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ON THE LIMIT MEASURE
TO STOCHASTIC VOLTERRA EQUATIONS

ANNA KARCZEWSKA

ABSTRACT. The paper is concerned with a limit measure
of stochastic Volterra equation driven by a spatially homoge-
neous Wiener process with values in the space of real tempered
distributions. Necessary and sufficient conditions for the ex-
istence of the limit measure are provided and a form of any
limit measure is given as well.

1. Introduction. In the paper we investigate the limit measure to
the stochastic Volterra equation of the form

(1) X(t, θ) =
∫ t

0

v(t− τ )AX(τ, θ) dτ +X0(θ) +W (t, θ),

where t ∈ R+, θ ∈ Rd, v ∈ L1
loc (R+), X0 ∈ S′(Rd) andW is a spatially

homogeneous Wiener process which takes values in the space of real,
tempered distributions S′(Rd). The class of operators A contains, in
particular, the Laplace operator ∆ and its fractional powers −(−∆)α/2,
α ∈ (0, 2].

Description of asymptotic properties of solutions to stochastic evolu-
tion equations in finite dimensional spaces and Hilbert spaces is well
known and has been collected in the monograph [7]. Recently this
problem has been studied for generalized Langevin equations in conu-
clear spaces by Bojdecki and Jakubowski [1]. The question of existence
of invariant and limit measures in the space of distributions seems to
be particularly interesting, especially for stochastic Volterra equations,
because this class of equations is not well investigated.

In the paper we give a necessary and sufficient condition for the exis-
tence of a limit measure and describe all limit measures to the equation
(1). Our results are in a sense analogous to those formulated for the
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finite-dimensional and Hilbert space cases obtained for stochastic evo-
lution equations, see [7, Chapter 6].

The paper is organized as follows. We start by recalling some
concepts and results from the paper [12], where the regularity of
stochastic convolutions connected with stochastic Volterra equations
driven by a spatially homogeneous Wiener process was studied. In [12],
we considered existence of solutions to (1) in the space of tempered
distributions S′(Rd) and next derived conditions under which the
solutions to (1) were function-valued or continuous with respect to the
space variable. In Section 2 we recall some facts concerning generalized
homogeneous Gaussian random fields. Section 3 contains the precise
meaning and properties of the stochastic integral with values in the
space of tempered distributions S′(Rd). Section 4 consists of the
auxiliary results for stochastic Volterra equations recalled from [12].
In Section 5 we formulate and prove the main results of the paper
providing the existence and the form of the limit measure for the
stochastic Volterra equation (1). Section 6 presents some special case
of limit measure.

2. Generalized homogeneous Gaussian random fields. By
S(Rd), Sc(Rd), we denote, respectively, the spaces of all infinitely
differentiable rapidly decreasing real and complex functions on Rd

and by S′(Rd), S′
c(R

d) the spaces of real and complex tempered
distributions. The value of a distribution ξ ∈ S′

c(Rd) on a test function
ψ will be written as 〈ξ, ψ〉. For ψ ∈ S(rd) we set ψ(s)(θ) = ψ(−θ),
where θ ∈ Rd.

We denote by F the Fourier transform on Sc(Rd) and on S′
c(Rd).

Let us note that, if ξ ∈ S′
c(R

d), then 〈Fξ, ψ〉 = 〈ξ,F−1ψ〉 for all
ψ ∈ Sc(Rd) and that F transforms the space of tempered distributions
S′(Rd) into S′(Rd).

For any h ∈ Rd, ψ ∈ S(Rd) and ξ ∈ S′(Rd), the translations τhψ, τ ′hξ
are defined as follows: τhψ(x) = ψ(x − h) and 〈τ ′hξ, ψ〉 = 〈ξ, τhψ〉 for
x ∈ Rd.

By B(S′(Rd)) and B(S′
c(Rd)), we denote the smallest σ-algebras of

subsets of S′(Rd) and S′
c(R

d), respectively, such that for any test
function ϕ the mapping ξ → 〈ξ, ϕ〉 is measurable.
Let (Ω,F , P ) be a complete probability space. Any measurable
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mapping Y : Ω → S′(Rd) will be called a generalized random field.
A generalized random field Y is called Gaussian if 〈Y, ϕ〉 is a Gaussian
random variable for any ϕ ∈ S(Rd). One says that a generalized
random field Y is homogeneous or stationary if, for all h ∈ Rd, the
translation τ ′h(Y ) of Y has the same distribution as Y .

If Y is a homogeneous, Gaussian random field, then for each ψ ∈
S(Rd), 〈Y, ψ〉 is a Gaussian random variable and the bilinear func-
tional p : S(Rd) × S(Rd) → R defined by the formula p(ϕ, ψ) =
E(〈Y, ϕ〉〈Y, ψ〉) for ϕ, ψ ∈ S(Rd) is continuous and positive-definite.
Since p(ϕ, ψ) = p(τhϕ, τhψ) for all ϕ, ψ ∈ S(Rd), h ∈ Rd, there exists
(see e.g. [8]) a unique positive-definite distribution Γ ∈ S′(Rd) such
that for all ϕ, ψ ∈ S(Rd), one has p(ϕ, ψ) = 〈Γ, ϕ ∗ ψ(s)〉.
The distribution Γ is called the space correlation of the field Y .

By Bochner-Schwartz theorem the positive-definite distribution Γ is
the inverse Fourier transform of a unique positive, symmetric, slowly
increasing measure µ on Rd : Γ = F−1(µ). The measure µ is called the
spectral measure of Γ and of the field Y . Let us recall from [8], [14] or
[15] that the symmetric, non-negative measure µ on Rd is called slowly
increasing (or tempered) if

∫
Rd(1+ |x|2)−k dµ(x) < +∞ for some k > 0.

Any random field Y may be identified with the family of random
variables {Y0} parametrized by θ ∈ Rd. In particular, a homogeneous
Gaussian random field is a family of Gaussian random variables Y (θ),
θ ∈ Rd, with Gaussian laws invariant with respect to all translations.
That is, for any θ1, . . . , θn ∈ Rd and any h ∈ Rd, the law of
(Y (θ1 + h), . . . , (Y (θn + h)) does not depend on h.

In the paper we assume that W is a spatially homogeneous Wiener
process with values in the space of real tempered distributions S′(Rd).
This means that W is a continuous process with independent incre-
ments taking values in S′(Rd). Moreover, the process W is space ho-
mogeneous in the sense that, for each t ≥ 0, random variablesW (t) are
stationary, Gaussian, generalized random fields.

Let us recall two examples of spatially homogeneous Wiener pro-
cesses.

Example 1. Symmetric α-stable distributions Γ(x) = e−|x|α ,
with α ∈ (0, 2] provide examples of random fields. For α = 1 and
α = 2, the densities of the spectra measures are given by the formulas
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c1(1 + |x|2)(−d+1)/2 and c2e
−|x|2 , where c1 and c2 are appropriate

constants.

Example 2. Let p(ϕ, ψ) = 〈ϕ, ψ〉, ϕ, ψ ∈ S(Rd). Then Γ is equal
to the Dirac δ0-function, its spectral density dµ/dx is the constant
function (2π)−d/2 and ∂W/∂t is a white noise on L2([0,∞) × Rd). If
B(t, x), t ≥ 0 and x ∈ Rd is a Brownian sheet on [0,∞)×Rd, then W
can be defined by the formula

W (t, x) =
∂dB(t, x)
∂x1 . . . ∂xd

, t ≥ 0.

3. Stochastic integration. In the paper we integrate operator-
valued functions R(t), t ≥ 0, with respect to a spatially homogeneous
Wiener process W . The operators R(t), t ≥ 0, are non-random and
act from some linear subspaces of S′(Rd) into S(Rd). By Γ we denote
the covariance of W (1) and the associated spectral measure by µ. To
underline the fact that the distributions of W are determined by Γ we
will write WΓ. We denote by q a scalar product on S(Rd) given by the
formula q(ϕ, ψ) = 〈Γ, ϕ ∗ ψ(s)〉, where ϕ, ψ ∈ S(Rd). In other words
(see e.g. [1]) such a process W may be called associated with q.

The crucial role in the theory of stochastic integration with respect
to WΓ is played by the Hilbert space S′

q ⊂ S′(Rd) called the kernel of
WΓ. Namely the space S′

q consists of all distributions ξ ∈ S′(Rd) for
which there exists a constant C such that

|〈ξ, ψ〉| ≤ C
√
q(ψ, ψ), ψ ∈ S(Rd).

The norm in S′
q is given by the formula

|ξ|S′
q
= sup

ψ∈S

|〈ξ, ψ〉|√
q(ψ, ψ)

.

Let us assume that we require that the stochastic integral should take
values in a Hilbert space H continuously imbedded into S′(Rd). Let
LHS(S′

q, H) be the space of Hilbert-Schmidt operators from S′
q into H.
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Assume that R(t), t ≥ 0, is measurable LHS(S′
q, H)-valued function

such that ∫ t

0

‖R(σ)‖2
LHS(S′

q,H) dσ < +∞, for all t ≥ 0.

Then the stochastic integral
∫ t

0

R(σ) dWΓ(σ), t ≥ 0

can be defined in a standard way, see [10] or [6].

Of special interest are operators R(t), t ≥ 0, of convolution type

R(t)ξ = r(t) ∗ ξ, t ≥ 0, ξ ∈ S′(Rd),

with r(t) ∈ S′(Rd). The convolution operator is not, in general, defined
for all ξ ∈ S′(Rd). For many cases the Fourier transform Fr(t)(λ),
t ≥ 0, λ ∈ Rd, is continuous in both variables and, for any T ≥ 0,

(2) sup
t∈[0,T ]

sup
λ∈Rd

|Fr(t)(λ)| =MT < +∞.

Then the above convolution is well-defined and the operators R(t) may
be defined as the Fourier inverse transform

R(t)ξ = F−1(Fr(t)F(ξ),
for all ξ such that Fξ has a representation as a function.

Proposition 1 [12, Theorem 1]. Assume that the function Fr is
continuous in both variables and satisfies (2). Then the stochastic
convolution

R ∗WΓ(t) =
∫ t

0

R(t− σ) dWΓ(σ), t ≥ 0,

is a well-defined S′(Rd)-valued stochastic process. For each t ≥ 0,
R ∗WΓ(t) is a Gaussian, stationary, generalized random field with the
spectral measure

µt(dλ) =
( ∫ t

0

|Fr(σ)(λ)|2 dσ
)
µ(dλ),
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and with the covariance Γt

Γt =
∫ t

0

r(σ) ∗ Γ ∗ r(s)(σ) dσ.

4. Auxiliary results. In this section we set the considered problem
more precisely and recall from [12] auxiliary theorem which will be
useful for formulating the limit results in the next section.

Let us rewrite the stochastic Volterra equation (1) in the simpler form

(3) X(t) =
∫ t

0

v(t− τ )AX(τ ) dτ +X0 +WΓ(t).

We study the equation (3) in the space S′(Rd) where X0 ∈ S′(Rd), A
an operator given in the Fourier transform form

(4) F(Aξ)(λ) = −a(λ)F(ξ)(λ),
v is a locally integrable function and WΓ is an S′(Rd)-valued space
homogeneous Wiener process.

Note that if a(λ) = |λ|2, then A = ∆ and if a(λ) = |λ|α, α ∈ (0, 2),
then A = −(−∆)α/2 is the fractional Laplacian. Some other cases of
equation (3) with the operator A in the form (4) are provided in the
paper [12].

The deterministic version of the equation has been investigated by
many authors, see the monographs: Gripenberg, Londen and Staffans
[9] and Prüss [13]. Stochastic Volterra equation (3) has been consid-
ered, among others, by Clément, Da Prato and Prüss [2 5].

We shall assume the following

Hypothesis (H). For any γ ≥ 0, the unique solution s(·, γ) to the
equation

(5) s(t) + γ

∫ t

0

v(t− τ )s(τ ) dτ = 1, t ≥ 0

fulfills the following condition: for any T ≥0, supt∈[0,T ] supγ≥0 |s(t, γ)|<
+∞.
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Comment 1. Let us note that by assumption the function v is a
locally integrable function. The solution s(·, γ) of the equation (5)
is a locally integrable function and measurable with respect to both
variables γ ≥ 0 and t ≥ 0.

For some special cases the function s(t, γ) may be found explicitly

for v(t) = 1, s(t, γ) = e−γt, t ≥ 0, γ ≥ 0;
for v(t) = 1, s(t, γ) = cos(

√
γt), t ≥ 0, γ ≥ 0;

for v(t) = e−t, s(t, γ) = (1 + γ)−1[1 + γe−(1+γ)t], t ≥ 0, γ ≥ 0.

The linear stochastic Volterra equation (3) with the operator A given
in the form (4) is determined by three objects: the spatial correlation
Γ of the process WΓ, the operator A and the function v. Equivalently,
the equation (3) with (4) is determined by the spectral measure µ, the
functions a and s, respectively.

Let us introduce the so-called resolvent family R(·) determined by
the operator A and the function v:

R(t)ξ = r(t) ∗ ξ, ξ ∈ S′(Rd),

where
r(t) = F−1s(t, a(·)), t ≥ 0.

As in the deterministic case, the solution to the stochastic Volterra
equation (3) is of the form

(6) X(t) = R(t)X0 +
∫ t

0

R(t− τ ) dWΓ(τ ), t ≥ 0.

We have the following corollary of the previous results on stochastic
integration.

Proposition 2 [12, Theorem 2]. Let WΓ be a spatially homogeneous
Wiener process and R(t), t ≥ 0, the resolvent for the equation (3). If
Hypothesis (H) holds, then the stochastic convolution

(7) Z(t) =
∫ t

0

R(t− σ) dWΓ(σ), t ≥ 0,
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is a well-defined S′(Rd)-valued process. For each t ≥ 0, the random
variable Z(t) is a Gaussian, generalized, stationary random field on
Rd with the spectral measure

(8) µt(dλ) =
[ ∫ t

0

(s(σ, a(λ)))2 dσ
]
µ(dλ).

5. The main results. In this section we formulate results providing
the existence of a limit measure and the form of any limit measure for
the stochastic Volterra equation (3) with the operator A given by (4).
In our considerations we assume that the hypothesis H holds and then
we use the auxiliary results recalled in Section 4. Particularly, we use
the fact (see Proposition 2) that the stochastic convolution defined by
(7) is a Gaussian field with the spectral measure µt given by (8).

First let us introduce the following notation. By νt we denote the
law L(Z(t)) = N (0,Γt) of the process Z(t), t ≥ 0, the stochastic
convolution defined by the formula (7).

Let us define

(9) µ∞(dλ) =
[ ∫ ∞

0

(s(σ, a(λ)))2 dσ
]
µ(dλ).

From now on we assume that the hypothesis H is satisfied.

We have the following results.

Lemma 1. Let µt and µ∞ be measures defined by (8) and (9),
respectively. If µ∞ is a slowly increasing measure, then the measures
µt → µ∞ as t → +∞ in the distribution sense.

Proof. First of all, let us notice that, by Proposition 2, the measures
µt, t ≥ 0, are spectral measures of stationary generalized Gaussian
random fields. Moreover, the measures µt, t ≥ 0, are slowly increasing.
Since the function s(τ, a(λ)), τ ≥ 0, λ ∈ Rd is bounded, then the
integral gt(λ) =

∫ t
0
(s(τ, a(λ)))2 dτ , for t < +∞, is bounded as well.

In the proof we shall use the specific form of the measures µt, t ≥ 0,
defined by (8).
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We assume that the measure µ∞ is slowly increasing, that is, there
exists k > 0:

∫
Rd

(1 + |λ|2)−k dµ∞(λ)

=
∫
Rd

(1 + |λ|2)−k
[ ∫ ∞

0

(s(t, a(λ)))2 dτ
]
dµ(λ) < +∞.

Hence, the function g∞(λ) =
∫ ∞
0
(s(τ, a(λ)))2 dτ < +∞ for almost

every λ.

Convergence of measures in the distribution sense is a special kind of
weak convergence of measures. This means that

(10)
∫
Rd

ϕ(λ) dµt(λ)
t→+∞−→

∫
Rd

ϕ(λ) dµ∞(λ)

for any test function ϕ ∈ S(Rd).

In our case, because of formulae (8) and (9), we have to prove the
following convergence

(11) lim
t→+∞

∫
Rd

ϕ(λ)gt(λ) dµ(λ) =
∫
Rd

ϕ(λ)g∞(λ) dµ(λ),

where ϕ ∈ S(Rd) and gt and g∞ are as above.

In other words, the convergence (10) of the measures µt, t ≥ 0, to
the measure µ∞ in the distribution sense, in our case is equivalent to
the weak convergence (11) of functions gt, t ≥ 0, to the function g∞.

Let us recall that the function s determining the measures µt, t ≥ 0,
and µ∞, satisfies the Volterra equation (5) (see Hypothesis (H)):

s(t) + γ

∫ t

0

v(t− τ )s(τ ) dτ = 1.

Additionally, by Lemma 2.1 from [3], limt→+∞ s(t) = 0.
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We can estimate as follows, for any ϕ ∈ S(Rd),

(12)∣∣∣∣
∫
Rd

ϕ(λ)gt(λ) dµ(λ) =
∫
Rd

ϕ(λ)g∞(λ) dµ(λ)
∣∣∣∣

≤
∫
Rd

|ϕ(λ)| |gt(λ)− g∞(λ)| dµ(λ)

=
∫
Rd

|ϕ(λ)|
∣∣∣∣
∫ t

0

(s(τ, a(λ)))2 dτ

−
∫ +∞

0

(s(τ, a(λ)))2 dτ
∣∣∣∣ dµ(λ)

≤
∫
Rd

|ϕ(λ)|
(∫ +∞

t

(s(τ, a(λ)))2 dτ
)
dµ(λ).

The right-hand side of (12) tends to zero because h∞(λ) =∫ +∞
t

(s(τ, a(λ)))2 dτ tends to zero when t → +∞.

Hence, we have proved the convergence (11) which is equivalent to
the convergence (10) of the measures µt, as t → +∞, to the measure
µ∞ in the distribution sense.

Lemma 2. Let Γt, Γ∞ be covariance kernels of the stochastic
convolution (7) for t < +∞ and t = +∞, respectively, and µt, µ∞
are defined by (8) and (9). Assume that µ∞ is a slowly increasing
measure on Rd. Then Γ1 → Γ∞, as t → +∞, in the distribution sense
if and only if the measures µt → µ∞, for t → +∞, in the distribution
sense.

Proof. The sufficiency comes from the convergence of measures in
the distribution sense which, in fact, is a type of weak convergence
of measures. Actually, the convergence of µt, t ≥ 0, to the measure
µ∞ in the distribution sense means that 〈µt, ϕ〉 t→+∞−→ 〈µ∞, ϕ〉 for
any ϕ ∈ S(Rd). Particularly, because the Fourier transform acts
from S(Rd) into S(Rd), we have 〈µt,F(ϕ)〉 t→+∞→ 〈µ∞,F(ϕ)〉 for any
ϕ ∈ S(Rd). This is equivalent to the convergence 〈F−1(µt), ϕ〉 t→+∞→
〈F−1(µ∞), ϕ)〉, ϕ ∈ S(Rd).

This means the convergence of the Fourier inverse transforms of
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considered measures µt, as t → +∞, to the inverse transform of
the measure µ∞ in the distribution sense. Because the measures
µt, t ≥ 0 and µ∞ are positive, symmetric and slowly increasing on
Rd, then their Fourier inverse transforms define, by Bochner-Schwartz
theorem, covariance kernels Γt = F−1(µt), t ≥ 0, and Γ∞ = F−1(µ∞),
respectively. Hence, Γt → Γ∞ as t → +∞, in the distribution sense.

The necessity is the version of Lévy-Cramér’s theorem generalized for
a sequence of slowly increasing measures {µt}, t ≥ 0, and their Fourier
inverse transforms which are their characteristic functionals.

Now we are able to formulate the main results of the paper.

First let us recall the definition of weak convergence of probability
measures defined on the space S′(Rd) of tempered distributions.

Definition. A sequence {γt} of probability measures on S′(Rd)
converges weakly to probability measure γ on S′(Rd) if, for any function
f ∈ Cb(S′),

(13) lim
t→+∞

∫
S′(Rd)

f(x)γt(dx) =
∫
S′(Rd)

f(x)γ(dx).

A more general definition on weak convergence of probability measures
defined on topological spaces may be found, e.g., in [11].

Theorem 1. There exists the limit measure ν∞ = N (0,Γ∞), the
weak limit of the measures νt = N (0,Γt), as t → +∞, if and only if
the measure µ∞ defined by (9) is slowly increasing.

Theorem 2. Assume that the measure µ∞ defined by (9) is slowly
increasing. Then any limit measure of the stochastic Volterra equation
(3) is of the form

(14) m∞ ∗ N (0,Γ∞),

where m∞ is the limit measure for the deterministic version of the
equation (3) with condition (4) and N (0,Γ∞) is the limit measure of
the measures νt as t → +∞.
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We would like to emphasize that Theorems 1 and 2 have been formu-
lated in the spirit analogous to well-known theorems giving invariant
measures for linear evolution equations, see, e.g., [7] or [1]. Such re-
sults first give conditions for the existence of invariant measure and
next describe all invariant measures provided they exist. Our theorems
extend, in some sense, Theorem 6.2.1 from [7]. Because we consider
stochastic Volterra equations we cannot study invariant measures but
limit measures.

5.1 Proofs of theorems.

Proof of Theorem 1. (Necessity.) Let us notice that, by Proposition 2,
the laws νt = N (0,Γt), t ≥ 0, are laws of Gaussian, stationary, gener-
alized random fields with the spectral measures µt and the covariances
Γt. The weak convergence (13) is equivalent to the convergence of the
characteristic functionals corresponding to the measures νt, t ≥ 0 and
ν∞, respectively. Particularly,

ν̂t(ϕ)
t→+∞−→ ν̂∞(ϕ) for any ϕ ∈ S(Rd).

We may use the specific form of the characteristic functionals of
Gaussian fields. Namely, we have

ν̂t(ϕ) = Eei〈Z(t),ϕ〉 = exp
(
− 1

2
qt(ϕ,ϕ)

)
= exp

(
− 1

2
〈Γt, ϕ ∗ ϕ(s)〉

)
,

where t ≥ 0, ϕ ∈ S(Rd) and Z(t) is the stochastic convolution given
by (7).

Analogously,

ν̂∞(ϕ) = exp
(
− 1

2
〈Γ∞, ϕ ∗ ϕ(s)〉

)
, ϕ ∈ S(Rd).

Hence, we have the following convergence

exp
(
− 1

2
〈Γt, ϕ ∗ ϕ(s)〉

)
t→+∞−→ exp

(
− 1

2
〈Γ∞, ϕ ∗ ϕ(s)〉

)

for any ϕ ∈ S(Rd).
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Because Γt, t ≥ 0, are positive-definite generalized functions, then
Γ∞ is a positive-definite generalized function, too. So by the Bochner-
Schwartz theorem, there exists a slowly increasing measure µ∞ such
that Γ∞ = F−1(µ∞).

(Sufficiency.) Assume that the measure µ∞, defined by the formula
(9) is slowly increasing. Then, by the Bochner-Schwartz theorem,
there exists a positive-definite distribution Γ∞ on S such that Γ∞ =
F−1(µ∞) and

〈Γ∞, ϕ〉 =
∫
Rd

ϕ(x) dµ∞(x).

Now we have to show that Γ∞ is the limit, in the distribution sense,
of the functionals Γt, t ≥ 0. In order to do this, by Lemma 2, we have
to prove the convergence of the spectral measures µt → µ∞ as t → +∞
in the distribution sense. But, by Lemma 1, the measures µt, t ≥ 0,
defined by (8), converge to the measure µ∞ in the distribution sense.
This fact implies, by Lemma 2, that Γt → Γ∞, as t → +∞, in the
distribution sense.

Then, the following convergence

exp
(
− 1

2
〈Γt, ϕ ∗ ϕ(s)〉

)
t→+∞−→ exp

(
− 1

2
〈Γ∞ϕ ∗ ϕ(s)〉

)

holds for any ϕ ∈ S(Rd). This means the convergence of characteristic
functionals of the measures νt = N (0,Γt), t ≥ 0, to the characteristic
functional of the measure ν∞ = N (0,Γ∞). Hence, there exists the
weak limit ν∞ of the sequence νt, t ≥ 0, and ν∞ = N (0,Γ∞).

Proof of Theorem 2. Now we consider a limit measure for the
stochastic Volterra equation (3) with the condition (4). This means
that we study a limit distribution of the solution given by (6) to the
considered equation (3).

Let us introduce the following notation for distributions, when 0 ≤
t < ∞:

ηt = L(X(t)) means the distribution of the solution X(t);

mt = L(R(t)X0) denotes the distribution of the part R(t)X0 of the
solution X(t);
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νt = L(Z(t)) = L(∫ t
0
R(t− τ ) dWΓ(τ )) is, as earlier, the distribution

of the stochastic convolution Z(t) given by (7), that is, νt = N (0,Γt).

We assume that η∞ is any limit measure of the stochastic Volterra
equation (3) with the condition (4). This means that distributions ηt
of the solution X(t), as t → +∞, converge weakly to η∞.

We have to show the formula (14), that is, the distribution η∞ has
the form η∞ = m∞ ∗ N (0,Γ∞).

The distribution of the solution (6) can be written

L(X(t)) = L
(
R(t)X0 +

∫ t

0

R(t− τ ) dWΓ(τ )
)

for any 0 ≤ t < +∞.

Because the initial value X0 is independent of the process WΓ(t), we
have

L(X(t)) = L(R(t)X0) ∗ L(Z(t))
or, using the above notation,

ηt = mt ∗ νt for any 0 ≤ t < +∞.

This formula can be rewritten in terms of characteristic functionals of
the above distributions:

(15) η̂t(ϕ) = m̂t(ϕ)ν̂t(ϕ),

where ϕ ∈ S(Rd) and 0 ≤ t < +∞.

Then, letting t tend to +∞ in (15), we have

η̂∞(ϕ) = C(ϕ)ν̂∞(ϕ), ϕ ∈ S(Rd),

where η̂∞(ϕ) is the characteristic functional of the limit distribution
η∞, C(ϕ) = limt→∞ m̂t(ϕ) and ν̂∞(ϕ) is the characteristic functional
of the limit measure ν∞ = N (0,Γ∞); moreover,

ν̂∞(ϕ) = exp
(
− 1

2
〈Γ∞, ϕ ∗ ϕ(s)〉

)
.



LIMIT MEASURE TO VOLTERRA EQUATIONS 73

Now we have to prove that C(ϕ) is the characteristic functional of the
weak limit measure m∞ of the distributions mt = L(R(t)X0).

In fact,

C(ϕ) = η̂∞(ϕ) exp
(
1
2
〈Γ∞, ϕ ∗ ϕ(s)〉

)
,

where the right-hand side of this formula, as the product of character-
istic functionals, satisfies conditions of the generalized Bochner’s theo-
rem, see, e.g., [10].

So, using the generalized Bochner’s theorem once again, there exists
a measure m∞ in S′(Rd) such that C(ϕ) = m̂∞, as required. Hence,
we have obtained η∞ = m∞ ∗ N (0,Γ∞).

6. Some special case. Stochastic Volterra equations have been
considered by several authors, see, e.g., [2 5] and [12], and are studied
in connection with problems arising in viscoelasticity. Particularly, in
[3] the heat equation in materials with memory is treated. In that
paper the authors consider an auxiliary equation of the form

(16) z(t) +
∫ t

0

[µc(t− τ ) + β(t− τ )]z(τ ) dτ = 1,

t ≥ 0, where µ is a positive constant and c, β are some functions
specified below.

Let us notice that, if in the Volterra equation (5), we take v(τ ) =
[µc(τ )+β(τ )]/γ, we arrive at the equation (16). On the contrary, if we
assume in the equation (16) that β(τ ) = 0, µ = γ and v(τ ) = c(τ ), we
obtain the equation (5).

Assume, like in [3], the following

Hypothesis (H1). 1. Function β is nonnegative nonincreasing and
integrable on R+.

2. The constants µ, c0 are positive.

3. There exists a function δ ∈ L1(R+) such that

c(t) := c0 −
∫ t

0

δ(σ) dσ and c∞ := c0 −
∫ +∞

0

|δ(σ)| dσ > 0.
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Proposition 3 [3, Lemma 2.1]. Let functions β, δ and c be as in
Hypothesis (H1). Then the solution to (16) satisfies

1. 0 ≤ |z(t)| ≤ 1, t ≥ 0;

2.
∫ +∞
0

|z(t)| dt ≤ (µc∞)−1 < +∞.

In the next result we will use the above assumption and proposition
of Clément and DaPrato and follow the spirit of their argumentation.

Proposition 4. Assume that the stochastic Volterra equation (3)
has the kernel function v given in the form

v(t) = c0 −
∫ t

0

|δ(σ)| dσ > 0, c0 > 0 where δ ∈ L1(R+),

and the operator A is given by (4). In this case the limit measure µ∞
given by the formula (9) is a slowly increasing measure.

Proof. This proposition is the direct consequence of the definition (9)
of the measure µ∞ and Proposition 3. In fact, from Proposition 3 we
have

(17)
∫ +∞

0

|s(τ, γ)| dτ ≤ (γc∞)−1,

where γ satisfies Hypothesis (H1), so c∞ is finite. Hence, the right-hand
side of (17) is finite for any finite γ. In our case, because A satisfies
(4), γ = a(λ).

From the definition (9) of the measure µ∞ we have

(18)∫
Rd

(1 + |λ|2)−k dµ∞(λ) =
∫
Rd

(1 + |λ|2)−k
[ ∫ ∞

0

(s(t, a(λ)))2 dτ
]
dµ(λ)

for k > 0. Let us notice that, by Proposition 3, 0 ≤ |s(t, a(λ))| ≤ 1
for t ≥ 0. So, (s(t, a(λ)))2 ≤ |s(t, a(λ))|. Therefore, because (17) holds
and the measure µ is slowly increasing, the right-hand side of (18) is
finite. Hence, the measure µ∞ is slowly increasing, too.
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Comment 2. Let us emphasize that in the special case considered in
this section, when the Hypothesis (H1) holds, the main result of the
paper, that is, Theorems 1 and 2, may be obtained more easily than in
Section 5.

6.1 Concluding remarks. The main result of the paper, Theo-
rem 1, gives an equivalence between the existence of a limit law ν∞ of
the stochastic convolution defined by (7) and the fact that the measure
µ∞, defined by (9), is slowly increasing (tempered). The result is ex-
pressed in terms of an auxiliary function s satisfying the equation (5).
It would be natural and useful to link, as an application of Theorem 1,
this property of the measure µ∞ to the properties of the parameters
of the Volterra equation under consideration. In particular, one would
like to know sufficient and necessary conditions to guarantee that the
measure µ∞ is slowly increasing.

Let us recall that the Volterra equation (1) is characterized by three
elements: the operator A, the function v and the spatial correlation Γ
of the process WΓ. Equivalently, when the operator A is given in the
form (4), the Volterra equation may be characterized by the triple: the
function a, the function s satisfying (5) and the spectral measure µ of
the process WΓ.

The relation between Γ (Γt, t≥ 0), and µ (µt, t≥ 0) is, by Bochner-
Schwartz theorem, unique and invertible: Γ = F−1(µ)(Γt = F−1(µt)).
The relation between the operator A and the function a is given by the
formula (4). This means that we consider the class of such operators
A which fulfill (4). The class of operators under consideration covers,
in particular the Laplace operator and its fractional powers.

The most interesting is the relation between the functions v and s.
These functions are connected by the equation (5), in which v is the
kernel and s is the solution. Therefore, for given v we can find s,
but in general, not vice versa. Only in particular cases, having the
function s, we are able to obtain the function v. Hence, it is very
difficult to reformulate the results obtained in the paper in terms of the
function v.

The problem of finding the kernel function of Volterra equation for
given solution, called in the literature the inverse problem is, in general,
extremely difficult. Now there are not many papers dealing with this
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problem. Although not much has been done, one observes growing
interest in it. The progress in the field of the inverse problem in Volterra
equation is needed in order to make the required reformulation.
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