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PRECISE LARGE DEVIATIONS OF
AGGREGATE LOSS PROCESS IN A RISK MODEL
BASED ON THE POLICY ENTRANCE PROCESS

FENGQIN TANG, ZEHUI LI AND JINYUAN CHEN

ABSTRACT. In this paper, we introduce a risk model
based on the policy entrance process with n kinds of
independent policies. Aiming at the model in which each
kind of policy is issued according to a non-homogeneous
Poisson process with heavy-tailed distributed claim sizes, we
study the large deviations for aggregate loss process of the
risk model.

1. Introduction. Let {Xk; k ≥ 1} be a sequence of random vari-
ables (rv,s) with common distribution function F and mean µ inde-
pendent of {N(t); t ≥ 0}. Suppose that {N(t); t ≥ 0} is a nonnegative
integer-valued process with mean function EN(t) = λ(t). Mainstream
on precise large deviations has been concentrated on the study of the
asymptotics

(1.1) Pr

( n∑
k=1

Xk − nµ

)
∼ nF (x)

and

(1.2) Pr

(N(t)∑
k=1

Xk − λ(t)µ

)
∼ λ(t)F (x),

respectively, which hold uniformly for some x-region. Throughout, we
let F = 1−F . Heyde [4, 5] studied the asymptotics (1.1) with regularly
varying tails. Cline and Hsing [2] obtained (1.1) for a larger class, the
so-called ERV (extended regularly varying) class. Later, Klüppelberg
and Mikosch [6] considered (1.2) for the ERV class. We restate their
result as follows.
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Proposition 1.1 (Klüppelberg and Mikosch [6]). If F ∈ ERV(−α,−β)
with 1 < α ≤ β < ∞, and N(t) satisfies that

Assumption A.
N(t)

λ(t)

P−→ 1

and that, for some ε > 0 and any δ > 0,

Assumption B.
∑

k>(1+δ)λ(t)

(1 + ε)kPr (N(t) > k) = o(1),

then, for any γ > 0, (1.2) holds uniformly for x ≥ γλ(t).

Recent advances in precise large deviations can be found in [8, 9,
12, 13, 14, 15, 16], among many others. It is worth mentioning
that Wang and Wang [17] considered the large deviations for sums of
rv’s with consistently varying tails (the so-called C class) in multi-risk
models.

However, the model shown in [17] concentrates on the claim number
process. But it is easy to conceive that the claim number process is
virtually driven by the policy entrance process, since whenever the
insurer issues a policy, he will have to burden the potential claims
entitled by the policy. In view of above idea, Li and Kong [7] considered
a new risk model with n kinds of policies and obtained some weak
convergence properties of the model under the condition that the claim
sizes distribution is regularly varying. Based on [7], we study the
precise large deviations of the loss process with ERV distributed claim
sizes of the improved risk model. We give a detailed description of the
model as follows.

For the ith kind of policy, 1 ≤ i ≤ n. Suppose that the arrival time
of the jth customer is σi

j , and {Ni(t); t ≥ 0} is the counting process

associated with {σi
j}∞j=1, i.e., Ni(t) = max{j;σi

j ≤ t}. The premium
charged by the insured and the validity time are supposed to be two
constants, denoted by di and ai, respectively. Let Y i

jk denote the kth

claim size of the jth customer and T i
jk the duration time from Si

j to the

kth claim time of the jth insured. Let {M i
j(s); s ≥ 0} be the counting

process associated with {T i
jk}∞k=1, i.e., M

i
j(s) = max{k;T i

jk ≤ s}. It is

obvious that the jth insured can claim at most M i
j(ai) times. Thus,
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the aggregate loss process of the ith kind of policy up to time t is

(1.3) Si(t) =

Ni(t)∑
j=1

(Mi
j (ai)∑
k=1

Y i
jkI{T i

jk + σi
j ≤ t} − di

)
,

and the total loss process due to these n kinds of policies up to time t
is

(1.4) S(n, t) =
n∑

i=1

Si(t).

Remark 1.1. We make the convention that

0∑
k=1

Y i
jkI{T i

jk + σi
j ≤ t} = 0.

Remark 1.2. Si(t) and S(n, t) can be thought of as some shot noise
processes.

The remaining part of this paper is organized as follows. Section 2
presents some assumptions on the model and our main results. Sec-
tion 3 proves the main results, after showing some necessary lemmas.

2. Assumptions and main results. First of all, we recall some
famous classes of heavy-tailed distributions.

We say that a distribution function F , by definition, has dominated
varying tails (denoted by D), if and only if

lim sup
x→∞

F (xy)

F (x)
< ∞ for any y ∈ (0, 1) (or, equivalently, for y = 1

2 ).

A closely related class is the long-tailed class (denoted by L). A
distribution function F is in L if and only if

lim
x→∞

F (x+ y)

F (x)
= 1, for any y > 0.
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Another important subclass of heavy tails is the consistently varying
class (denoted by C). A distribution function F is in C if and only if

lim
y↘1

lim inf
x→∞

F (xy)

F (x)
= 1,

or, equivalently,

lim
y↗1

lim sup
x→∞

F (xy)

F (x)
= 1.

A slight small class is the extended regularly varying class (denoted by
ERV). A distribution function F is in ERV (−α,−β) for some α, β
with 0 < α ≤ β < ∞ if and only if

y−β ≤ lim inf
x→∞

F (xy)

F (x)
≤ lim sup

x→∞

F (xy)

F (x)
≤ y−α

for any y > 1.

Clearly, the ERV class covers the famous class R−α of distributions
with regularly-varying tails in the sense that the relation

lim
x→∞

F (xy)

F (x)
= y−α

holds for some α > 0 and all y > 0. Some related discussions on heavy-
tailed distributions can be found in [1, 3, 11]. It is well known that
these classes satisfy the following inclusions:

R−α ∈ ERV ⊂ C ⊂ D ∩ L.

Set

F ∗(y) = lim inf
x→∞

F (xy)

F (x)

and

JF = inf

{
− logF ∗(y)

log y
: y > 1

}
,

where JF is called the upper Matuszewska index of the distribution
function F . Clearly, if F ∈ ERV(−α,−β), then α ≤ JF ≤ β. For more
details on the Matuszewska index see Bingham et al. [1].

Some assumptions are required for models (1.3) and (1.4) in present
paper.
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Assumption 2.1. {M i
j(t); t ≥ 0}, i ≥ 1, j ≥ 1, are independent

homogeneous Poisson processes with mean function EM i
j(t) = νit.

Assumption 2.2. {Ni(t); t ≥ 0}ni=1 is an independent non-homogeneous
Poisson process with intensity function λi(t) and the accumulated in-

tensity function Λi(t) =
∫ t

0
λi(s) ds satisfying Λi(t) → ∞ as t → ∞.

Assumption 2.3. For a given i ≥ 1, {Y i
jk, j ≥ 1, k ≥ 1} are i.i.d. rv’s

with a common distribution function Fi(·) ∈ ERV (−α,−β) for some
α, β satisfying 1 < α ≤ β < ∞.

Assumption 2.4. The sequences {Y i
jk; j ≥ 1, k ≥ 1}, {M i

j(t); t ≥ 0}
and {Ni(t); t ≥ 0} are mutually independent.

For one kind of policy, namely, n = 1, we simplify the notation Ni(t),
Y i
jk, T

i
jk, σ

i
j , M

i
j(t), Fi(·), di in (1.3), respectively, as N(t), Yjk, Tjk,

σj , Mj(t), F (·), d. Thus, the aggregate loss process due to one kind of
policy is denoted by

(2.1) S(t) =

N(t)∑
j=1

(Mj(a)∑
k=1

YjkI{Tjk + σj ≤ t} − d

)
.

Remark 2.1. Assumptions 2.1–2.4 hold, respectively, for (2.1). All
subscripts or superscripts i of corresponding notation are omitted.

Henceforth, all limit relations, unless otherwise stated, are for
t → ∞, namely, Λ(t) → ∞. For positive functions a(x) and b(x),
we write a(x) = o(b(x)) if limx→∞ a(x)/b(x) = 0; a(x) . b(x) if
lim supx→∞ a(x)/b(x) ≤ 1; a(x) & b(x) if lim infx→∞ a(x)/b(x) ≥ 1
and a(x) ∼ b(x) if both a(x) . b(x) and a(x) & b(x). Very often,
we limit relationships with certain uniformity for our specific purposes.
For instance, for two positive bivariate functions a(·, ·) and b(·, ·), we
say that a(x, t) . b(x, t) holds uniformly for t ∈ △ ̸= ∅ if

lim sup
x→∞

sup
t∈△≠∅

a(x, t)

b(x, t)
≤ 1.

Now, we give our main results. We start with the result below which
can be thought of as a contribution of Proposition 1.1.
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Theorem 2.1. Suppose that Assumptions 2.1–2.4 hold. Then, for each
γ > 0,

Pr

(N(t)∑
j=1

Mj(a)∑
k=1

Yjk − E

N(t)∑
j=1

Mj(a)∑
k=1

Yjk > x

)
∼ aνΛ(t)F (x)

holds uniformly for x ≥ γΛ(t).

Let

hj =

Mj(a)∑
k=1

Yjk, j ≥ 1.

Note that Mj(a) < ∞ and {hj ; j ≥ 1} are i.i.d. For x → ∞, we derive

G(x) = Pr (hj > x)

=

∞∑
m=1

Pr (Mj(a) = m)Pr

( m∑
k=1

Yjk > x

)
∼ aνF (x).

Thus, one can easily check that {hj ; j ≥ 1} belongs to ERV. Moreover,
we can verify that {N(t); t ≥ 0} in our model (1.3) still satisfies
Assumptions A and B. Thus, the proof of Theorem 2.1 is similar to
that of Theorem 3.1 of Klüppelberg and Mikosch [6]. Therefore, we
omit the proof here.

Theorem 2.2. Suppose that Assumptions 2.1–2.4 hold. Then

(2.2) Pr (S(t)− ES(t) > x) ∼ aνΛ(t)F (x)

holds uniformly for x ≥ γΛ(t) and every γ > 0.

For model (1.4), we obtain the following result.

Theorem 2.3. Suppose that Assumptions 2.1–2.4 hold. Then, for each
γ > 0,

(2.3) Pr (S(n, t)− ES(n, t) > x) ∼
n∑

i=1

aiνiΛi(t)

holds uniformly for x ≥ γΛ(t), where Λ(t) = maxi≥1 Λi(t).
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3. Proof of main results.

3.1. Several lemmas. Consider a Poisson shot noise process

W (t) =

N(t)∑
i=i

Xi(t− Ti),

where Ti are the points of a homogeneous Poisson process N(t) and the
processes Xi, i ≥ 1 are i.i.d. with non-decreasing non-negative cadlag
sample paths on R such that X(t) = 0 as for t < 0. The sequences (Tn)
and (Xn) are also supposed to be independent. Miksoch and Nagaev
[10] showed an elementary lemma which plays a key role in derivation
of the large deviation results of the shot noise process W (t). We restate
their result as follows.

Lemma 3.1. Let fn(x1, . . . , xn), n = 1, 2, . . ., be measurable Rd-valued
functions which are symmetric in their arguments. Then, for every
t ≥ 0,

fN(t)(X1(t− T1), . . . , XN(t)(t− TN(t)))

d
= fN(t)(X1(t− U1), . . . , XN(t)(t− UN(t))),

where U1, . . . , UN(t) is a sequence of i.i.d. rv’s with common distribution
function Λ(s)/Λ(t) for 0 ≤ s ≤ t, independent of the Poisson process
N(t).

By Lemma 3.1, for every fixed t > 0, we conclude some important
relations as follows:

(3.1) S(t)
d
=

N(t)∑
j=1

(Mj(a)∑
k=1

YjkI{Ujk + Uj ≤ t} − d

)
,

where {Uj ; j ≥ 1} is a sequence of i.i.d. rv’s with common distri-
bution function Λ(s)/Λ(t) (0 ≤ s ≤ t), independent of the non-
homogeneous Poisson process N(t) and all other sources of random-
ness; {Ujk; j ≥ 1, k ≥ 1} is a sequence of i.i.d. uniformly distributed on
(0, a), independent of the homogeneous Poisson process Mj(s) and all
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other sources of randomness.

(3.2) S(n, t)
d
=

n∑
i=1

Ni(t)∑
j=1

(Mi
j (ai)∑
k=1

Y i
jkI{U i

jk + U i
j ≤ t} − di

)
,

where {U i
j , j ≥ 1} is a sequence of i.i.d. rv’s with common distri-

bution function Λi(s)/Λi(t) for 0 ≤ s ≤ t, independent of the non-
homogeneous Poisson process Ni(t) and all other sources of random-
ness; {U i

jk; j ≥ 1, k ≥ 1} is a sequence of i.i.d. rv’s uniformly distributed

on (0, ai), independent of the homogeneous Poisson process M i
j(s) and

all other sources of randomness.

Observe that, for j ≥ 1, k ≥ 1,

Pr (YjkI{Ujk ≤ t− Uj} > x) = F (x)

∫ t

0

min

{
t− s

a
, 1

}
Pr (Uj ∈ ds).

Denote g(t) =
∫ t

0
min{ t−s

c , 1}Pr (Uj ∈ ds). Then,

Pr (YjkI{Ujk ≤ t− Uj} > x) = g(t)F (x);

E(YjkI{Ujk ≤ t− Uj}) = g(t)EY11;

and
µ(t) , ES(t) = Λ(t)(aνg(t)EY11 − d).

It is easy to see that, for j ≥ 1,

lim
t→∞

g(t) = 1.

For fixed t > 0, we write

Hj(t) =

Mj(a)∑
k=1

YjkI{Ujk + Uj < t}.

Li and Kong [7] showed an equivalent relation between
∑N(t)

j=1 Hj(t)

and
∑N(t)

j=1 hj as follows.

Lemma 3.2. If E[Yjk]
β < ∞, for some 0 < β ≤ 1, then for any δ > 0,

1

Λδ
i (t)

[N(t)∑
j=1

Hj(t)−
N(t)∑
j=1

hj

]
P−→ 0.
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With the help of Lemma 3.2, we obtain the following result of the
weak law of large numbers.

Lemma 3.3. The weak law of large numbers

[Λ(t)]∑
j=1

Hj(t)− [Λ(t)]EH1(t)

Λ(t)

P−→ 0

holds.

Proof. For every ε > 0, we conclude that

Pr

(
|
[Λ(t)]∑
j=1

Hj(t)− [Λ(t)]EH1(t)| > εΛ(t)

)

= Pr

(∣∣∣∣ [Λ(t)]∑
j=1

(Hj(t)− hj) + [Λ(t)]

(Ehj − EHj(t)) +

[Λ(t)]∑
j=1

hj − [Λ(t)]Ehj

∣∣ > εΛ(t)

)

≤ Pr

( [Λ(t)]∑
j=1

∣∣Hj(t)− hj

∣∣ > εΛ(t)

2
− [Λ(t)]

∣∣EHj(t)− Ehj

∣∣)

+ Pr

(∣∣∣∣ [Λ(t)]∑
j=1

hj − [Λ(t)]Ehj

∣∣ > εΛ(t)

2

)

= Pr

( [Λ(t)]∑
j=1

∣∣Hj(t)− hj

∣∣ > Λ(t)

(
ε

2
− Ehj

∣∣g(t)− 1
∣∣))

+ Pr

(∣∣∣∣ [Λ(t)]∑
j=1

hj − [Λ(t)]Ehj

∣∣ > εΛ(t)

2

)
= I1 + I2,

where [Λ(t)] stands for its integer part. Recall that g(t) → 1 as t → ∞,
and we can find a small constant ε′ > 0 satisfying ε′ = ε

2−Ehj |g(t)−1|;
hence, by Lemma 3.2, I1 → 0. Furthermore, by the Khinchine law of
large numbers, we have I2 → 0. This ends the proof of Lemma 3.3. �
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The lemma below is a direct consequence of Su et al. [14].

Lemma 3.4. If the distribution function F ∈ ERV(−α,−β) for some
1 < α ≤ β < ∞. Then, for any 1 < α′ < α ≤ β < β′ < ∞, we have
EXα′

< ∞ and

c2x
−β

′

≤ F (x) ≤ c1x
−α′

for all large x > 0, where the constants c1 = c1(α
′) and c2 = c2(β

′) are
independent of x.

It follows from Lemma 3.4, for each γ > 0, that

Λ(t)Pr (Y11I{U11 ≤ t− U1} > γt) ≤ c1Λ(t)t
−α′

−→ 0,(3.3)

as t → ∞.

Lemma 3.5. If the distribution function F ∈ ERV(−α,−β) (1 < α ≤
β < ∞), then F (x+ o(x)) ∼ F (x) holds.

Proof. For any ϵ > 0 and large x,

F ((1 + ϵ)x)

F (x)
≤ F (x+ o(x))

F (x)
≤ F ((1− ϵ)x)

F (x)
.

By the definition of ERV, we obtain that

(1 + ϵ)−β ≤ lim inf
x→∞

F ((1 + ϵ)x)

F (x)
≤ lim inf

x→∞

F (x+ o(x))

F (x)

≤ lim sup
x→∞

F (x+ o(x))

F (x)
≤ lim sup

x→∞

F ((1− ϵ)x)

F (x)

≤ (1− ϵ)−α.

Let ϵ → 0, and the proof is obtained immediately. �

The following two lemmas are crucial for our main results.

Lemma 3.6. Suppose that Assumption 2.3 holds. Then, for m ≥ 1,
the following relation

Pr

( m∑
k=1

YjkI{Ujk + Uj ≤ t} > x

)
∼ mF (x)g(t)
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holds for x → ∞.

Proof. For x → ∞, we have

Pr

( m∑
k=1

YjkI{Ujk + Uj ≤ t} > x

)

=

∫ t

0

Pr

( m∑
k=1

YjkI{Ujk ≤ t− s} > x

)
Pr (Uj ∈ ds)

=

∫ t−a

0

Pr

( m∑
k=1

Yjk > x

)
Pr (Ujk ≤ a)Pr(Uj ∈ ds)

+

∫ t

t−a

m∑
r=1

(
m

r

)(
t− s

a

)r(
1− t− s

a

)m−r

Pr

( r∑
k=1

Yjk > x

)
Pr (Uj ∈ ds)

∼ mPr (Yjk > x)

∫ t−a

0

Pr (Uj ∈ ds)

+mPr (Yjk > x)

∫ t

t−a

t− s

a
Pr (Uj ∈ ds)

= mPr (Yjk > x)

∫ t

0

min

{
t− s

a
, 1

}
P (Uj ∈ ds)

= mF (x)g(t).

This ends the proof of Lemma 3.6. �

Lemma 3.7. Under the conditions in Lemma 3.6, for fixed t > 0, the
following relation

Pr

(Mj(a)∑
k=1

YjkI{Ujk + Uj ≤ t} > x

)
∼ aνF (x)g(t)

holds for x → ∞.
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Proof. For 0 < m0 < ∞, we have

Pr

(Mj(a)∑
k=1

YjkI{Ujk + Uj ≤ t} > x

)
=

∞∑
mj=1

Pr (Mj(a) = mj)

Pr

( mj∑
k=1

YjkI{Ujk + Uj ≤ t} > x

)
=

( m0∑
mj=1

+

∞∑
mj=m0+1

)
Pr (Mj(a) = mj)

Pr

( mj∑
k=1

YjkI{Ujk + Uj ≤ t} > x

)
= I3 + I4.

It follows from Lemma 3.6 that

I3 ∼
m0∑

mj=1

mjPr (Mj(a) = mj)Pr (YjkI{Ujk + Uj ≤ t} > x)

= E[Mj(a)I{Mj(a) ≤ m0}]F (x)g(t).

For I4, by Kesten’s inequality, it holds for each ϵ > 0 and some K > 0,
that

I4 ≤
∞∑

mj=m0+1

Pr (Mj(a) = mj)Pr

( mj∑
k=0

Yjk > x

)

≤ KF (x)
∞∑

mj=m0+1

Pr (Mj(a) = mj)(1 + ϵ)mj ,

since EMj(c) < ∞; hence, I4 = o(I3) as m0 large enough. We conclude
that

Pr

(Mj(a)∑
k=1

YjkI{Tjk + Uj ≤ t} > x

)
∼ aνF (x)g(t).

Furthermore, for any fixed γ > 0, it follows for x ≥ γt, that

(3.4) Pr

(Mj(a)∑
k=1

YjkI{Ujk + Uj ≤ t} > x

)
∼ aνF (x), t → ∞.

This ends the proof of Lemma 3.7. �
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3.2. Proof of Theorem 2.2.

Proof. Firstly, we estimate the lower bound of Pr (S(t)−ES(t) > x).

Denote

Ln(t) =

n∑
j=1

Hj(t), L̃n(t) = Ln(t)− ELn(t).

By the law of large numbers of the Poisson process, there exists a
positive function εt → 0 as t → ∞ such that

Pr (|N(t)− Λ(t)| ≤ εtΛ(t)) −→ 1.

For x ≥ γΛ(t), we have

Pr (S(t)− ES(t) > x)(3.5)

=

∞∑
n=1

Pr (N(t) = n)Pr

( n∑
j=1

(Hj(t)− d)− µ(t) > x

)
≥

∑
|n−Λ(t)|≤εtΛ(t)

Pr
(
Ln(t)− µ(t) > x+ nd

)
≥

∑
|n−Λ(t)|≤εtΛ(t)

Pr (N(t) = n)

· Pr
(
L[Λ(t)(1−εt)](t) > x+ µ(t) + Λ(t)(1 + εt)d

)
= (1 + o(1))Pr

(
L[Λ(t)(1−εt)](t)− [aνΛ(t)(1− εt)]g(t)EY11)

> x+ γt
)

= (1 + o(1))Pr
(
L̃[Λ(t)(1−εt)](t) > x+ γt

)
,

where γt = εtΛ(t)(aνg(t)EY11 + d).

Notice that, for fixed t > 0, γt = o(Λ(t)). Hence, for arbitrary δ > 0,

Pr
(
L̃[Λ(t)(1−εt)](t) > x+ γt

)
(3.6)

≥ Pr

( [Λ(t)(1−εt)]∪
k=1

(L̃[Λ(t)(1−εt)](t) > x+ γt,Hk(t) > (1 + δ)x,

max
j ̸=k

j≤[Λ(t)(1−εt)]

Hj(t) ≤ (1 + δ)x)

)
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≥ [Λ(t)(1− εt)]P (H1(t) > (1 + δ)x)

Pr
(
L̃[Λ(t)(1−εt)]−1(t) > −δx+ γt, max

j≤[Λ(t)(1−εt)]−1
Hj(t)

≤ (1 + δ)x
)
,

where the last step is obtained by the fact that, for fixed t > 0, {Hj(t)}j
are independent.

With respect to Lemmas 3.5 and 3.7, for x ≥ γΛ(t), we obtain that,

(3.7) Pr (H1(t) > (1 + δ)x) ∼ aνF
(
x(1 + δ)

)
∼ aνF (x).

By (3.3) and (3.7), for x → ∞, we have

Pr

(
max

j≤[Λ(t)(1−εt)]
Hj(t) ≤ (1 + δ)x

)
=Pr (H1(t) ≤ (1 + δ)x)[Λ(t)(1−εt)]

≥
[
1− Pr (H1(t) > (1 + δ)x)

]Λ(t)

∼
[(
1− aνF (x)

)1/(aνF (x))]aνΛ(t)F (x)

−→ 1.(3.8)

On the other hand, Lemma 3.3 shows that

(3.9) Pr (L̃[Λ(t)(1−εt)]−1(t) > −δx+ γt) −→ 1.

In view of (3.5)–(3.9), we obtain the lower estimate

Pr (S(t)− µ(t) > x) & aνΛ(t)F (x).

Now we check the upper estimate using the truncation argument. For
fixed t > 0, we write

Y δx
jk = min{Yjk, δx}, Hδx

j (t) =

Mj(a)∑
k=1

Y δx
jk I{Ujk + Uj < t}

and

Sδx(t) =

N(t)∑
j=1

(Hδx
j (t)− d).

For any δ ∈ (0, 1), we have

Pr (S(t)− µ(t) > x)(3.10)
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=
∞∑

n=1

Pr (N(t) = n)Pr

( n∑
j=1

(Hj(t)− d)− µ(t) > x

)

=
∞∑

n=1

Pr (N(t) = n)

(
Pr

( n∑
j=1

(Hj(t)− d)− µ(t) > x,max
j≤n

Hj(t) > δx

)

+ Pr

( n∑
j=1

(Hj(t)− d)− µ(t) > x,max
j≤n

Hj(t) ≤ δx

))
≤ Λ(t)Pr

(
H1(t)>δx

)
+Pr

(
Sδx(t)−Λ(t)(aνg(t)EY11−d)>x

)
= Λ(t)Pr

(
H1(t)>δx

)
+ Pr

(
S̃δx(t) > x

)
= Λ(t)Pr

(
H1(t)>δx

)
+ I5.

Recall that F ∈ ERV(−α,−β). Thus, for x ≥ γΛ(t), t → ∞,

(3.11) Pr (H1(t) > δx) ∼ aνF (x).

It thus remains to show that I5 = o(aνΛ(t)F (x)).

Set b = − ln(aνΛ(t)F (x)), r = b−τβ ln b
δx , τ > 1. Lemma 3.4 implies

that, for x ≥ γΛ(t), b → ∞, r → 0.

Using Markov’s inequality yields that

I5

aνΛ(t)F (x)
≤ exp{−r

(
x+ Λ(t)(aνg(t)EY11 − d)

)
+ b}E(3.12)

· exp
{
r

(N(t)∑
j=1

(hδx
j − d)

)}
= exp

{
− r

(
x+ Λ(t)(aνg(t)EY11 − d)

)
+ b− Λ(t) + Λ(t)Eerh

δx
j − rΛ(t)d

}
= exp

{
− rx+ b+ Λ(t)[

Eerh
δx
j − aνrEY11g(t)− 1

]}
.

Recalling an inequality eu − 1 ≤ ueu and by the fact that F ∈
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ERV(−α,−β), we divide Eerh
δx
j − 1 into two parts as follows:

Eerh
δx
1 − 1 ≤

∫ δx/bτ

0

(ers − 1)Pr (h1 ∈ ds) +

∫ δx

δx/bτ
ersPr (h1 ∈ ds)

≤ reb
1−τ

Eh1 + erδxPr

(
h1 >

δx

bτ

)
= reb

1−τ

aνg(t)EY11 + (1 + o(1))eb−βτ ln baνF

(
δx

bτ

)
≤ reb

1−τ

aνEY11 +
aν

aνΛ(t)F (x)

1

bτβ

(
bτ

δ

)β

F (x)

= reb
1−τ

aνEY11 +
1

Λ(t)

1

δβ
.(3.13)

Substituting (3.13) into (3.12) yields

Pr
(
S̃δx(t) > x

)
aνΛ(t)F (x)

≤ exp
{
− rx+ b+ aνrΛ(t)EY11(e

b1−τ

− g(t)) + δ−β
}
.

Notice that g(t) → 1, eb
1−τ → 1 as t → ∞. After some simple

calculation, we see that aνrΛ(t)EY11(e
b1−τ − g(t)) = o(b). Hence, it

holds for x ≥ γΛ(t) that

Pr
(
S̃δx(t) > x

)
aνΛ(t)F (x)

≤ C exp (3.13)

{(
1− 1

δ

)
b+ o(b)(3.13)

}
−→ 0

with the coefficient C given by C = eδ
−β

. This concludes the result
(2.2). �

3.3. Proof of Theorem 2.3. Firstly, we establish some notation to
be used later. For each i = 1, 2, . . . , n, denote

gi(t) = Pr(U i
jk + U i

j ≤ t) =

∫ t

0

min

{
t− s

ai
, 1

}
P (U i

1 ∈ ds),

Ri(t) =

Ni(t)∑
j=1

Mi
j (ai)∑
k=1

Yjk and S̃i(t) = Si(t)− ESi(t).

It follows from Theorem 2.2 that, for each i = 1, 2, . . . , n,

(3.14) Pr(Si(t)− µi(t) > x) ∼ aiνiΛi(t)F i(x)
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holds uniformly for x ≥ γΛi(t), each γ > 0.

Proof of Theorem 2.3. Employing the arguments in Wang andWang
[17], we use induction to prove (2.3). Since n stands for the amount
of the policies, it is finite. Hence, we only need to prove (2.3) holds for
the case in which n = 2.

The lower estimate. Recall an elementary inequality Pr (AB) ≥
Pr (A)+Pr (B)− 1 for all events A and B. It follows for any 0 < ε < 1
that

Pr (S(2; t)− ES(2; t) > x)(3.15)

≥ Pr
({

S̃1(t) > x+ εES2(t), S̃2(t) > −εES2(t)
}

∪{
S̃2(t) > x+ εES1(t), S̃1(t) > −εES1(t)

})
≥ Pr

(
S̃1(t) > x+ εES2(t), S̃2(t) > −εES2(t)

)
+ Pr

(
S̃2(t) > x+ εES1(t), S̃1(t) > −εES1(t)

)
− Pr

(
S̃1(t) > x+ εES2(t), S̃2(t) > x+ εES1(t)

)
≥ Pr

(
S̃1(t) > x+ εES2(t)

)
+ Pr

(
S̃2(t) > −εES2(t)

)
− 1

+ Pr
(
S̃2(t) > x+ εES1(t)

)
+ Pr

(
S̃1(t) > −εES1(t)

)
− 1

− Pr
(
R1(t)− ES1(t) > x+ εES2(t)

)
· Pr

(
R2(t)− ES2(t) > x+ εES1(t)

)
.

By virtue of (3.14) and Lemma 3.5, letting ε → 0, we obtain that

(3.16) Pr
(
S̃1(t) > x+ εES2(t)

)
∼ a1ν1F 1(x).

By the weak law of large numbers of Lemma 3.3, we further can
choose some positive constant ε and positive function ϵt → 0 such
that ϵt/ε → 0,

Pr
(
S̃i(t) > −εESi(t)

)
≥ (1 + o(1))Pr

( [(1−ϵt)Λi(t)]∑
j=1

Hi
j(t)

(3.17)
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− [(1− ϵt)Λi(t)]aiνigi(t)EY i
11 > [(−ε+ ϵt)Λi(t)]aiνigi(t)EY i

11

)

= (1 + o(1))Pr

( [(1−ϵt)Λi(t)]∑
j=1

Hi
j(t)− [(1− ϵt)Λi(t)]aiνigi(t)EY i

11

> −ε

(
1− ϵt

ε

)
Λi(t)aiνigi(t)EY i

11

)
−→ 1.

For i ≥ 1, since Fi ∈ ERV and ESi(t) − ERi(t) = o(Λi(t)) as t → ∞,
then, Theorem 2.2 shows that

Pr
(
R1(t)− ES1(t) > x+ εES2(t)

)
(3.18)

= Pr
(
R1(t)− ER1(t) > x+ εES2(t) + o(Λ1(t))

)
∼ a1ν1Λ1(t)F 1(x).

By the fact that aiνiΛiF i(x) → 0 as x ≥ γΛi(t), t → ∞, it is easy to
check that

(3.19) lim
t→∞

lim inf
x≥γΛ(t)

a1ν1Λ1(t)F 1(x)a2ν2Λ2(t)F 2(x)

a1ν1Λ1(t)F 1(x) + a2ν2Λ2(t)F 2(x)

= lim
t→∞

lim inf
x≥γΛ(t)

1

1/(a2ν2Λ2(t)F 2(x)) + 1/(a1ν1Λ1(t)F 1(x))
= 0.

Combining (3.19) with (3.18) yields that

(3.20) Pr
(
R1(t)− ES1(t) > x+ εES2(t)

)
Pr

(
R2(t)− ES2(t) > x+ εES1(t)

)
= o(a1ν1Λ1(t)F 1(x) + a2ν2Λ2(t)F 2(x)).

Substituting (3.16)–(3.20) into (3.15) yields

Pr(S(2; t)−ES(2; t)>x) ≥
2∑

i=1

aiνiΛi(t)F i(x)+o

( 2∑
i=1

aiνiΛi(t)F i(x)

)
.

Now, account for the upper estimate of (2.3).

Pr (S(2; t)− ES(2; t) > x)(3.21)

≤ Pr
(
{S̃1(t) > (1− ε)x} ∪ {S̃2(t) > (1− ε)x}
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∪ {S̃2(t) > εx, S̃1(t) > εx}
)

≤ Pr
(
S̃1(t) > (1− ε)x

)
+ Pr

(
S̃2(t) > (1− ε)x

)
+ Pr

(
S̃2(t) > εx, S̃1(t) > εx

)
≤ Pr

(
S̃1(t) > (1− ε)x

)
+ Pr

(
S̃2(t) > (1− ε)x

)
+ Pr

(
R1(t)− ES1(t) > εx

)
Pr

(
R2(t)− ES2(t) > εx

)
.

With the arbitrariness of ε, it holds uniformly for x ≥ γΛ(t) that

(3.22) Pr
(
S̃1(t) > (1− ε)x

)
∼ a1ν1Λ1(t)F 1(x).

Similarly as in (3.18), it holds uniformly for x ≥ γΛ(t) that

Pr
(
R1(t)− ES1(t) > εx

)
∼ a1ν1Λ1(t)F 1(εx).

Recalling that Fi ∈ ERV ⊂ D, it follows that

(3.23) lim sup
x≥γΛ(t)

F 1(εx)

F 1(x)
< ∞.

In view of (3.21)–(3.23), we conclude that

Pr (S(2; t)−ES(2; t)>x) ≤
2∑

i=1

aiνiΛi(t)F i(x)+o

( 2∑
i=1

aiνiΛi(t)F i(x)

)
.

The proof is accomplished. �
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