 − aw(z) = 1 − a

2
z

∫ +1

−1

du

u + z
(16)

and

c0(z) : = z[1 − exp(−b/z)].(17)
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The function T is our first basic auxiliary function. Its main properties
are summarized in Appendix A. The function c0 satisfies the three
following conditions: (i) it is defined and analytic in C∗, (ii) it is
bounded at infinity (with limit equal to b) and (iii) it satisfies, in a
neighborhood of 0, the conditions

(18) lim
z→0

Re (z)>0

c0(z) < ∞ , lim
z→0

Re (z)>0

[c0(−z) exp(−b/z)] < ∞.

Replacing u by −u in the second integral of equation (15), we ob-
tain a Cauchy integral equation on [−1, +1] for the function z →
LQ(a, b, 1/z). Since the latter is not Hölder-continuous at 0, it seems
inappropriate to undertake the resolution of this equation. A better ap-
proach consists in observing that the functions z → LQ(a, b, 1/z) and
z → LQ(a, b,−1/z) × exp(−b/z) are solutions of two coupled Cauchy
integral equations on [0, 1], which can be uncoupled by adding and
subtracting them. The resulting Cauchy integral equations are then
reduced to two Fredholm integral equations of the second kind on [0, 1]
with regular kernels. This general approach was first introduced in
transfer theory by Busbridge [3] and developed by Mullikin et al. [5, 7]
and Rutily et al. [13]. The last mentioned reference gives a synthesis
that the reader may consult for details. It contains the proof of the
following result, which we omit here: the unique solution, analytic in
C∗, to an integral equation of the form (15) with free term satisfying
the conditions (i) (iii), can be written in the form

(19) LQ(a, b, 1/z)=
1
2

[u−(a, b, z)η0,+(a, b, z)+u+(a, b, z)η0,−(a, b, z)],

where, for any z ∈ C \ iR,

(20)
u±(a, b, z) : =Y [�(z)]H(a, z)ζ±(a, b,−z)

∓ Y [−�(z)]H(a,−z)ζ±(a, b, z) exp(−b/z),

and

(21) η0,±(a, b, z) : =
1
2

c0,∓(a, b, +0)

+
z

2iπ

∫ +i∞

−i∞
H(a, 1/z′)(ζ±)−(a, b,−1/z′)c0(−1/z′)

dz′

1+zz′
.
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Equation (20) involves the Heaviside function Y, which vanishes over
R∗

− and is equal to unity over R∗
+. On the righthand side of equation

(21), we have introduced

(22) c0,∓(a, b, +0) := lim
z→0

Re (z)>0

[c0(z) ± c0(−z) exp(−b/z)].

Since this limit vanishes for the particular c0(z) given by (17), equation
(21) can be rewritten as

(23) η0,±(a, b, z)

= − 1
2iπ

∫ +i∞

−i∞
H(a, 1/z′)(ζ±)−(a, b,−1/z′)[1−exp(bz′)]

dz′

z′(z′+1/z)
.

The functions H(a, z), ζ+(a, b, z) and ζ−(a, b, z) appearing in equations
(20) and (23) are the other three auxiliary functions of our approach.
They are defined in Appendix A, which synthesizes their main proper-
ties. The H-function is a classical function of radiation transfer theory,
recently reviewed in [12]. Most results concerning the functions ζ± are
summarized in [13]. They are sectionally analytic in the complex plane
cut along the imaginary axis, with limits (ζ±)+ and (ζ±)− on the right
and lefthand sides of this axis, respectively. These limits satisfy the
relation

(24) H(a, z0)(ζ±)−(a, b,−z0)
= ∓H(a,−z0)(ζ±)−(a, b, z0) exp(−b/z0),

for any z0 ∈ iR∗. This can be seen by putting z → z0 on the right,
then on the left, into equation (20), taking into account the continuity
of the functions u± on iR [13]. The limits of the functions ζ± on both
sides of the imaginary axis also satisfy the relation
(25)

H(a, z0)(ζ±)+(a, b,−z0) = H(a, z0)(ζ±)−(a, b,−z0)
± H(a,−z0)(ζ±)+(a, b, z0) exp(−b/z0),

which follows from (A11) and Plemelj’s formulae [8].

In the expression (23) of the functions η0,±, replace the term con-
taining exp(bz′) by its expression given by (24), with z0 = −1/z′. One
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FIGURE 1. Contour for the calculation of η0,±(a, b, z).

obtains

(26) η0,±(a, b, z)

= − 1
2iπ

∫ +i∞

−i∞
H(a, 1/z′)(ζ±)−(a, b,−1/z′)

[
1

z′+1/z
± 1

z′−1/z

]
dz′

z′
.

This integral may be calculated using the contour of Figure 1. The in-
tegral along the half-circle Γε tends to −(1/2)H(a,∞)ζ±(a, b,−∞)(z∓
z) as ε → 0, where H(a,∞) is the limit of H(a, z) when z → ∞ in
any part of the complex plane. This limit is given by equation (A9).
ζ±(a, b,−∞) denotes the limit of ζ±(a, b, z) when z → ∞ in the left
complex half-plane. In equation (A18), this limit is expressed in terms
of ζ±(a, b, +∞). The integral along ΓR tends to 0 when R → ∞. From
the theorem of residues, we have for any z ∈ C \ iR,

(27)

η0,±(a, b, z) =
z√

1 − a
(1 ∓ 1)(ζ±)(a, b, +∞)

− z
{
Y [−�(z)]H(a,−z) ζ±(a, b, z)

∓ Y [�(z)]H(a, z) ζ±(a, b,−z)
}
.

The end of the calculation of LQ follows from equations (19), (20) and
(27). Changing z into 1/z, we get

(28) LQ(a, b, z) =
1√

1 − a

1
z

ζ−(a, b, +∞)u+(a, b, 1/z),
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a result valid in principle on C \ iR. In fact, it can easily be seen that
the limits of this function on both sides of the imaginary axis coincide.
This makes it possible to extend the relation (28) by continuity on iR,
including 0. Such an extension will not be used subsequently.

3. Inverting the Laplace transform. The inversion formula (11)
reads here, for any τ ∈ ]0, b[,

(29) Q(a, b, τ) =
1

2iπ

∫ c+i∞

c−i∞
LQ(a, b, z) exp(τz) dz,

c 	= 0. Substituting (28) in this expression and replacing u+(a, b, 1/z)
by its definition (20), we obtain

(30) Q(a, b, τ)

=
1√
1−a

ζ−(a, b, +∞)
1

2iπ

∫ c′+i∞

c′−i∞
H(a, 1/z)ζ+(a, b,−1/z) exp(τz)

dz

z
,

where c′ = |c| > 0. The integral on the righthand side can be calculated
with the help of the residue theorem applied to a contour in the left
half-plane, owing to the presence of the exponential. A difficulty arises
because c′ > 0 and the imaginary axis should not be crossed since
the functions ζ± are discontinuous on this axis. Nevertheless, one can
derive the identity

(31)
1

2iπ

∫ c′+i∞

c′−i∞
H(a, 1/z)ζ+(a, b,−1/z) exp(τz)

dz

z

=
1

2iπ
−
∫ +i∞

−i∞
H(a, 1/z)(ζ+)−(a, b,−1/z) exp(τz)

dz

z

from the contour of Figure 2(a), since the integral on the half-circle Γε

tends to 0 when ε → 0, due to equation (A18). The last integral is a
Cauchy principal value at 0. Then the limits of the functions ζ± on
the lefthand side of the imaginary axis are expressed in terms of their
limits on the righthand side with the help of (25), which shows that

(32)
1

2iπ

∫ +i∞

−i∞
H(a, 1/z)(ζ+)−(a, b,−1/z) exp(τz)

dz

z

=
1

2iπ

∫ +i∞

−i∞
H(a, 1/z)(ζ+)+(a, b,−1/z)[exp(τz)+exp((b −τ )z)]

dz

z
.
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FIGURE 2. Contours (a) and (b) for the proof of equations (31) and (33).

The last integral is calculated by displacing the line of integration on
the left side of the imaginary axis, between the origin and the point of
abscissa −k(a) where the function z → H(a, 1/z) diverges; see the com-
ments after equation (A8) in Appendix A, which contains the definition
of k(a). Applying the residue theorem to the contour of Figure 2(b)
and observing that the integral on Γε tends to −H(a,∞)ζ+(a, b, +∞)
when ε → 0, one obtains

1
2iπ

−
∫ +i∞

−i∞
H(a, 1/z)(ζ+)+(a, b,−1/z)[exp(τz) + exp((b −τ )z)]

dz

z

(33)

=
1√

1 − a
ζ+(a, b, +∞)

+
1

2iπ

∫ c′′+i∞

c′′−i∞
H(a, 1/z)ζ+(a, b,−1/z)[exp(τz) + exp((b −τ )z)]

dz

z
,

where c′′ ∈ ]−k(a), 0[. For τ ∈ ]0, b[, the last integral coincides with
the function −F+(a, b, τ) introduced in Appendix B, equation (B1).

According to equations (30) (33), we finally have

(34)

Q(a, b, τ) =
1√

1− a
ζ−(a, b, +∞)

[
1√

1− a
ζ+(a, b, +∞) − F+(a, b, τ)

]
,

or, using equation (B3)

(35) Q(a, b, τ) = [1 + F−(a, b, 0)] [1 + F+(a, b, 0) − F+(a, b, τ)].
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This expression is valid a priori over ]0, b[, but it can be extended by
continuity over [0, b], since the functions F± are continuous on the right
at 0 and on the left at b. One has in particular

(36) Q(a, b, 0) = Q(a, b, b) = 1 + F−(a, b, 0).

These results are similar to those of [6], where details concerning
the numerical evaluation of the function Q can be found. Ten-figure
tables of the function (1 − a)Q are given there. The functions F±
are computable once their definition (B1) has been transformed by the
method of residues, as outlined in Appendix B.

4. Conclusion. Using the finite Laplace transform, we derived
in a concise way the expression (35) of the solution to equation (6),
which is appropriate for numerical evaluation [6]. Our main objective
was to come directly to this expression, with emphasis on the manner
in which the four auxiliary functions of the problem were generated.
They are (i) the function T = T (a, z), which characterizes the solution
to equation (6) in an infinite medium (the range [0, b] is replaced by
R), (ii) the function H = H(a, z) which expresses its solution in a half-
space (b = ∞), and (iii) the functions ζ± = ζ±(a, b, z) that complete
the previous ones in the finite case, b < ∞. The main properties
of these functions are summarized in Appendix A. We note that the
T -function can be expressed in terms of elementary transcendental
functions (equation (A3)), the H-function is defined explicitly by an
integral on [0, 1] (equation (A10)) and the functions ζ± are defined
implicitly as the solutions to Fredholm integral equations of the second
kind (equation (A13)). It seems that the problem (6) has no exact
closed-form solution for b < ∞.

The approach of this article is appropriate for solving integral equa-
tions of the form (1), with a kernel defined by (2) and any free term.
It also applies to convolution kernels defined by functions more general
than (2), for example, of the form

(37) K(τ ) :=
∫

I

Ψ(x) exp(−|τ |/x) dx,

where I is an interval of R and Ψ a function ensuring the existence
of the integral. This class of kernels models scattering processes more
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complex than the one considered in this article, which corresponds to
I = ]0, 1] and Ψ(x) = (1/2)(1/x).
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Appendix

A. The auxiliary functions associated to the problem (6).
These functions are T = T (a, z), H = H(a, z), and ζ± = ζ±(a, b, z),
where z ∈ C.

A.1 The T -function. This function is defined by

(A1) T (a, z) := 1 − a

2
z

∫ +1

−1

du

u + z
, z 	= ±1.

It describes the multiple scattering of photons in an unbounded medium
for the adopted scattering law. It is defined in the whole complex plane
C, except at ±1, provided that the integral is calculated in the sense
of the Cauchy principal value when z ∈ ]−1, +1[. It is thus sectionally
analytic in C\ [−1, +1], its limits on both sides of the segment ]−1, +1[
being given from Plemelj formulae [8] by

(A2) T±(a, u) = T (a, u) ± iπ(a/2)u, −1 < u < +1.

Here, T+(a, u), respectively T−(a, u), denotes the limit of T (a, z) when
z tends to u ∈ ]−1, +1[ from above, respectively below, the real axis,
and

(A3) T (a, u) = 1 − a

2
u ln

(
1 + u

1 − u

)
, f − 1 < u < +1.

The roots of the characteristic equation T (a, z) = 0 are important
for solving integral equations of the form (1) with kernel defined by
(2). When 0 < a < 1, this equation has four nonzero roots in C,
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namely two pairs of opposite real numbers since the T -function is even
[4]. There is a unique root strictly greater than unity, denoted by
1/k(a), 0 < k(a) < 1, which is calculated by solving the transcendental
equation

(A4) T (a, 1/k(a)) = 1 − a

2
1

k(a)
ln

[
1 + k(a)
1 − k(a)

]
= 0.

Its unique solution k(a) in ]0, 1[ is given by [5]

(A5) k(a) =
√

1 − a exp
[∫ 1

0

θ(a, u)
du

u

]
,

where

(A6) θ(a, u) :=
1
π

arg[T+(a, u)], 0 ≤ u < 1.

Here, arg(z) is the principal value of the argument of z ∈ C. It can be
computed using the atan2-function, since arg(x + iy) = atan2(y, x).

A.2 The H-function. This function is the unique solution, analytic
in the right complex half-plane, of the integral equation

(A7) T (a, z)H(a, z) = 1 +
a

2
z

∫ 1

0

H(a, u)
du

u − z
, z 	= ±1.

This is a Cauchy integral equation on [0, 1], which defines the extension
of H outside this interval. The function H satisfies the Wiener-Hopf
factorization relation

(A8) T (a, z)H(a, z)H(a,−z) = 1, z 	= ±1,

first proved regardless of (A7), see, e.g., [4], then as a result of (A7)
[12]. We note that it implies the divergence of the H-function at the
solutions of the equation T (a, z) = 0 located in the left complex half-
plane, especially at z = −1/k(a). The relations (A7) (A8) also mean
that the H-function is bounded at infinity, with limit

(A9) H(a,∞) =
1√

1 − a
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whatever the region of the complex plane where z goes to infinity. This
results from the fact that T (a,∞) = 1 − a.

Many analytical expressions of the function H have been derived
since the introduction of this function in the thirties. The following
expression is valid in the right complex half-plane [5]

(A10) H(a, z)

=
k(a)√
1 −a

1 + z

1+k(a) z
exp

[
−z

∫ 1

0

θ(a, u)
du

u+z

]
, �(z) ≥ 0,

where θ is the function defined by (A6). We used it to compute H(a, z)
over [0, 1] and at 1/k(a), a necessary step for computing the functions
F± appearing in our final result (35), see Appendix B.

A.3 The functions ζ±. These functions are sectionally analytic in
C \ iR, with limits (ζ±)+ and (ζ±)− on the right and lefthand sides of
the imaginary axis, respectively. They are defined by the relations

(A11) ζ±(a, b, z) = 1

± z

2iπ

∫ +i∞

−i∞

H(a,−1/z′)
H(a, 1/z′)

exp(−bz′)(ζ±)+(a, b, 1/z′)
dz′

1+zz′
,

which can be transformed into Fredholm integral equations of the
second kind on [0, 1] using the residue theorem [13]. We suppose here
the existence and uniqueness of the solution to equation (A11), and
refer to [13] for the proof of the relation

(A12)
1
2

[
ζ+(a, b, z)ζ−(a, b,−z) + ζ−(a, b, z)ζ+(a, b,−z)

]
= 1,

which is valid over C \ iR.

The transformation of equation (A11) into a couple of Fredholm
integral equations on [0, 1] is described in Section V of [13]. We repro-
duce the relation (71) of this article, valid for any z in
C \ {]−1, 0[ ∪ {−1/k(a)}}

(A13)

ζ±(a, b, z) = 1 ± M±(a, b)
2kz

1 + kz

∓ Y [−�(z)]
1

T (a, z)
exp(b/z)
H2(a,−z)

ζ±(a, b,−z)

± a

2
z

∫ 1

0

g(a, u)
H2(a, u)

exp(−b/u)ζ±(a, b, u)
du

u + z
.
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We have introduced in the righthand side

(A14) M±(a, b) := q(a, b)ζ±(a, b, 1/k(a)),

where

(A15) q(a, b) :=
1
2

R(a)
H2(a, 1/k(a))

exp(−k(a)b),

(A16) R(a) :=
k(a)

T ′(a, 1/k(a))
=

1 − k2(a)
k2(a) + a − 1

,

and the function g in the integral term is

(A17)
g(a, u) :=

1
T+(a, u)T−(a, u)

=
1

T 2(a, u)+(πau/2)2
, 0 ≤ u < 1.

Let z go to infinity in both members of equation (A13), first in the left
complex half-plane, then in the right one. Writing ζ±(a, b,−∞) and
ζ±(a, b, +∞) the limits obtained in this way, we have

(A18) ζ±(a, b,−∞) = (1 ∓ 1)ζ±(a, b, +∞).

Consequently,

(A19) ζ−(a, b, +∞)ζ+(a, b, +∞) = 1,

due to (A12).

The numerical calculation of the functions ζ± is carried out starting
from equation (A13), which consists of two Fredholm integral equations
on [0, 1]. A difficulty arises because the coefficients M±(a, b) contain the
unknown values of ζ± at 1/k(a). It is overcome by putting z = 1/k(a)
into equation (A13) to calculate M±(a, b), which is next substituted
into the righthand side of (A13). The expression of the functions ζ± in
the right half-plane becomes [13]

(A20) ζ±(a, b, z) = ρ±(a, b, z) ± M±(a, b)σ±(a, b, z), �(z) ≥ 0,
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where ρ± and σ± are the solutions to the integral equations

(A21) ρ±(a, b, z) = 1 ± a

2
z

∫ 1

0

g(a, u)
H2 (a, u)

exp(−b/u)ρ±(a, b, u)
du

u + z
,

(A22) σ±(a, b, z) =
2k(a)z

1+k(a)z

± a

2
z

∫ 1

0

g(a, u)
H2(a, u)

exp(−b/u)σ±(a, b, u)
du

u + z
.

Once they have been solved on [0, 1], these equations define the func-
tions z → ρ±(a, b, z) and z → σ±(a, b, z) everywhere in the right com-
plex half-plane, in particular at z = 1/k(a). Whence the coefficients
M±(a, b) from equations (A14) and (A20) are

(A23) M±(a, b) =
q(a, b)ρ±(a, b, 1/k(a))

1 ∓ q(a, b)σ±(a, b, 1/k(a))
,

q(a, b) being defined by (A15) (A16).

Calculating the functions ζ± thus requires the numerical solution of
equations (A21) (A22). In fact, it can be proved that the solution
of equations (A22) comes down to that of equations (A21). This
means that the functions σ± are analytically expressible in terms of the
functions ρ±. It follows that only equations (A21) have to be solved
numerically in view of computing the functions ζ±. The details are not
given here, since there is no inconvenience, at the level of accuracy,
to solve both sets of equations numerically. This results from the
regularity of the free terms and kernels of equations (A21) (A22) on
[0, 1] and [0, 1] × [0, 1], respectively. Their solutions ρ± and σ± are
easily computable since they are regular and smooth on [0, 1], i.e., not
only continuous, but differentiable everywhere in [0, 1], including at 0.
We plan to publish ten-figure tables of these functions in the future.

B. The functions F± = F±(a, b, τ). These functions are defined by
the relation

(B1) F±(a, b, τ) : = −1
2

[δ(τ ) ± δ(b −τ )]

− 1
2iπ

∫ c+i∞

c−i∞
H(a, 1/z)ζ±(a, b,−1/z)[exp(τz) ± exp((b−τ )z)]

dz

z
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where −k(a) < c < 0. δ(τ ) and δ(b − τ ) are the Dirac distributions at
0 and b, respectively.

B.1 Three properties of the functions F±. We first prove the following
relations:

F±(a, b, b − τ ) = ±F±(a, b, τ),(B2)

F±(a, b, 0) =
1√

1 −a
ζ±(a, b, +∞) − 1,(B3)

(1 − a)[1 + F+(a, b, 0)] [1 + F−(a, b, 0)] = 1.(B4)

Equation (B2) is evident and equation (B4) is a direct consequence of
equations (B3) and (A19). To derive (B3), we note that

(B5) F±(a, b, 0)

= −1
2
− 1

2iπ

∫ c+i∞

c−i∞
H(a, 1/z)ζ±(a, b,−1/z)[1 ± exp(bz)]

dz

z
.

The integral is transformed with the help of the residue theorem applied
to the contour of Figure 3, within which the integrand is analytic.
Since the integral along the half-circle Γε tends to (1/2)H(a,∞)ζ±
(a, b + ∞)(1 ± 1) when ε → 0, we obtain

(B6)

F±(a, b, 0)

= −1
2

+
1
2

(1 ± 1)H(a,∞)ζ±(a, b, +∞)

− 1
2iπ

∫ +i∞

−i∞
H(a, 1/z)(ζ±)+(a, b,−1/z)[1 ± exp(bz)]

dz

z
.

Put

(α) = − 1
2iπ

∫ +i∞

−i∞
H(a, 1/z)(ζ±)+(a, b,−1/z)

dz

z
,

(β) = ∓ 1
2iπ

∫ +i∞

−i∞
H(a, 1/z)(ζ±)+(a, b,−1/z) exp(bz)

dz

z
,
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FIGURE 3. Contour for the calculation of F±(a, b, 0).

so that the integral term in (B6) is (α)+ (β). From equation (25) with
z0 = 1/z, we have

(β) = − 1
2iπ

∫ +i∞

−i∞
H(a,−1/z)(ζ±)+(a, b, 1/z)

dz

z

+
1

2iπ

∫ +i∞

−i∞
H(a,−1/z)(ζ±)−(a, b, 1/z)

dz

z
,

= +
1

2iπ

∫ +i∞

−i∞
H(a, 1/z)(ζ±)+(a, b,−1/z)

dz

z

+
1

2iπ

∫ +i∞

−i∞
H(a,−1/z)(ζ±)−(a, b, 1/z)

dz

z
.

Therefore

(α) + (β) = +
1

2iπ

∫ +i∞

−i∞
H(a,−1/z)(ζ±)−(a, b, 1/z)

dz

z
.

Now integrate the function z → H(a,−1/z)ζ±(a, b, 1/z)/z along the
contour of Figure 4. When ε → 0, the integral over the half-
circle Γε tends to −(1/2)H(a,∞)ζ±(a, b,−∞)=−(1/2)H(a,∞)(1∓ 1)
ζ±(a, b, +∞) due to equation (A18), and the integral over ΓR tends to
1/2 when R goes to infinity. Hence

(α) + (β) =
1
2

(1 ∓ 1)H(a,∞)ζ±(a, b, +∞) − 1
2
,

and equation (B6) leads to (B3) since H(a,∞) = 1/
√

1 − a from
equation (A9).
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FIGURE 4. Contour for the calculation of (α) + (β).

B.2 Numerical calculation of F±(a, b, τ). It is carried out by replacing
H(a, 1/z) by 1/[T (a, 1/z)H(a,−1/z)] in the integral of (B1), according
to (A8). This reveals the pole z = −k(a) of the integrand in the
left complex half-plane, together with the cut ]−∞,−1] insuring that
the function z → T (a, 1/z) is single-valued in this half-plane. This
function is then sectionally analytic in the complex plane cut along
]−∞,−1[∪ ]+1, +∞[, with limits T±(a, 1/u) on the cut given by (A2).
Next, the residue theorem is applied to the contour of Figure 5, which
passes round the cut. The unique pole within the contour is z = −k(a),
with residue

[R(a)/H(a, 1/k(a))]ζ±(a, b, 1/k(a))[exp(−k(a)τ ) ± exp(−k(a)(b −τ ))],

since R(a) is defined by (A16). The integral on the half-circle ΓR tends
to [δ(τ )±δ(b−τ )]/2 when R → ∞, the integral on Γ−1 tends to 0 with
the radius, and the limit of the integral over AB + CD is

a

2

∫ +∞

1

g(a, 1/v)
H(a, 1/v)

ζ±(a, b, 1/v)[exp(−τv) ± exp(−(b − τ )v)]
dv

v2
,

where g is defined by equation (A17). Putting u = 1/v in the above
integral, one obtains

(B7) F±(a, b, τ)

=
R(a)

H(a, 1/k(a))
ζ±(a, b, 1/k(a))[exp(−k(a)τ ) ± exp(−k(a)(b −τ ))]

+
a

2

∫ 1

0

g(a, u)
H(a, u)

ζ±(a, b, u)[exp(−τ/u) ± exp(−(b −τ )/u)] du.
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FIGURE 5. Contour for the calculation of the functions F±.

For given functions k(a), H(a, u) and ζ±(a, b, u), the numerical evalu-
ation of the functions F± by means of this expression is easy, except
when a → 1 as regards the integrated term and when τ → 0+ or b− as
regards the integral term. These difficulties are overcome in [6].
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Cedex, France
E-mail address: loic.chevallier@obs.univ-lyon1.fr


