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UPPER AND LOWER BOUNDS FOR SOLUTIONS OF
NONLINEAR VOLTERRA CONVOLUTION INTEGRAL

EQUATIONS WITH POWER NONLINEARITY
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ABSTRACT. The Volterra nonlinear integral equation

ϕm(x) = a(x)

∫ x

0

k(x − t)b(t)ϕ(t) dt + f(x),

0 < x < d ≤ ∞
with m > 1 and real nonnegative functions a(x), k(u), b(t)
and f(x) is studied. In the general case some upper bounds
of the average

1

x

∫ x

0

ϕ(t) dt

of the solution are given. In the case when a(x), k(u), b(t) and
f(x) have power lower estimates near the origin, lower power
type bounds for solutions ϕ(x) are investigated. Conditions
for the uniqueness of the solution in a weighted space of
continuous functions are also proved. Particular cases of the
equation are specially considered.

1. Introduction. We consider the Volterra nonlinear integral
equation of the form

(1.1)
ϕm(x) = a(x)

∫ x

0

k(x− t)b(t)ϕ(t) dt+ f(x),

0 < x < d ≤ ∞
with m > 0 and real-valued functions a(x), k(u), b(t) and f(x). This
equation generalizes equations investigated by many authors. The
equation

(1.2) ϕm(x) =
∫ x

0

k(x− t)ϕ(t) dt+ f(x), 0 < x < d ≤ ∞
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arising in various applications, e.g., in water percolation [9], [27], [28]
and in the nonlinear theory of wave propagation [15], was studied in
[1], [4], [6], [11], [26], [27], [28], while the more general equation

(1.3) ϕm(x) = a(x)
∫ x

0

k(x− t)ϕ(t) dt+ f(x), 0 < x < d ≤ ∞

was studied in [2], [3], [5], [7]. When m > 1 the equations (1.2)
and (1.3) with f(x) = 0 may have a nontrivial solution ϕ(x) (see, for
example, [26], [30]). All the papers above were devoted to investigation
of problems concerning in main the existence and uniqueness of a
solution ϕ(x) for equations (1.2) and (1.3) with m > 1, in some
spaces of continuous or integrable functions. The equation (1.2) with
0 < m < 1 and a continuous kernel k(u) was considered in [1], [4],
where some results were given on the uniqueness of its solution ϕ(x) in
some spaces of continuous or integrable functions. Such a problem for
equation (1.2) with m < 0 and nonincreasing kernel k(u) in the class of
almost decreasing functions was studied in [14]. Lower estimates and
asymptotic properties near zero for the solution ϕ(x) of the equation
(1.3) with m > 1 were obtained in [12] provided that a(x), k(u) and
f(x) have power asymptotic behavior near zero.

The existence of the solution for the equation

(1.4) ϕm(x) = a(x)
∫ x

0

ϕ(t)
(x− t)1−α

dt+ f(x), 0 < x < d ≤ ∞

with m > 0 and with the weakly singular kernel k(u) = uα−1,
0 < α < 1, was investigated in spaces of locally integrable and
continuous functions in [16], [17], [21]. Asymptotic properties at zero
of the solution ϕ(x) for the equation (1.4) with m ∈ R = (−∞,∞),
m �= 0,−1,−2, . . . , in the case when a(x) and f(x) have special
asymptotics at zero were studied in [18], [19], [20], [22], [29]. Special
cases of (1.4), when its solution ϕ(x) can be found in closed form, were
investigated in [12], [20], [21], [22] and [30].

The equation of the form

(1.5) ϕm(x) = a(x)
∫ x

0

b(t)ϕ(t) dt+ f(x), 0 < x < d ≤ ∞,
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with real m was considered in [24] where existence and uniqueness
results were discussed and special cases of solution in closed form were
treated.

The main results in this paper are estimation of lower bounds of so-
lutions given in Theorem 2.1, of upper bounds for averages of solutions
given in Theorem 4.1 and uniqueness theorems given in Theorems 5.1
and 5.2. These results are obtained in the case of m > 1 and real non-
negative functions a(x), k(u), b(t) and f(x). In Section 6 the case when
a(x)k(x−t)b(t) ≡ ax−α(x−t)α−1 is specially treated (see Theorem 6.1).

2. Lower estimates for a solution of integral equation (1.1).
Let C(0, d), 0 < d ≤ ∞, be the space of real valued continuous functions
on (0, d), and let Lloc

1 (0, d) be the space of all Lebesgue measurable
functions which are in L1(0, d0) for all d0 such that 0 < d0 < d. We
denote by CLloc(0, d) the intersection of C(0, d) and Lloc

1 (0, d):

(2.1) CLloc(0, d) = C(0, d) ∩ Lloc
1 (0, d),

so that a function in CLloc(0, d) may have singularities only at the end
points of (0, d). By CL+

loc(0, d), we denote the nonnegative functions
in CLloc(0, d).

Let C[0, d) be the space of continuous functions on [0, d). Let b(x)
be a nonnegative function on [0, d). We denote by C([0, d), b) the
space of functions g(x) such that b(x)g(x) ∈ C[0, d), and by C+[0, d)
and C+([0, d), b) subclasses of C[0, d) and C([0, d), b) composed of
nonnegative functions, respectively. Similarly, CLloc((0, d), b) and
CL+

loc((0, d), b) are subclasses of functions g(x) such that b(x)g(x) ∈
CLloc(0, d) and b(x)g(x) ∈ CL+

loc(0, d), respectively.

Obviously,
(2.2)

C([0, d), b) ⊂ CLloc((0, d), b), C+([0, d), b) ⊂ CL+
loc((0, d), b).

Remark 2.1. It is clear that equation (1.1), in case b(x) �≡ 0 in a
neighborhood of the origin, may be reduced to the equation with only
one coefficient:

(2.3) ϕm
1 (x) = a1(x)

∫ x

0

k(x− t)ϕ1(t) dt+ f1(x), 0 < x < d ≤ ∞,
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where ϕ1(x) = b(x)ϕ(x), a1(x) = [b(x)]ma(x) and f1(x) = [b(x)]mf(x),
for which a solution ϕ1(x) is sought in the space CL+

loc(0, d). Though
equation (2.3) was investigated in [12], we find it is more convenient
to consider the equations just in the form (1.1).

In this section we give an a priori lower estimate for a nonnegative
solution ϕ(x) of the equation (1.1) with m > 1 under the assumption
that the functions a(x), k(x), b(x), f(x) ∈ CL+

loc(0, d) have lower power
bounds (see Theorem 2.1 below). We assume that solutions of equation
(1.1) are in the space CL+

loc([0, d), b). Since CL+
loc([0,∞)) is a ring with

respect to the Volterra convolution (see [12, Theorem 1]), the integral
term in (1.1) is also a locally integrable function. Therefore, equation
(1.1) is well posed in this class.

We note that the condition

(2.4) f1/m(x) ∈ CL+
loc([0, d), b)

is necessary for solvability of equation (1.1) in CL+
loc([0, d), b). This

fact is a consequence of the evident inequality f(x) ≤ ϕm(x) and the
assumptions on the solution ϕ(x). We also suppose that f(x) satisfies
the condition

(2.5) f(x) �≡ 0, x ∈ (0, ε) for any ε > 0.

Otherwise, if f(x) ≡ 0, x ∈ (0, ε0), for some ε0 < d and f(x) �≡ 0,
x ∈ (ε0, ε0 + ε), for any ε > 0, we may pass to the function

(2.6) ψ(x) =
{

0 0 < x < ε0,
ϕ (x+ ε0) ε0 < x < d− ε0,

and obtain the same equation (1.1) with respect to ψ(x) for which the
condition (2.5) is satisfied. In the case when f(x) ≡ 0, x ∈ (0, d),
equation (1.1) may also be investigated, but in this case we need some
special additional assumptions on the functions a(x), k(x), b(x). We
consider this case specially in Section 3 while in this section we only
suppose that f(x) satisfies condition (2.5).

a) The case when b(x) has a power lower estimate.

Theorem 2.1. Let m,α, µ, ν ∈ R be such that

(2.7) m > 1, 0 < α ≤ 1, µ+ α+mν > 1,
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and let nonnegative coefficients a(x), b(x) and the nonnegative kernel
k(x) ∈ CL+

loc(0, d) satisfy the conditions

(2.8) a(x) ≥ axµ, k(x) ≥ kxα−1, b(x) ≥ bxν−1

with positive constants a, k, b. Also let f(x) satisfy conditions (2.4) (2.5).
If equation (1.1) is solvable in CL+

loc((0, d), b), then its solution ϕ(x)
satisfies the estimate

(2.9) ϕ(x) ≥ Ax(µ+α+ν−1)/(m−1),

where

(2.10) A =
[
akbB

(
α,

µ+ α+mν − 1
m− 1

)]1/(m−1)

and B(z, w) is the Euler beta function. The constant A is precise
in the sense that we have exact equality in (2.9) when f(x) ≡ 0 and
inequalities in (2.8) are replaced by equalities.

Proof. According to (2.8) and (1.1), we have

(2.11) ϕm(x) ≥ akbxµ

∫ x

0

tν−1

(x− t)1−α
ϕ(t) dt

and, since 0 < α ≤ 1, we obtain

(2.12) ϕm(x) ≥ akbxµ+α−1

∫ x

0

tν−1 ϕ(t) dt.

We denote

(2.13) y(x) =
∫ x

0

tν−1 ϕ(t) dt.

Since ϕ(x) ∈ CL+
loc((0, d), b), then ϕ(x) ∈ CL+

loc((0, d), t
ν−1), so the

integral on the righthand side of (2.13) exists and y′(x) ∈ C(0, d) with
y(0) = 0. Thus ϕ(x) = x1−νy′(x), and we rewrite (2.12) in the form

[x1−νy′(x)]m ≥ akbxµ+α−1y(x).
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Since ϕm(x) ≥ f(x), we have

y(x) =
∫ x

0

tν−1 ϕ(t) dt ≥
∫ x

0

tν−1 f1/m(t) dt.

Therefore, y(x) > 0 in some neighborhood of the origin, by (2.5). Then
(2.12) implies that ϕ(x) > 0 for all x ∈ (0, d) and also y(x) > 0 for
x ∈ (0, d) by (2.13). Taking this into account, we obtain

(2.14) y′(x)y−1/m(x) ≥ (akb)1/mx[(µ+α−1)/m]+ν−1.

Integrating this inequality over (0, x) and using that y(0) = 0 and the
conditions in (2.7), we arrive at the estimate
(2.15)

y(x) ≥ (akb)1/(m−1)

[
m− 1

µ+ α+mν − 1

]m/(m−1)

x(µ+α+mν−1)/(m−1).

Thus the estimate

(2.16) ϕ(x) ≥ Dx(µ+α+ν−1)/(m−1)

follows easily from (2.12) and (2.13) with the constant

D =
[

akb(m− 1)
µ+ α+mν − 1

]1/(m−1)

.

It remains to improve the constant. Applying the estimate (2.16) to
the righthand side of (2.11), we obtain

ϕm(x) ≥ DakbB

(
α, ν +

µ+ α+ ν − 1
m− 1

)
x(µ+α+ν−1)m/(m−1),

or
ϕ(x) ≥ D1/mA(m−1)/m x(µ+α+ν−1)/(m−1).

Substituting again this estimate into (2.11), we obtain in a similar way

ϕ(x) ≥ D1/m2
A(m−1)[1+1/m]/m x(µ+α+ν−1)/(m−1).

Repeating this operation n times, we find

ϕ(x) ≥ D1/mn

A(m−1)[1+1/m+···+1/mn−1]/m x(µ+α+ν−1)/(m−1).
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Taking the limit as n → ∞, we arrive at the inequality (2.9) with the
required constant A.

Evidently A ≥ D since B(z, w) > 1/z for z > 0 and 0 < w ≤ 1. The
preciseness of the constant A may be checked by direct verification of
the fact that the function Ax(µ+α+ν−1)/(m−1) satisfies equation (1.1)
when f(x) ≡ 0, a(x) = axµ, k(x) = kxα−1 and b(x) = bxν−1.

Corollary 2.1. Let m > 1, a > 0, 0 < α ≤ 1 and µ, ν ∈ R be such
that µ+α+mν > 1, and let the function f1/m(x) ∈ CL+

loc((0, d), t
ν−1)

satisfy the condition (2.5). If the equation

(2.17) ϕm(x) = axµ

∫ x

0

tν−1

(x− t)1−α
ϕ(t) dt+ f(x), 0 < x < d ≤ ∞

is solvable in CL+
loc((0, d), t

ν−1), then its solution ϕ(x) satisfies the
estimate

(2.18) ϕ(x) ≥ A1 x
(µ+α+ν−1)/(m−1)

with

A1 =
[
aB

(
α,

µ+ α+mν − 1
m− 1

)]1/(m−1)

.

We note that the condition f1/m(x) ∈ CL+
loc((0, d), t

ν−1) of Corol-
lary 2.1 is fulfilled if, for example, f(x) ∈ CL+

loc(0, d) and νm > 1.

Corollary 2.2. Under the assumptions of Theorem 2.1, if equation
(1.1) has a solution in CL+

loc((0, d), b) with the asymptotic behavior

(2.19) ϕ(x) = cxγ + o(xγ), x → 0; c �= 0,

then necessarily

(2.20) γ ≤ µ+ α+ ν − 1
m− 1

.

Corollary 2.3. Let m > 1, µ, ν ∈ R be such that µ + mν > 0,
and let nonnegative coefficients a(x) and b(x) satisfy the conditions
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a(x) ≥ axµ, b(x) ≥ bxν−1 with a > 0 and b > 0. Also let f1/m(x) ∈
CL+

loc((0, d), b) satisfy condition (2.5). If equation (1.5) is solvable in
CL+

loc((0, d), b), then its solution ϕ(x) satisfies the estimate

(2.21) ϕ(x) ≥ A2 x
(µ+ν)/(m−1) for A2 =

[
ab(m− 1)
µ+mν

]1/(m−1)

.

Remark 2.2. By (2.2), the statements of Theorem 2.1 and Corol-
lary 2.1 are also valid for continuous solutions in the weighted space
C([0, d), b).

Remark 2.3. Using the exact constant A in (2.9), we can obtain a more
exact lower estimate for the solution ϕ(x) of the equation (1.1). Namely
if the assumptions of Theorem 2.1 are satisfied and integral equation
(1.1) is solvable in CL+

loc((0, d), b), then its solution ϕ(x) satisfies the
estimate

(2.22) ϕ(x) ≥ (Am xm(µ+α+ν−1)/(m−1) + f(x))1/m.

Indeed, making use of (2.9), (2.11) and the exact estimate (2.9), from
equation (1.1) we have

ϕm(x) ≥ f(x) + xµabk

∫ x

0

tν−1

(x− t)1−α
ϕ(t) dt

≥ f(x) +Am xm(µ+α+ν−1)/(m−1),

whence (2.22) follows.

b) The case when b(x) may have no power lower estimate. We
suppose here that b(x) is a nonnegative function satisfying the condition

(2.23) mes {x : b(x) = 0, x ∈ (0, d)} = 0.

Theorem 2.2. Let m,α, η ∈ R be such that

(2.24) m > 1, 0 < α ≤ 1, η + α+m > 1,
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and let the nonnegative coefficients a(x), b(x) and the nonnegative
kernel k(x) ∈ CL+

loc(0, d) admit the lower bounds

(2.25) c(x) = a(x)bm(x) ≥ cxη, k(x) ≥ kxα−1,

with positive constants c, k. Also let f(x) satisfy the conditions
(2.4) (2.5). If equation (1.1) is solvable in CL+

loc((0, d), b), then its
solution ϕ(x) satisfies the estimate

(2.26) ϕ(x) ≥ Cx(η+α)/(m−1)

b(x)
,

where

(2.27) C =
[
ckB

(
α,

η + α+m− 1
m− 1

)]1/(m−1)

.

Proof. Taking Remark 2.1 into account, we may reduce equation (1.1)
to the equation with only one coefficient:

(2.28) φm(x) = c(x)
∫ x

0

k(x− t)φ(t) dt+ g(x), 0 < x < d ≤ ∞,

where

φ(x) = b(x)ϕ(x), c(x) = a(x)[b(x)]m, g(x) = [b(x)]mf(x)

and the solution φ(x) is sought in the space CL+
loc(0, d). The state-

ment of the theorem follows immediately by applying Theorem 2.1 to
equation (2.28).

We note a principal difference between Theorems 2.1 and 2.2. In
Theorem 2.1 we supposed that both the coefficients a(x) and b(x) have
lower power estimates, while in Theorem 2.2 we assumed that the whole
product c(x) = a(x)bm(x) has such a bound. For this reason, the range
of applications of Theorems 2.1 and 2.2 is different. In particular,
Theorem 2.2 may be applied to the case when one of the coefficients
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may have exponential decaying at the origin which is supplied by the
one with another exponential growth, for example,

(2.29) a(x) = xη em/x, b(x) = e−1/x,

in which the coefficient b(x) has no lower power bound so that we
cannot apply Theorem 2.1.

3. Equation (1.2) in the case f(x) ≡ 0. By CL+
loc(0, d)

and C+[0, d) we denote the subclass of functions ϕ(x) ∈ CL+
loc(0, d)

or ϕ(x) ∈ C+[0, d), respectively, such that ϕ(x) > 0 for x > 0.
Theorem 2.1 on lower estimates of solutions of equation (1.2) is also
valid in the case f(x) ≡ 0, x ∈ (0, d), that is, the equation

(3.1) ϕm(x) =
∫ x

0

k(x− t)ϕ(t) dt, 0 < x < d ≤ ∞,

if we look a priori for solutions in the subclass CL+
loc(0, d).

Theorem 3.1. Let m > 1, and let k(x) ∈ CL+
loc(0, d) satisfy the

condition

(3.2) k(x) ≥ kxα−1

with k > 0 and 0 < α ≤ 1. If equation (3.1) is solvable in CL+
loc(0, d),

then its solution ϕ(x) satisfies the estimate (2.9) with the constant A
in (2.10) calculated for µ = 0, ν = 1.

The proof of Theorem 3.1 is in fact the same as that of Theorem 2.1
if we take into account that the condition (2.5) on f(x) was used only
to show that ϕ(x) > 0 for x > 0. Now we have this by definition of the
class CL+

loc(0, d).

The assumption that the solution ϕ(x) is positive for x > 0 is natural,
which is seen from the following lemma.

Lemma 3.1. Let m > 1, and let k(x) ∈ L+
loc(0, d) be nonzero in a

neighborhood of the origin:

(3.3) k(x) �≡ 0, x ∈ (0, δ), for any δ > 0.
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If equation (3.1) is solvable in CL+
loc(0, d), then for the solution ϕ(x)

only one of the following cases may arise:

1) ϕ(x) ≡ 0 for 0 ≤ x ≤ d;

2) ϕ(x) > 0 for 0 < x ≤ d;

3) there exists d0 ∈ (0, d) such that ϕ(x) ≡ 0, 0 ≤ x ≤ d0, and
ϕ(x) > 0, d0 < x ≤ d.

Proof. Suppose that equation (3.1) has a solution in CL+
loc(0, d) such

that ϕ(x0) > 0. Then ϕ(x) > 0 for all x0 ≤ x ≤ d. Indeed, we have
ϕ(t) > ϕ(x0)/2 for t ∈ (x0, x0 + δ) with a sufficiently small δ. Then

(3.4)

ϕm(x) =
∫ x

0

k(x− t)ϕ(t) dt

≥
∫ x0+δ

x0

k(x− t)ϕ(t) dt

≥ ϕ(x0)
2

∫ δ

0

k(t) dt > 0.

This gives us the cases 1) 3). We observe that case 3) may be reduced
to case 2) by passing to the function ψ(x) in (2.6). The lemma is
proved.

Remark 3.1. In Lemma 3.1, if we assume that k(x) ≡ 0 in (0, δ0) and
k(x) �≡ 0 in (δ0, δ0+δ) for any δ > 0, we can repeat our discussion with
passing to the function ψ(x) and obtaining the result as in Lemma 3.1
with shift on δ0.

4. The upper and lower estimates for averages of solutions.
In the case of equation (1.2), we will obtain the upper bound for the
“average” of the solution

1
x

∫ x

0

ϕ(t) dt

for m being an integer m = 2, 3, 4, . . . . To this end, we need two
preliminary lemmas.
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Lemma 4.1. Let a > 0, b > 0, and m > 1. The equation ξm = aξ+b,
ξ > 0, has a unique solution ξ0, so that

ξm ≤ aξ + b ⇐⇒ 0 < ξ ≤ ξ0

and

ξm ≥ aξ + b ⇐⇒ ξ ≥ ξ0.

In the case m = 2, 3, . . . , the following inclusion is also valid

(4.1) ξm ≤ aξ + b =⇒ ξ < a1/(m−1) + b1/m.

Proof. The first statement of Lemma 4.1 is obvious. The proof of the
second part is motivated by the first one. Let g(ξ) = ξm − aξ − b. By
means of the binomial formula, it can be shown that

(4.2) g(a1/(m−1) + b1/m) ≥ (m− 1)ab1/m > 0.

Then the first part yields ξ0 ≤ a1/(m−1) + b1/m. However, we may give
the direct rigorous proof. Indeed, if ξ1 exists such that ξm

1 ≤ aξ1 + b
and ξ1 ≥ a1/(m−1) + b1/m. Then

aξ1 + b ≥ ξm
1 ≥ (a1/(m−1) + b1/m)m = am/(m−1) +mab1/m + · · ·+ b

≥ a(a1/(m−1) +mb1/m) + b.

Hence

(4.3) ξ1 ≥ a1/(m−1) +mb1/m.

Repeating this argument n times, we find

(4.4) ξ1 ≥ a1/(m−1) +mnb1/m

for an arbitrary positive integer n, which is impossible. This completes
the proof of Lemma 4.1.

Lemma 4.2. Let a > 0, b > 0 and m > 1. For the solution
ξ0 = ξ0(m) of the equation ξm = aξ+ b, ξ > 0, the following assertions
are valid:
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1) In the case a+ b < 1, the function ξ0(m) is increasing in m and

b1/m(1− a)−1/m < ξ0(m) < (a+ b)1/m;

2) In the case a+ b > 1, the function ξ0(m) is decreasing in m and

(a+ b)1/m < ξ0(m) < ∞;

3) ξ0(m) = 1 for all m > 1 in the case a+ b = 1.

Proof. The monotonicity of ξ0(m) is evident geometrically, if one
considers the curve y = ξm and the lines y = aξ + b, y = ξ and ξ = 1
in the (ξ, y)-plane. If we take into account the inequalities ξ0(m) < 1
in case 1) and ξ0(m) > 1 in case 2), then the bounds in 1) 2) easily
follow from the equality ξm

0 (m) = aξ0(m)+ b and the lemma is proved.

Theorem 4.1. Let k(x), f(x) ∈ L+
loc(0, d) and m = 2, 3, . . . . If

equation (1.2) is solvable in CL+
loc(0, d), then its solution ϕ(x) admits

the estimates
(4.5)

1
x

∫ x

0

f1/m(t) dt ≤ 1
x

∫ x

0

ϕ(t) dt

<

( ∫ x

0

k(t) dt
)1/(m−1)

+
(

1
x

∫ x

0

f(t) dt
)1/m

.

Proof. The lefthand inequality in (4.5) is obvious since ϕm(x) ≥ f(x).
To prove the righthand one, we integrate equation (1.2) and obtain

(4.6)
∫ x

0

ϕm(t) dt ≤ K(x)Φ(x) + F (x),

where

Φ(x) =
∫ x

0

ϕ(t) dt,

K(x) =
∫ x

0

k(t) dt
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and
F (x) =

∫ x

0

f(t) dt.

Using the Hölder inequality, we obtain

(4.7) xm−1

∫ x

0

ϕm(t) dt ≥
(∫ x

0

ϕ(t) dt
)m

,

so that

(4.8) Φm(x) ≤ xm−1K(x)Φ(x) + xm−1F (x).

Then the righthand inequality in (4.5) follows from (4.8) by Lemma 4.1
where one should take ξ = Φ(x), a = xm−1K(x) and b = xm−1F (x).
The theorem is proved.

Hypothesis. Under the assumptions of Theorem 4.1 on k(x) and
f(x), the estimate (4.5) is probably valid for all m > 1.

Corollary 4.1. Under the assumptions of Theorem 4.1, if ϕ(x) is a
solution of equation (1.2) in CL+

loc(0, d), then∫ x

0

ϕ(t) dt = o(x1−1/m), x → 0.

Under the assumption, for the solution to be bounded, we can obtain
the upper estimate for the solution itself.

Theorem 4.2. Let k(x) ∈ L+
loc(0, d), f(x) ∈ L+

∞(0, d) and m =
2, 3, . . . . If equation (1.2) is solvable in L+

∞(0, d), then

(4.9) f1/m(x) ≤ ϕ(x) ≤
( ∫ x

0

k(t) dt
)1/(m−1)

+
(

sup
0≤t≤x

f(x)
)1/m

.

Proof. To prove the right inequality in (4.9), we use the estimate
(

sup
0≤t≤x

ϕ(t)
)m

= sup
0≤t≤x

ϕm(t) ≤
(

sup
0≤t≤x

ϕ(t)
)∫ x

0

k(t) dt+ sup
0≤t≤x

f(t).
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Applying Lemma 4.1 with the evident choice of ξ, a and b, we have

(4.10) sup
0≤t≤x

ϕ(t) ≤
( ∫ x

0

k(t) dt
)1/(m−1)

+
(

sup
0≤t≤x

f(t)
)1/m

,

which yields the right inequality in (4.9) and completes the proof.

Corollary 4.2. Let f(x) ≡ 0 and k(x) ∈ L+
loc(0, d). If equation (1.2)

is solvable in L+
∞(0, d), then for all m > 1,

(4.11) ϕ(x) ≤
( ∫ x

0

k(t) dt
)1/(m−1)

.

A similar estimate was known already under the additional assump-
tion that the kernel k(t) is a continuous increasing function (see, for
example, [26], [5]).

Corollary 4.3. Let m > 1, a > 0, α > 0 and f(x) ∈ C+[0, d). If
the integral equation

(4.12) ϕm(x) = a

∫ x

0

ϕ(t)
(x− t)1−α

dt+ f(x), 0 < x < d ≤ ∞,

is solvable in C+[0, d), then its solution satisfies the estimates

(4.13) f1/m(x) ≤ ϕ(x) ≤
(
a

α

)1/(m−1)

xα/(m−1) + sup
0≤t≤x

f1/m(t).

Theorem 4.3. Let ks(x) ∈ L+
loc(0, d) for some s > 1 and f(x) ∈

C+[0, d). If equation (1.2) with m > 1 is solvable in L+
loc(0, d), then its

solution ϕ(x) belongs to C+[0, d).

Proof. The proof is similar to that in [5], where this theorem was
given in the case f(x) ≡ 0. First of all, we show that

(4.14) ϕp(x) ∈ L+
loc(0, d) for any p ≥ 1.
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Indeed, from equation (1.2) we see that the convolution on the
righthand side in (1.2) belongs to Ls(0, d0). Consequently, ϕ(x) ∈
Lms(0, d0). Repeating our arguments n times, we obtain that ϕ(x) ∈
Lsmn(0, d0) for all n, which yields (4.12). To prove the theorem, it
remains to choose n such that smn > s′, s′ = s/(s− 1), and take into
account that Ls(0, d0) ∗ Ls′(0, d0) ⊂ C[0, d0).

We note that the statement (4.14) of Theorem 4.3 also holds in the
case s = 1.

5. Uniqueness of solution of integral equation (1.1). In this
section we apply Theorem 2.1 to give some conditions for the uniqueness
of the solution ϕ(x) of equation (1.1) in C+([0, d), b).

Theorem 5.1. Let m > 1, 0 < α ≤ 1 and µ, ν ∈ R be such
that µ + α + mν > 1. Let l be any number such that 0 < l < d.
Suppose that the functions a(x), b(x) ∈ C+(0, d), k(x) ∈ L+

loc(0, d) and
f1/m(x) ∈ C+([0, d), b) satisfy the conditions (2.5) and (2.8). Let

(5.1) M := sup
x∈(0,l)

[
x1−µ−ν−αa(x)b(x)

∫ x

0

k(t) dt
]
< mAm−1,

where A is defined in (2.10). If equation (1.1) is solvable in C+([0, l), b),
then its solution ϕ(x) is unique on the interval [0, l].

Proof. Let ϕ1(x) and ϕ2(x) be two solutions of equation (1.1) in
C+([0, l), b). Since m > 1, by the mean value theorem we have

|[ϕ1(x)]m − [ϕ2(x)]m| ≥ m|ϕ1(x)− ϕ2(x)|(min[ϕ1(x), ϕ2(x)])m−1.

Hence, in accordance with the lower estimate (2.9) and Remark 2.2, we
have

|[ϕ1(x)]m − [ϕ2(x)]m| ≥ mAm−1xµ+α+ν−1|ϕ1(x)− ϕ2(x)|.
Then, by (1.1),

(5.2) mAm−1xµ+α+ν−1|ϕ1(x)− ϕ2(x)|
≤ a(x)

∫ x

0

k(x− t)b(t)|ϕ1(t)− ϕ2(t)| dt.
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Let

(5.3) u(x) = b(x)|ϕ1(x)− ϕ2(x)|.
Then (5.3) can be rewritten as

(5.4) u(x) ≤ a(x)b(x)
mAm−1xµ+α+ν−1

∫ x

0

k(x− t)u(t) dt.

Let l0 be a number arbitrarily close to l, 0 < l0 < l, and x0 the
maximum point of u(x) on [0, l0] : u(x0) = max0≤x≤l0 u(x). Then

(5.5)
∫ x0

0

k(x0 − t)u(t) dt ≤ K(x0)u(x0),

where
K(x) =

∫ x

0

k(t) dt.

Substituting this into (5.5) and using the notation in (5.2), we arrive
at the estimate

(5.6) u(x0) ≤ M

mAm−1
u(x0).

Since M < mAm−1, we obtain u(x0) = 0 at the maximum point
of u(x) on an arbitrary subinterval [0, l0]. Then u(x) ≡ 0 so that
ϕ1(x) = ϕ2(x), which proves the theorem.

Corollary 5.1. Let m > 1, a > 0, 0 < α ≤ 1 and µ, ν ∈ R be such
that

µ+ α+mν > 1,
1
α

< mB

(
α,

µ+ α+mν − 1
m− 1

)

and let the function f1/m(x) ∈ C+([0, d), xν−1) satisfy the condition
(2.5). Then if equation (2.17) is solvable in C+([0, d), xν−1), its solu-
tion ϕ(x) is unique.

Of course, condition (5.2) of Theorem 5.1 is not necessary for unique-
ness, which may be illustrated by the equation

(5.7) ϕ2(x) =
a

xα

∫ x

0

ϕ(t)
(x− t)1−α

dt+ f, 0 < x < d,
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where f is a constant, satisfying the condition f ≤ (a/[2α])2. This
equation is solvable in C+[0, d) and has the unique solution ϕ(x) = c,
where the constant c is a positive solution of the algebraic equation
αc2 − ac− αf = 0, but the condition (5.2) is violated turning into the
equality M = a/α = 2A.

A slight modification of the assumptions of Theorem 5.1 allows us to
extend this theorem to the case when the sign < in (5.2) is replaced
by ≤. We suppose that the coefficients a(x), b(x) and the kernel k(x)
satisfy the condition

(5.8) N := sup
x∈(0,l)

a(x)bm(x)
∫ x

0

k(t) dt < ∞.

Let

(5.9) N0 := lim
x→0

a(x)bm(x)
∫ x

0

k(t) dt,

if this limit exists.

Theorem 5.2. Let m > 1, 0 < α ≤ 1 and µ, ν ∈ R be such
that µ + α + mν > 1. Let l be any number such that 0 < l < d.
Suppose that the functions a(x), b(x) ∈ C+(0, d), k(x) ∈ L+

loc(0, d) and
f1/m(x) ∈ C+([0, d), b) satisfy the conditions (2.8) and (2.5) and (5.9).
Suppose that

(5.10) M ≤ mAm−1,

where A is defined in (2.10) and M is given in (5.2). Also let

(5.11) N0 = 0 in the case when lim
t→0

bm(x)f(x) = 0.

If equation (1.1) is solvable in C+([0, l), b), then its solution ϕ(x) is
unique.

Proof. 1st step. The proof of this theorem coincides with that of
Theorem 5.1 until the inequality (5.5). Starting from there, let us
show that u(0) = 0. To this end, it is sufficient to establish that



UPPER AND LOWER BOUNDS 439

limx→0 b(x)ϕ1(x) = limx→0 b(x)ϕ2(x). From equation (1.1) we have,
by putting ψ(x) = b(x)ϕ(x) and g(x) = bm(x)f(x),

(5.12)

ψm(x) = a(x)bm(x)
∫ x

0

k(x− t)[ψ(t)− ψ(x)] dt

+ ψ(x)a(x)bm(x)
∫ x

0

k(t) dt+ g(x)

= I1 + I2 + g(x).

Evidently, I1(x) ≤ N sup0≤t≤x |ψ(t)− ψ(x)| → 0 as x → 0. Therefore,
the limit limx→0 I2(x) exists, which implies the existence of the limit
N0. This is obvious when ψ(0) �= 0, while the case ψ(0) = 0 is possible
only when g(0) = 0, which is automatic by assumption (5.12).

Thus the value λ = ψ(0) always exists under the assumptions of the
theorem. To show that this value is unique, it remains to observe that
λ is a solution of the equation λm − N0λg(0) = 0, which follows by
passing to the limit in (5.13). In the case g(0) > 0, this equation has
a unique solution, which is positive, by Lemma 4.1, while in the case
g(0) = 0 the assumption (5.12) yields this unique solution λ = 0.

2nd step. Now we can assume that u(0) = 0. As in the proof of
Theorem 5.1, let l0 be a number arbitrarily close to l, 0 < l0 < l, and
x0 the maximum point of u(x) on [0, l0] : u(x0) = max0≤x≤l0 u(x).
If u(x) is a constant, then necessarily u(x) ≡ 0 and the theorem is
proved. Otherwise, a set e ⊂ (0, 1) exists such that mes {e} > 0 and
supt∈e u(t) < u(x0). Then

(5.13)
∫ x0

0

k(x0 − t)u(t) dt < u(x0)
∫ x0

0

k(t) dt.

Comparing (5.5) and (5.14) at the point x0 and taking (5.11) into
account, we obtain

(5.14) u(x0) <
M

mAm−1
u(x0) ≤ u(x0),

which is not possible. The theorem is proved.

Remark 5.1. Under the assumptions of Theorem 5.2, condition (5.9)
in some cases may be obtained as a consequence of condition (5.11). For
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example, if b(x) ≡ 1 and ν = 1, from estimate (2.9) for ϕ(x) ∈ C+[0, d),
it follows that µ + α ≥ 0 and the condition (5.11) implies (5.9) with
N0 = 0, if µ+ α > 0.

Modifying the example in (5.8), we note that the equation

ϕ2(x) =
a

|x− 1|α
∫ x

0

ϕ(t)
(x− t)1−α

dt, 0 < x < 2,

has the discontinuous solution ϕ(x) = 0 if 0 ≤ x ≤ 1, and ϕ = a/α if
1 < x ≤ 2. This example shows that Theorem 4.3 is not valid in the
general case of equation (1.1) if a(x) has a singularity other than the
origin.

In the following theorem we especially single out the particular case
of Theorem 5.1 when k(x) ≡ 1 and α = 1.

Theorem 5.3. Let m > 1 and µ, ν ∈ R be such that µ+mν > 0. Let
the functions a(x), b(x) ∈ C+(0, d) and f1/m(x) ∈ C+([0, d), b) satisfy
the conditions (2.5) and (2.8). Let

(5.15) M := sup
x∈(0,d)

x1−µ−νa(x)b(x) < ab
m(m− 1)
mν + µ

and equation (1.5) be solvable in C+([0, d), b). Then its solution ϕ(x)
is unique.

Corollary 5.2. Let a > 0 and m,µ, ν ∈ R be such that

(5.16) m > 1, 0 < µ+mν < m(m− 1),

and let the function f1/m(x) ∈ C+([0, d), xν−1) satisfy condition (2.4).
If the integral equation

(5.17) ϕm(x) = axµ

∫ x

0

tν−1 ϕ(t) dt+ f(x), 0 < x < d ≤ ∞,

is solvable in the space C+([0, d), xν−1), then its solution ϕ(x) is
unique.
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We note that, in particular, Corollary 5.2 holds for equation (5.17)
in the case µ = 0 and ν = 1 if m > 2.

Remark 5.2. Corollary 5.2 gives some easily verified conditions when
m is given, and we want to know what values of µ and ν are admissible
in (5.16) for the uniqueness of the solution. It is easy to check that,
inversely, for given values of µ and ν, the possible values of m are
described as follows.

Given µ and ν, the conditions (5.16) are satisfied if either of the
following is satisfied:

1) In the case µ > −(1 + ν)2/4, either
(5.18)

m > max
[
1,−µ

ν
,
1 + ν +

√
D

2

]
or 1 < m <

1 + ν −√
D

2
,

when ν > 0, and

(5.19) max
[
1,

1 + ν +
√
D

2

]
< m < −µ

ν
,

when ν < 0 (here D = (1 + ν)2 + 4µ and the interval 1 < m <
(1 + ν −√

D)/2 in (5.18) is nonempty if and only if 1 < ν < −µ);

2) In the case µ ≤ −(1 + ν)2/4,

m > max
[
1,−µ

ν

]
if ν > 0(5.20)

1 < m < −µ

ν
if ν < 0(5.21)

with the value m = (1 + ν)/2 excluded in (5.20) (5.21) in the case
µ = −(1 + ν)2/4;

3) In the remaining case ν = 0, which implies

(5.22) m > max
[
1,

1 +
√
1 + 4µ
2

]
.

In particular, in the case ν = 1

m > max [1,−µ, 1 +
√

1 + µ] if µ > −1,(5.23)
m > max [1,−µ] if µ ≤ −1.(5.24)
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Remark 5.3. If a(x) �= 0 for x ∈ [0, d) in the equation (1.5), then
this equation is equivalent to the following Cauchy problem for the
differential equation

(5.25) y′(x) = p(x)y1/m(x) + q′(x), y(0) = q(0),

where

y(x) =
ϕm(x)
a(x)

, p(x) = b(x)a1/m(x), q(x) =
f(x)
a(x)

.

Thus, a result similar to that in Theorem 5.3 is also valid for this
problem.

6. The case of the singular coefficient. We return here to the
integral equation of type (5.8) with the singular coefficient:

(6.1)
ϕm(x) =

a

xα

∫ x

0

ϕ(t)
(x− t)1−α

dt+ f(x),

0 < x < d, a > 0.

First of all we note that from Corollary 5.1 the uniqueness of equation
(6.1) is derived. If m > 1, f(x) ∈ C+[0, d) satisfies the condition
(2.5) and equation (6.1) is solvable in C+[0, d), then its solution ϕ(x)
is unique.

We suppose that f(x) ∈ C+[0, d) and look for a solution in L+
loc(0, d).

Theorem 4.3 states that in the case when the coefficient of the equation
(1.2) is not singular, any solution which is a priori in L+

loc(0, d) or in fact
in C+[0, d). We show that this is also valid in the case of the singular
coefficient, as in (6.1).

Lemma 6.1. Let α > 0 and

(6.2) (Kϕ)(x) =
1
xα

∫ x

0

ϕ(t)
(x− t)1−α

dt, 0 < x < d.

If 1 < p < ∞, the operator K is bounded in Lp(0, d) and maps L1(0, d0)
into L1((0, d0), b), where b = (log[γ/x])−λ, 0 < d0 < d, γ > d0 and
λ > 1.
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Proof. In case p �= 1, the statement of the lemma is well known, being
a particular case of the Hardy-Littlewood theorem [10] on boundedness
of integral operators with kernels homogeneous of degree −1:

(6.3) ‖Kϕ‖p ≤ B

(
α, 1− 1

p

)
‖ϕ‖p.

For p = 1 the statement of the lemma may be verified directly.

Theorem 6.1. Let 0 < α < 1 and f(x) ∈ C+[0, d). If equation (6.1)
with m > 1 is solvable in L+

loc(0, d), then its solution ϕ(x) belongs to
C+[0, d).

Proof. The proof is due to the idea of the proof of Theorem 4.3.

1st step. First of all we show that the statement (4.12) is valid.
By the Young theorem, we have tα−1 ∗ ϕ ∈ Ls(0, d0) for an arbitrary
d0 ∈ (0, d), where 1 < s < 1/(1− α). Since α+ 1/s > 1 and 0 < α < 1
we can find s such that

(6.4) α+
1
s

< m.

From equation (6.1), xαϕm(x) ∈ Ls(0, d0). Moreover, the solution ϕ(x)
itself belongs to Lp(0, 1) for all p with

(6.5) 1 < p <
m

α+ 1/s
.

Indeed, by the Hölder inequality with ν = ms/p > 1+αs > 1, we have

(6.6)∫ d0

0

ϕp(x) dx =
∫ d0

0

ϕp(x)xαs/νx−αs/ν dx

≤
( ∫ d0

0

(xαϕm(x))s dx
)1/ν( ∫ d0

0

x−αsν′/ν

)1/ν′

< ∞.

Thus we obtain (4.12) for the values of p in the interval (6.5). Now
we show that (4.12) takes place for all p > 1. By Lemma 6.1 the
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integral operator on the righthand side of (6.1) preserves Lp(0, d0),
p > 1, so from equation (6.1) we have that ϕm(x) ∈ Lp(0, d0) or
ϕ(x) ∈ Lpm(0, d0). Repeating the same arguments as in Theorem 4.3,
we obtain (4.12).

2nd step. We show that the function ϕ(x) is in reality bounded
on [0, d0]. Since it is in Lp(0, d0) for all p > 1, the integral in the
righthand side (6.1) is a bounded continuous function. Therefore, to
prove boundedness of ϕ(x) we have only to show that ϕ(x) is bounded
at a neighborhood of the origin, say on the interval [0, δ], δ = min[1, d0].

We observe that in the case of the interval (0, δ), the Lq-norm is an in-
creasing function in q. Therefore, finite or infinite limit limq→∞ ‖ϕ‖q ≤
∞ exists. It is known (see [25, p. 14]) that if this limit is finite, then
ϕ(x) ∈ L∞(0, δ) and

(6.7) ‖ϕ‖∞ = lim
q→∞ ‖ϕ‖q.

Therefore it suffices to prove that the sequence ‖ϕ‖q is bounded for all
large values of q.

3rd step. Taking the Lq-norm in (6.1) with an arbitrary q > 1 and
using (6.3), we have ‖ϕ‖m

qm ≤ aB(α, 1 − 1/q)‖ϕ‖q + ‖f‖∞. We notice
that B(α, 1− 1/q) ≤ B(α, 1/2) for all q ≥ 2. Since we may take q ≥ 2
by (4.12), we have

(6.8) ‖ϕ‖m
q ≤ aB

(
α,

1
2

)
‖ϕ‖q + ‖f‖∞,

where we also have taken into account that ‖ϕ‖q ≤ ‖ϕ‖qm by the
monotonicity of the norm. Then ‖ϕ‖q is uniformly bounded with
respect to q by Lemma 4.1.

4th step. Since ϕ(x) ∈ L+
∞(0, δ) we have that tα−1 ∗ϕ ∈ C+[0, δ] and

then from equation (6.1) it follows that ϕ(x) ∈ C+(0, δ].

5th step. It remains to prove that ϕ(x) is continuous at the origin.
By ϕ± we denote the upper and lower limits of ϕ(x):

(6.9) ϕ+ = lim
x→0

sup
0≤t≤x

ϕ(t), ϕ− = lim
x→0

inf
0≤t≤x

ϕ(t)

which evidently exist. Taking sup0≤t≤x on both sides of (6.1), we obtain

(6.10) sup
0≤t≤x

ϕm(t) ≤ a

α
sup

0≤t≤x
ϕ(t) + sup

0≤t≤x
f(t).
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Hence
ϕm

+ ≤ a

α
ϕ+ + f(0).

Then by Lemma 4.1

(6.11) ϕ+ ≤ ξ0,

where ξ0 is the solution of the equation αξm − aξ − αf(0) = 0 (see
Lemma 4.1).

For the lower limits we similarly have

(6.12) inf
0≤t≤x

ϕm(t) ≥ a

α
inf

0≤t≤x
ϕ(t) + inf

0≤t≤x
f(t),

whence
ϕm
− ≥ a

α
ϕ− + f(0)

which yields that

(6.13) ϕ− ≥ ξ0

with the same ξ0 as in (6.11). Comparing (6.11) and (6.13) we see that
necessarily ϕ+ = ϕ−, so that ϕ ∈ C+[0, 1] and ϕ(0) = ξ0. The theorem
is proved.

Remark 6.1. Simple examples show that the statement of Theo-
rem 6.1 is not valid if f(x) is only bounded but not a continuous func-
tion. For example, for the bounded function f(x) = 0, 0 ≤ x ≤ d0, and
f(x) = 1 − [a/α](x − d0)α/xα, d0 < x ≤ d, with d0 > 0 we have the
discontinuous bounded solution ϕ(x) = 0 if 0 ≤ x ≤ d0 and ϕ(x) = 1 if
d0 < x ≤ d.

Corollary 6.1. If, in the conditions of Theorem 6.1, f(x) is bounded:
f(x) ∈ L+

∞(0, d), then any solution ϕ(x) which is a priori in L+
loc(0, d)

is in fact in L+
∞(0, d).

Remark 6.2. We note that it may happen that equation (6.1) is
solvable even if f(x) is not integrable near the origin. To illustrate the
idea, we take

f(x) =
1

xβm
− a

B(α, 1− β)
xβ

,
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where β < 1. Then the function ϕ(x) = 1/xβ is an integrable solution
of equation (6.1) whenever β < 1 is, although f(x) is not integrable at
the origin when β > 1/m.

Finally we observe that equation (6.1) in the case m < 1 may have a
nonunique solution. Thus, the equation

(6.14)
√

ϕ(x) =
a

xα

∫ x

0

ϕ(t)
(x− t)1−α

dt+ f,

when a constant f has a constant solution ϕ(x) = c if c satisfies the
equation ac−α

√
c+αf = 0 which has two positive solutions if 4af < α.

In the linear case (m = 1) equation (6.1) is an example of linear integral
equations with kernels homogeneous of degree−1, the theory of which is
well developed (see [23] and also the recent survey [13]). The solvability
of the linear (m = 1) equation (6.1) in C[0, d) and the number of its
solution were in particular investigated in detail in [23].
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