ANGULAR VALUE DISTRIBUTION CONCERNING SHARED VALUES

BIAO PAN AND WEICHUAN LIN

Abstract

In this paper, we investigate the number of sharing values of a meromorphic function and its derivative in one angular domain instead of the whole complex plane and obtain the following results: Let f be a meromorphic function of lower order >2 in the complex plane. Then there exists a direction $\mathrm{H}: \arg z=\theta_{0}\left(0 \leq \theta_{0}<2 \pi\right)$ such that for any positive number ε, f and f^{\prime} share at most two distinct finite values without counting multiplicities in the angular region $\left\{z:\left|\arg z-\theta_{0}\right|<\varepsilon\right\}$. This improve a result of Weichuan and Mori.

1. Introduction and main result. In this paper, by a meromorphic function, we mean that the function is meromorphic in the whole complex plane C. It is assumed that the reader is familiar with the basic result and notations of the Nevanlinna's value distribution theory (see $[\mathbf{1}, \mathbf{9}]$), such as $T(r ; f), N(r, f)$ and $m(r, f)$. Meanwhile, the lower order μ and the order λ of a meromorphic function f are, in turn, defined as below:

$$
\begin{aligned}
& \mu:=\mu(f)=\liminf _{r \rightarrow \infty} \frac{\log T(r, f)}{\log r}, \\
& \lambda:=\lambda(f)=\limsup _{r \rightarrow \infty} \frac{\log T(r, f)}{\log r},
\end{aligned}
$$

Let D be a domain in the complex plane \mathbf{C}, and let

$$
E_{D}(a, f)=\{z \in D: f(z)=a, \text { counting multiplicity }\}
$$

[^0]and
$$
\bar{E}_{D}(a, f)=\{z: z \in D, f(z)=a\}(\text { as a set in } \mathbf{C}) .
$$

We say that two meromorphic functions f and g share the value a IM (ignoring multiplicity) in D if $\bar{E}_{D}(a, f)=\bar{E}_{D}(a, g)$.

The problems about the uniqueness of meromorphic functions and their derivatives with shared values have been studied by several authors (see [5, 10, 11]). Mues, Steinmetz and Gundersen proved the following theorem.
Theorem A [11]. Let $f(z)$ be a meromorphic function, a_{1}, a_{2}, a_{3} distinct finite complex numbers. If a_{1}, a_{2}, a_{3} are IM shared values of f and f^{\prime} in \mathbf{C}, then $f \equiv f^{\prime}$.

From Theorem A, we can immediately obtain Theorem A^{\prime}.
Theorem A^{\prime}. Let f be a non-constant meromorphic function. If $f \not \equiv f^{\prime}$, then f and f^{\prime} share at most two finite distinct values IM in the complex plane \mathbf{C}.

Theorem A^{\prime} shows that the number of sharing values of $f(z)$ and $f^{\prime}(z)$ are two at most in the complex plane \mathbf{C} except $f(z) \equiv f^{\prime}(z)$.

People have established a connection between normality criteria and shared values (see $[\mathbf{3}, \mathbf{6}, \mathbf{8}]$). Naturally, we ask whether we can extend Theorem A^{\prime} to some angular domains and establish a connection between angular value distribution (singular directions) and shared values of a meromorphic function. Lin and Mori [7] dealt with this subject under certain value-sharing condition in a sector instead of the plane \mathbf{C} and proved the following theorem.

Theorem B. Let $f(z)$ be a meromorphic function of infinite order and

$$
\limsup _{r \rightarrow \infty} \frac{\log \log T(r, f)}{\log r}<+\infty .
$$

Then there exists a direction $\arg z=\theta(0 \leq \theta<2 \pi)$ such that, for every small positive number $\varepsilon<\pi / 2, f(z)$ and $f^{\prime}(z)$ share at most two distinct finite values in the angular domain $\{z:|\arg z-\theta|<\varepsilon\}$.

The direction $\arg z=\theta$ in Theorem B is called one SV direction by Lin and Mori [7]. Theorem B only discussed the infinite order meromorphic functions of finite hyper order. In this paper, we shall
prove that Theorem B is valid for any transcendental meromorphic functions of lower order $\mu>2$.

Theorem 1.1. Let f be a meromorphic function of lower order $\mu>2$ in the complex plane \mathbf{C}. Then there exists a direction $H: \arg z=\theta_{0}$ $\left(0 \leq \theta_{0}<2 \pi\right)$ such that, for every positive number ε, f and f^{\prime} share two distinct finite values IM at most in $\left\{z\left|\arg z-\theta_{0}\right|<\varepsilon\right\}$.
2. Some lemmas. In order to prove Theorem 1.1, we will collect and prove some lemmas in this section.

Lemma 2.1. ([4]). Let \mathcal{F} be a family of meromorphic functions such that, for every function $f \in \mathcal{F}$, its zeros of multiplicity are at least k. If \mathcal{F} is not a normal family at the origin 0 , then for $0 \leq \alpha<k$, there exist:
(i) a number $r(0<r<1)$;
(ii) a sequence of complex numbers $z_{n} \rightarrow 0,\left|z_{n}\right|<r$;
(iii) a sequence of functions $f_{n} \in \mathcal{F}$;
(iv) a sequence of positive numbers $\rho_{n} \rightarrow 0$
such that

$$
g_{n}(z)=\rho_{n}{ }^{-\alpha} f_{n}\left(z_{n}+\rho_{n} z\right)
$$

converges locally uniformly with respect to a spherical metric of a nonconstant meromorphic function $g(z)$ on \mathbf{C}, and, moreover, g is of order at most two.

For convenience, we will use the following notation

$$
\begin{aligned}
L D\left(r, f: c_{1}, c_{2}\right)= & c_{1}\left[m\left(r, \frac{f^{\prime}}{f}\right)+\sum_{i=1}^{3} m\left(r, \frac{f^{\prime}}{f-a_{i}}\right)\right] \\
& +c_{2}\left[m\left(r, \frac{f^{\prime \prime}}{f^{\prime}}\right)+\sum_{i=1}^{3} m\left(r, \frac{f^{\prime \prime}}{f^{\prime}-t a_{i}}\right)\right]
\end{aligned}
$$

Lemma 2.2. ([6]). Let f, g be nonconstant meromorphic functions in the unit disc, which share distinct finite complex numbers a_{1}, a_{2}, a_{3} and $a_{4}=\infty$. If $a \neq a_{j}$ and $f(0) \neq a, a_{j},(j=1,2,3,4), f^{\prime}(0) \neq 0, \infty$
and $f(0) \neq g(0)$, then

$$
\begin{aligned}
T(r, f) \leq & T(r, g)+\log \frac{\prod_{i=1}^{3}\left|f(0)-a_{i}\right|}{\left|f^{\prime}(0)\right||f(0)-g(0)|} \\
& +O(1)\left[m\left(r, \frac{f^{\prime}}{f-a}\right)+\sum_{i=1}^{3} m\left(r, \frac{f^{\prime}}{f-a_{i}}\right)+1\right]
\end{aligned}
$$

where $O(1)$ is a complex number depending only on a and $a_{i}(i=$ $1,2,3)$.

Lemma 2.3. Let f be a meromorphic function in a domain $D=\{z$: $|z|<R\}$, let a_{1}, a_{2} and a_{3} be three distinct finite complex numbers, and let t be a positive real number. If

$$
\bar{E}_{D}\left(a_{i}, f\right)=\bar{E}_{D}\left(t a_{i}, f^{\prime}\right) \quad \text { for } i=1,2,3
$$

and if $a \neq a_{j}$ and $f(0) \neq a_{j}, \infty(j=1,2,3),, f^{\prime}(0) \neq 0$, at and $f^{\prime \prime}(0) \neq 0, f^{\prime}(0) \neq t f(0)$, then, for $0<r<R$, we have

$$
\begin{aligned}
T(r, f) \leq & L D(r, f: 2,3)+\log \frac{\prod_{i=1}^{3}\left|f(0)-a_{i}\right|^{2}\left|f^{\prime}(0)-t a_{i}\right|^{3}}{\left|t f(0)-f^{\prime}(0)\right|^{5}\left|f^{\prime}(0)\right|^{2}} \\
& +3 \log \frac{1}{\left|f^{\prime \prime}(0)\right|}+\left(\log ^{+} t+m\left(r, \frac{f^{\prime \prime}}{f^{\prime}-t a}\right)+1\right) O(1)
\end{aligned}
$$

where $O(1)$ is a complex number depending only on a and $a_{i}(i=$ $1,2,3)$.

Proof. Firstly, we distinguish two cases to deduce the following inequality:

$$
\begin{align*}
2 T(r, f) \leq & T\left(r, f^{\prime}\right)+\bar{N}(r, f)+L D(r, f: 1,0) \tag{2.1}\\
& +\log \frac{\prod_{i=1}^{3}\left|f(0)-a_{i}\right|}{\left|\left(t f-f^{\prime}\right)(0)\right|\left|f^{\prime}(0)\right|}+O(1)+\log ^{+} t .
\end{align*}
$$

Case 1. $a_{1} a_{2} a_{3} \neq 0$. Since $\bar{E}_{D}\left(a_{i}, f\right)=\bar{E}_{D}\left(t a_{i}, f^{\prime}\right)(i=1,2,3)$ with $t \neq 0$, we get that $f-a_{1}, f-a_{2}, f-a_{3}$ has only simple zeros in D. By the assumption, we see that $f^{\prime}(z) \not \equiv t f(z)$. Therefore, we have

$$
\sum_{j=1}^{3} N\left(r, \frac{1}{f-a_{j}}\right) \leq N\left(r, \frac{1}{t f-f^{\prime}}\right) \leq T\left(r, t f-f^{\prime}\right)+\log \frac{1}{\left|t f(0)-f^{\prime}(0)\right|}
$$

$$
\begin{aligned}
\leq & N\left(r, f^{\prime}\right)+m(r, f)+m\left(r, \frac{f^{\prime}}{f}\right) \\
& +\log ^{+} t+O(1)+\log \frac{1}{\left|t f(0)-f^{\prime}(0)\right|} \\
\leq & T(r, f)+\bar{N}(r, f)+m\left(r, \frac{f^{\prime}}{f}\right) \\
& +\log ^{+} t+O(1)+\log \frac{1}{\left|t f(0)-f^{\prime}(0)\right|}
\end{aligned}
$$

Note that

$$
\begin{equation*}
\sum_{j=1}^{3} m\left(r, \frac{1}{f-a_{j}}\right)=m\left(r, \frac{1}{f^{\prime}} \sum_{j=1}^{3} \frac{f^{\prime}}{f-a_{j}}\right)+O(1) \tag{2.2}
\end{equation*}
$$

we have

$$
\begin{aligned}
\sum_{j=1}^{3} T\left(r, \frac{1}{f-a_{j}}\right) \leq & T(r, f)+\bar{N}(r, f)+m\left(r, \frac{1}{f^{\prime}}\right) \\
& +L D(r, f: 1,0)+\log ^{+} t \\
& +\log \frac{1}{\left|\left(t f-f^{\prime}\right)(0)\right|}+O(1)
\end{aligned}
$$

By Nevanlinna's first fundamental theorem, we have

$$
\begin{aligned}
2 T(r, f) \leq & T\left(r, f^{\prime}\right)+\bar{N}(r, f) \\
& +L D(r, f: 1,0)+\log \frac{\prod_{i=1}^{3}\left|f(0)-a_{i}\right|}{\left|\left(t f-f^{\prime}\right)(0)\right|\left|f^{\prime}(0)\right|} \\
& +O(1)+\log ^{+} t
\end{aligned}
$$

Case 2. $a_{1} a_{2} a_{3}=0$. Without loss generality, we set $a_{3}=0$. By assumption, we have that $f-a_{j}(j=1,2$,$) has only simple zeros, and$ the zeros of f are of multiplicity ≥ 2. Thus,

$$
\begin{aligned}
\sum_{1}^{3} N\left(r, \frac{1}{f-a_{i}}\right) & =\sum_{1}^{2} N\left(r, \frac{1}{f-a_{i}}\right)+\bar{N}\left(r, \frac{1}{f}\right)+N\left(r, \frac{1}{f^{\prime}}\right) \\
& \leq N\left(r, \frac{1}{t f-f^{\prime}}\right)+N\left(r, \frac{1}{f^{\prime}}\right)
\end{aligned}
$$

$$
\begin{aligned}
\leq & T(r, f)+\bar{N}(r, f)+N\left(r, \frac{1}{f^{\prime}}\right)+m\left(r, \frac{f^{\prime}}{f}\right) \\
& +\log ^{+} t+O(1)+\log \frac{1}{\left|t f(0)-f^{\prime}(0)\right|}
\end{aligned}
$$

Combining this with (2.2), we also have

$$
\begin{aligned}
2 T(r, f) \leq & T\left(r, f^{\prime}\right)+\bar{N}(r, f)+L D(r, f: 1,0) \\
& +\log \frac{\prod_{i=1}^{3}\left|f(0)-a_{i}\right|}{\left|\left(t f-f^{\prime}\right)(0)\right|\left|f^{\prime}(0)\right|}+O(1)+\log ^{+} t
\end{aligned}
$$

Thus, inequality (2.1) is proved.
On the other hand, note that $\bar{E}_{D}\left(a_{i}, f\right)=\bar{E}_{D}\left(t a_{i}, f^{\prime}\right), i=1,2,3$, and $\bar{E}_{D}(\infty, f)=\bar{E}_{D}\left(\infty, f^{\prime}\right), f(0) \neq a_{j}, \infty(j=1,2,3)$. It follows that $f^{\prime}(0) \neq t a_{j}, \infty(j=1,2,3)$. By application of Lemma 2 to f^{\prime} and $t f$, we have

$$
\begin{align*}
T\left(r, f^{\prime}\right) \leq & T(r, f)+L D(r, f: 0,1)) \tag{2.3}\\
& +\log \frac{\prod_{i=1}^{3}\left|f^{\prime}(0)-t a_{i}\right|}{\left|t f(0)-f^{\prime}(0)\right|\left|f^{\prime \prime}(0)\right|} \\
& +\left(\log ^{+} t+m\left(r, \frac{f^{\prime \prime}}{f^{\prime}-t a}\right)+1\right) O(1)
\end{align*}
$$

Now, substituting (2.3) into (2.1), we have

$$
\begin{aligned}
T(r, f) \leq & \bar{N}(r, f)+L D(r, f: 1,1) \\
& +\log \frac{\prod_{i=1}^{3}\left|f(0)-a_{i}\right|\left|f^{\prime}(0)-t a_{i}\right|}{\left|f^{\prime \prime}(0)\right|\left|t f(0)-f^{\prime}(0)\right|^{2}\left|f^{\prime}(0)\right|} \\
& +\left(\log ^{+} t+m\left(r, \frac{f^{\prime \prime}}{f^{\prime}-t a}\right)+1\right) O(1) .
\end{aligned}
$$

Notice that

$$
2 \bar{N}(r, f) \leq N(r, f)+\bar{N}(r, f)+m\left(r, f^{\prime}\right)=T\left(r, f^{\prime}\right)
$$

Hence,

$$
\begin{aligned}
2 T(r, f) \leq & T\left(r, f^{\prime}\right)+2 L D(r, f: 1,1) \\
& +2 \log \frac{\prod_{i=1}^{3}\left|f(0)-a_{i}\right|\left|f^{\prime}(0)-t a_{i}\right|}{\left|f^{\prime \prime}(0)\right|\left|t f(0)-f^{\prime}(0)\right|^{2}\left|f^{\prime}(0)\right|}
\end{aligned}
$$

$$
+\left(\log ^{+} t+m\left(r, \frac{f^{\prime \prime}}{f^{\prime}-t a}\right)\right) O(1)
$$

Combining with (2.3), we have

$$
\begin{aligned}
T(r, f) \leq & L D(r, f: 2,3) \\
& +\log \frac{\prod_{i=1}^{3}\left|f(0)-a_{i}\right|^{2}\left|f^{\prime}(0)-t a_{i}\right|^{3}}{\left|t f(0)-f^{\prime}(0)\right|^{5}\left|f^{\prime}(0)\right|^{2}} \\
& +3 \log \frac{1}{\left|f^{\prime \prime}(0)\right|} \\
& +\left(\log ^{+} t+m\left(r, \frac{f^{\prime \prime}}{f^{\prime}-t a}\right)+1\right) O(1) .
\end{aligned}
$$

This completes the proof of Lemma 2.3.

Lemma 2.4. ([2]). Let $f(z)$ be a meromorphic function in \mathbf{C}. Let

$$
\begin{equation*}
\beta_{p}(r)=\sup _{2 \leq t \leq r}\left\{\frac{T_{0}(t, f)}{(\log t)^{p}}\right\}, \quad \varepsilon(r)=\left(\frac{1}{\beta_{p}(r)}\right)^{1 / q} \tag{2.4}
\end{equation*}
$$

with $p \geq 2$ and $q \geq 3$. If $\lim _{r \rightarrow \infty} \beta_{p}(r)=\infty$, then there exists a sequence of a positive number $\left\{r_{n}\right\}_{1}^{\infty}$ and a sequence of points $\left\{z_{n}\right\}_{1}^{\infty}$ in \mathbf{C} such that $\lim _{n \rightarrow \infty} r_{n}=\lim _{n \rightarrow \infty}\left|z_{n}\right|=+\infty$ and

$$
\begin{gather*}
\left.A\left(\varepsilon\left(\left|z_{n}\right|\right)\left|z_{n}\right|, z_{n}, f\right) \geq \frac{1}{64 \pi^{2}} \beta_{p}\left(r_{n}\right)\right\}^{1-2 / q}\left(\log r_{n}\right)^{p-2} \tag{2.5}\\
(n=1,2, \ldots)
\end{gather*}
$$

where

$$
\begin{equation*}
A(r, a, f)=\frac{1}{\pi} \int_{0}^{2 \pi} \int_{0}^{r}\left(\frac{\left|f^{\prime}\left(a+\rho e^{i \theta}\right)\right|}{1+\left|f\left(a+\rho e^{i \theta}\right)\right|^{2}}\right)^{2} d \rho d \theta, \quad\left|z_{n}\right| \leq r_{n} \tag{2.6}
\end{equation*}
$$

and

$$
\begin{align*}
T_{0}(r, f) & =\int_{0}^{r} \frac{A(t)}{t} d t \tag{2.7}\\
A(t) & =\frac{1}{\pi} \int_{0}^{2 \pi} \int_{0}^{t}\left(\frac{\left|f^{\prime}\left(\rho e^{i \theta}\right)\right|}{1+\left|f\left(\rho e^{i \theta}\right)\right|^{2}}\right)^{2} d \rho d \theta .
\end{align*}
$$

We also need the following lemmas.

Lemma 2.5. ([9]). Let $f(z)$ be a meromorphic function in $\operatorname{disc} D(0, R)$ centered at 0 with radius R. If $f(0) \neq 0, \infty$, then we have for $0<r<\rho<R$

$$
\begin{aligned}
m\left(r, \frac{f^{(k)}}{f}\right)<c_{k}\left\{1+\log ^{+} \log ^{+}\left|\frac{1}{f(0)}\right|\right. & +\log ^{+} \frac{1}{r}+\log ^{+} \frac{1}{\rho-r} \\
& \left.+\log ^{+} \rho+\log ^{+} T(\rho, f)\right\}
\end{aligned}
$$

where k is a positive integer, and c_{k} is a constant depending only on k.
Lemma 2.6. ([9]). Let $T(r)$ be a continuous, non-decreasing, nonnegative function, and let $a(r)$ be a non-increasing, non-negative function on $\left[r_{0}, R\right]\left(0<r_{0}<R<\infty\right)$. If there exist constants b, c such that

$$
T(r)<a(r)+b \log ^{+} \frac{1}{\rho-r}+c \log ^{+} T(\rho),
$$

for $r_{0}<r<\rho<R$, then

$$
T(r)<2 a(r)+B \log ^{+} \frac{2}{R-r}+C
$$

where B, C are two constants dependent only on b, c.
Lemma 2.7. ([12]). Let $f(z)$ be a meromorphic function in a domain $D=\{z:|z|<R\}$. If $f(0) \neq \infty$, then we have for $0<r<R$,

$$
\begin{equation*}
\left|T(t, f)-T_{0}(t, f)-\log ^{+}\right| f(0)\left|\left\lvert\, \leq \frac{1}{2} \log 2\right.\right. \tag{2.8}
\end{equation*}
$$

where $\log ^{+}|f(0)|$ will be replaced by $\log |c(0)|$ when $f(0)=\infty$, and $c(0)$ is the coefficient of the Laurent series of $f(z)$ at 0 , and $T_{0}(t, f)$ is defined as (2.7).

3. Proof of theorem.

Proof. Now we are to prove Theorem 1.1. Let f be meromorphic in \mathbf{C} with the lower order greater than 2. Then there exists a sequence of positive numbers $\left\{l_{n}\right\}_{1}^{\infty}$ such that

$$
\lim _{n \rightarrow \infty} l_{n}=\infty \quad \text { and } \quad \lim _{n \rightarrow \infty} \frac{\log T\left(l_{n}, f\right)}{\log l_{n}}>2
$$

Thus, we have

$$
\lim _{n \rightarrow \infty} \frac{\log T_{0}\left(l_{n}, f\right)}{\log l_{n}}>2
$$

by combining with (2.8). Hence, we get that $\lim _{r \rightarrow \infty} \beta_{p}(r)=\infty\left(\beta_{p}(r)\right.$ as defined in Lemma 2.4, $p \geq 3$). By Lemma 2.4, there are $z_{n} \in \mathbf{C}$ and

$$
r_{n} \in(1, \infty)\left(\left|z_{n}\right| \leq r_{n}, \lim _{n \rightarrow \infty}\left|z_{n}\right|=+\infty\right)
$$

such that (2.5) holds. We write

$$
\begin{equation*}
z_{n}=\left|z_{n}\right| e^{i \theta_{n}}, \quad \theta_{n} \in[0,2 \pi) \tag{3.1}
\end{equation*}
$$

Thus, there is a convergent subsequence of $\left\{\theta_{n}\right\}$, and, without loss of generality, we may assume that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \theta_{n}=\theta_{0} \in[0,2 \pi) \tag{3.2}
\end{equation*}
$$

Let $\varepsilon_{n}=\left|z_{n}\right| \varepsilon\left(\left|z_{n}\right|\right)$, then there exists a convergent subsequence of ε_{n}, and, without loss of generality, we still denote it by ε_{n}, such that

$$
\lim _{n \rightarrow \infty} \varepsilon_{n}=s
$$

where s is a non-negative real number or $s=\infty$ and $\varepsilon\left(\left|z_{n}\right|\right)$ is as defined in Lemma 2.4.

For any $\varepsilon>0$, if there are three distinct complex numbers a_{1}, a_{2}, a_{3} such that

$$
\bar{E}_{A\left(\theta_{0}, \varepsilon\right)}\left(a_{j}, f\right)=\bar{E}_{A\left(\theta_{0}, \varepsilon\right)}\left(a_{j}, f^{\prime}\right), \quad j=1,2,3
$$

where $A\left(\theta_{0}, \varepsilon\right)=\left\{z\left|\arg z-\theta_{0}\right|<\varepsilon\right\}$. Then we claim that one of the following two cases hold:
(1) If $s=0$, then there exists a constant $M>0$ such that

$$
\begin{equation*}
\frac{\varepsilon_{n}\left|f^{\prime}\left(z_{n}+\varepsilon_{n} z\right)\right|}{1+\left|f\left(z_{n}+\varepsilon_{n} z\right)\right|^{2}} \leq M, \quad n=1,2,3 \ldots \tag{3.3}
\end{equation*}
$$

(2) If $s>0$ or $s=\infty$, then there exists a constant $M_{1}>0$ such that

$$
\begin{equation*}
\frac{\left|f^{\prime}\left(z_{n}+\varepsilon_{n} z\right)\right|}{1+\left|f\left(z_{n}+\varepsilon_{n} z\right)\right|^{2}} \leq M_{1}, \quad n=1,2,3 \ldots \tag{3.4}
\end{equation*}
$$

where $|z| \leq 1$ and $\varepsilon_{n}=\left|z_{n}\right| \varepsilon\left(\left|z_{n}\right|\right)$.

In the case that $s=0$, from (3.3), we obtain

$$
A\left(\varepsilon_{n}, z_{n}, f\right)=\frac{1}{\pi} \int_{0}^{2 \pi} \int_{0}^{\varepsilon_{n}}\left(\frac{\mid f^{\prime}\left(z_{n}+\varepsilon_{n} e^{i \theta} \mid\right.}{1+\left|f\left(z_{n}+\varepsilon_{n} e^{i \theta}\right)\right|^{2}}\right)^{2} \rho d \rho d \theta \leq 2 M
$$

Combining with (2.5), we have

$$
\frac{1}{64 \pi^{2}}\left\{\beta_{p}\left(r_{n}\right)\right\}^{1-2 / q}\left(\log r_{n}\right)^{p-2} \leq 2 M
$$

Note that $p \geq 2, q \geq 3$ and $\beta_{p}(r)$ are non-decreasing functions on the interval $(2,+\infty)$. This contradicts the assumption that $\lim _{r \rightarrow \infty} \beta_{p}(r)=$ ∞.

In the case that $s>0$ or $s=\infty$, from (3.4), we obtain

$$
A\left(\varepsilon_{n}, z_{n}, f\right)=\frac{1}{\pi} \int_{0}^{2 \pi} \int_{0}^{\varepsilon_{n}}\left(\frac{\mid f^{\prime}\left(z_{n}+\varepsilon_{n} e^{i \theta} \mid\right.}{1+\left|f\left(z_{n}+\varepsilon_{n} e^{i \theta}\right)\right|^{2}}\right)^{2} \rho d \rho d \theta \leq 2 M \varepsilon_{n}^{2}
$$

Combining with (2.5), we have

$$
\frac{1}{64 \pi^{2}}\left\{\beta_{p}\left(r_{n}\right)\right\}^{1-2 / q}\left(\log r_{n}\right)^{p-2} \leq 2 M \varepsilon_{n}^{2}=2 M\left|z_{n}\right|^{2} \varepsilon\left(\left|z_{n}\right|\right)^{2}
$$

where $\left|z_{n}\right| \leq r_{n}, p \geq 2$ and $q \geq 3$.
Noting that $\beta_{p}(r)$ is a non-decreasing function on the interval $(2,+\infty)$, we have

$$
\frac{1}{64 \pi^{2}}\left\{\beta_{p}\left(\left|z_{n}\right|\right)\right\}^{1-2 / q}\left(\log \left|z_{n}\right|\right)^{p-2} \leq 2 M\left|z_{n}\right|^{2} \varepsilon\left(\left|z_{n}\right|\right)^{2}
$$

Hence,

$$
\begin{aligned}
\left\{\beta_{p}\left(z_{n}\right)\right\}^{1-2 / q}\left(\log z_{n}\right)^{p-2} & \leq 128 \pi^{2} M\left|z_{n}\right|^{2} \varepsilon\left(\left|z_{n}\right|\right)^{2} \\
& =128 \pi^{2} M\left|z_{n}\right|^{2}\left\{\beta_{p}\left(z_{n}\right)\right\}^{-2 / q}
\end{aligned}
$$

Thus, we have

$$
\lim _{n \rightarrow \infty} \frac{\log \beta_{p}\left(z_{n}\right)}{\log \left|z_{n}\right|} \leq 2
$$

Therefore, we can deduce that

$$
\lim _{n \rightarrow \infty} \frac{\log T_{0}\left(\left|z_{n}\right|, f\right)}{\log \left|z_{n}\right|} \leq 2
$$

By using Lemma 2.7, we get

$$
\lim _{n \rightarrow \infty} \frac{\log T\left(\left|z_{n}\right|, f\right)}{\log \left|z_{n}\right|} \leq 2
$$

This contradicts the assumption that the lower order of f is greater than 2. Thus, the proof of theorem is complete if we prove claims (1) and (2).

Proof of Claim. Now we prove part (1) of the clam.
Suppose that the claim (3.3) fails. Then there exists a sequence of points $\omega_{n}, \omega_{n}=z_{n}+\varepsilon_{n} z_{n}^{*}$ with $\left|z_{n}^{*}\right| \leq 1$ such that

$$
\lim _{n \rightarrow \infty} \frac{\varepsilon_{n}\left|f^{\prime}\left(z_{n}+\varepsilon_{n} z_{n}^{*}\right)\right|}{1+\left|f\left(z_{n}+\varepsilon_{n} z_{n}^{*}\right)\right|^{2}}=\infty
$$

Set

$$
f_{n}(z)=f\left(z_{n}+\varepsilon_{n} z\right)
$$

Then, by Marty's criteria, we have that a sequence of a function $\left\{f_{n}(z)\right\}$ is not normal at $|z|<1$. We take $\alpha=0$ in Lemma 2.1. According to Lemma 2.1, there exist
(i) a sequence of point $\left\{z_{n}^{\prime}\right\} \subset\{|z|<1\}$;
(ii) a subsequence of $\left\{f_{n}(z)\right\}_{1}^{\infty}$. Without loss of generality, we still denote it by $\left\{f_{n}(z)\right\}$;
(iii) positive numbers ρ_{n} with $\rho_{n} \rightarrow 0(n \rightarrow \infty)$ such that

$$
h_{n}(z)=\rho_{n}^{-\alpha} f_{n}\left(z_{n}^{\prime}+\rho_{n} z\right)=f_{n}\left(z_{n}^{\prime}+\rho_{n} z\right) \rightarrow g(z)
$$

in a spherical metric uniformly on a compact subset of \mathbf{C} as $n \rightarrow \infty$, where $g(z)$ is a non-constant meromorphic function.

Thus, for any positive integer k, we have

$$
h_{n}^{(k)}(\xi)=\rho_{n}{ }^{k} f_{n}^{(k)}\left(z_{n}^{\prime}+\rho_{n} \xi\right) \longrightarrow g^{(k)}(\xi)
$$

We claim $g^{\prime \prime}(\xi) \not \equiv 0$. Otherwise, $g(z)=c z+d,(c, d \in \mathbf{C}$ and $c \neq 0)$. We can choose ξ_{0}, with $g\left(\xi_{0}\right)=a_{1}$. By Hurwitz's theorem, there exists a sequence $\xi_{n} \rightarrow \xi_{0}$ such that

$$
h_{n}\left(\xi_{n}\right)=f_{n}\left(z_{n}^{\prime}+\rho_{n} \xi_{n}\right)=g\left(\xi_{0}\right)=a_{1}
$$

Notice that f and f^{\prime} share a_{1} IM in $\left\{z:\left|\arg z-\theta_{0}\right|<\varepsilon\right\}$, and $\varepsilon_{n} \rightarrow s=0$ (when $n \rightarrow \infty$), and we have

$$
\begin{aligned}
c & =g^{\prime}\left(\xi_{0}\right)=\lim _{n \rightarrow \infty} h_{n}^{\prime}\left(\xi_{n}\right) \\
& =\lim _{n \rightarrow \infty} \rho_{n} \varepsilon_{n} f^{\prime}\left(z_{n}+\varepsilon_{n}\left(z_{n}^{\prime}+\rho_{n} \xi_{n}\right)\right) \\
& =\lim _{n \rightarrow \infty} \rho_{n} \varepsilon_{n} f\left(z_{n}+\varepsilon_{n}\left(z_{n}^{\prime}+\rho_{n} \xi_{n}\right)\right)=\lim _{n \rightarrow \infty} \rho_{n} \varepsilon_{n} a_{1}=0 .
\end{aligned}
$$

This gives a contradiction. Hence, we can choose $\xi_{0} \in C$, such that

$$
g\left(\xi_{0}\right) \neq 0, \quad a_{1}, a_{2}, a_{3}, \infty, \quad g^{\prime}\left(\xi_{0}\right) \neq 0, \infty, \quad g^{\prime \prime}\left(\xi_{0}\right) \neq 0, \infty
$$

Let

$$
p_{n}(z)=f_{n}\left(z_{n}^{\prime}+\rho_{n} \xi_{0}+z\right)
$$

Then, for every sufficiently large $n\left(n \geq n_{0}\right)$, we have on $|z| \leq 1$

$$
p_{n}(z)=a_{i} \stackrel{\mathrm{IM}}{\Longleftrightarrow} p_{n}^{\prime}(z)=\varepsilon_{n} a_{i} \quad(i=1,2,3) .
$$

Note that

$$
\begin{aligned}
p_{n}(0) & =f_{n}\left(z_{n}^{\prime}+\rho_{n} \xi_{0}\right)=h_{n}\left(\xi_{0}\right) \longrightarrow g\left(\xi_{0}\right) \neq a_{1}, a_{2}, a_{3}, \infty \\
p_{n}^{\prime}(0) & =f_{n}^{\prime}\left(z_{n}^{\prime}+\rho_{n} \xi_{0}\right)=\frac{h_{n}^{\prime}\left(\xi_{0}\right)}{\rho_{n}}, \quad h_{n}^{\prime}\left(\xi_{0}\right) \rightarrow g^{\prime}\left(\xi_{0}\right), \\
p_{n}^{\prime \prime}(0) & =f_{n}^{\prime \prime}\left(z_{n}^{\prime}+\rho_{n} \xi_{0}\right)=\frac{h_{n}^{\prime \prime}\left(\xi_{0}\right)}{\rho_{n}^{2}}, \quad h_{n}^{\prime \prime}\left(\xi_{0}\right) \rightarrow g^{\prime \prime}\left(\xi_{0}\right), \\
\varepsilon_{n} p_{n}(0)-p_{n}^{\prime}(0) & =\frac{\varepsilon_{n} \rho_{n} h_{n}\left(\xi_{0}\right)-h_{n}^{\prime}\left(\xi_{0}\right)}{\rho_{n}} .
\end{aligned}
$$

Thus, we have

$$
\begin{align*}
\log & \frac{\prod_{i=1}^{3}\left|p_{n}(0)-a_{i}\right|^{2}\left|p_{n}^{\prime}(0)-\varepsilon_{n} a_{i}\right|^{3}}{\left|\varepsilon_{n} p_{n}(0)-p_{n}^{\prime}(0)\right|^{5}\left|p_{n}^{\prime}(0)\right|^{2}}+3 \log \frac{1}{\left|p_{n}^{\prime \prime}(0)\right|} \tag{3.5}\\
& =\log \frac{\prod_{i=1}^{3}\left|p_{n}(0)-a_{i}\right|^{2}\left|p_{n}^{\prime}(0)-\varepsilon_{n} a_{i}\right|^{3}}{\left|\varepsilon_{n} p_{n}(0)-p_{n}^{\prime}(0)\right|^{5}\left|p_{n}^{\prime}(0)\right|^{2}\left|p_{n}^{\prime \prime}(0)\right|^{3}} \\
& =4 \log \rho_{n}+\log \frac{\prod_{i=1}^{3}\left|h_{n}\left(\xi_{0}\right)-a_{i}\right|^{2}\left|h_{n}^{\prime}\left(\xi_{0}\right)-\rho_{n} \varepsilon_{n} a_{i}\right|^{3}}{\left|\rho_{n} \varepsilon_{n} h_{n}\left(\xi_{0}\right)-h_{n}^{\prime}\left(\xi_{0}\right)\right|^{5}\left|h_{n}^{\prime}\left(\xi_{0}\right)\right|^{2}\left|h_{n}^{\prime \prime}\left(\xi_{0}\right)\right|^{3}}
\end{align*}
$$

Since $\rho_{n} \rightarrow 0$ and $\varepsilon_{n} \rightarrow 0$, we deduce
(3.6) $\quad \log \frac{\prod_{i=1}^{3}\left|h_{n}\left(\xi_{0}\right)-a_{i}\right|^{2}\left|h_{n}^{\prime}\left(\xi_{0}\right)-\rho_{n} \varepsilon_{n} a_{i}\right|^{3}}{\left|\rho_{n} h_{n}\left(\xi_{0}\right)-h_{n}^{\prime}\left(\xi_{0}\right)\right|^{5}\left|h_{n}^{\prime}\left(\xi_{0}\right)\right|^{2}\left|h_{n}^{\prime \prime}\left(\xi_{0}\right)\right|^{3}}$

$$
\longrightarrow \log \frac{\prod_{i=1}^{3}\left|g\left(\xi_{0}\right)-a_{i}\right|^{2}}{\left|g^{\prime}\left(\xi_{0}\right)\right|^{-2}\left|g^{\prime \prime}\left(\xi_{0}\right)\right|^{3}},
$$

when $n \rightarrow \infty$.
By applying Lemma 2.3 to $p_{n}(z)$ with (3.5) and (3.6), we have

$$
\begin{aligned}
T\left(r, p_{n}\right) \leq & L D\left(r, p_{n} ; 2,3\right) \\
& +O(1)\left(\log ^{+}\left|z_{n}\right|+m\left(r, \frac{p_{n}^{\prime \prime}}{p_{n}^{\prime}-\varepsilon_{n} a}\right)+1\right)
\end{aligned}
$$

for $0<r \leq 3$ and sufficiently large n, where $a \neq a_{j}(j=1,2,3)$ and $a \in C$.

By Lemmas 2.5 and 2.6, we have

$$
T\left(r, p_{n}\right) \leq O(1)\left(1+\log ^{+}\left|z_{n}\right|\right)
$$

Hence,

$$
T_{0}\left(r, p_{n}\right) \leq O(1)\left(1+\log ^{+}\left|z_{n}\right|\right)
$$

Thus, we get

$$
T_{0}\left(3 \varepsilon\left(\left|z_{n}\right|\right)\left|z_{n}\right|, z_{n}+\varepsilon\left(\left|z_{n}\right|\right)\left|z_{n}\right|\left(z_{n}^{\prime}+\rho_{n} \xi_{0}\right), f\right) \leq O(1)\left(1+\log ^{+}\left|z_{n}\right|\right)
$$

It follows that

$$
A\left(2 \varepsilon\left(\left|z_{n}\right|\right)\left|z_{n}\right|, z_{n}+\varepsilon\left(\left|z_{n}\right|\right)\left|z_{n}\right|\left(z_{n}^{\prime}+\rho_{n} \xi_{0}\right), f\right) \leq O(1)\left(1+\log ^{+}\left|z_{n}\right|\right)
$$

Note that $z_{n}^{\prime}+\rho_{n} \xi_{0} \rightarrow 0$. We get

$$
\begin{aligned}
\left\{z:\left|z-z_{n}\right|\right. & \left.<\varepsilon\left(\left|z_{n}\right|\right)\left|z_{n}\right|\right\} \\
& \subseteq\left\{z:\left|z-z_{n}-\varepsilon\left(\left|z_{n}\right|\right)\right| z_{n}\left|\left(z_{n}^{\prime}+\rho_{n} \xi_{0}\right)<2 \varepsilon\left(\left|z_{n}\right|\right)\right| z_{n} \mid\right\}
\end{aligned}
$$

Thus, we have

$$
A\left(\varepsilon_{n}, z_{n}, f\right) \leq O(1)\left(1+\log ^{+}\left|z_{n}\right|\right)
$$

Combining this with (2.5), we have

$$
\beta_{p}\left(r_{n}\right)^{1-2 / q}\left(\log r_{n}\right)^{p-2} \leq O(1)\left(1+\log ^{+}\left|z_{n}\right|\right)
$$

Notice that $\left|z_{n}\right| \leq r_{n}, p \geq 3$ and $\lim _{n \rightarrow \infty} \beta_{p}\left(r_{n}\right)=\infty$. We obtain a contradiction. Therefore, part (1) of the claim is proved.

Next we prove part (2) of the claim. With a similar argument, we can get (3.4). Suppose that the claim (3.4) fails. Then there exists a sequence of points $\omega_{n}, \omega_{n}=z_{n}+\varepsilon_{n} z_{n}^{*}$ with $\left|z_{n}^{*}\right| \leq 1$ such that

$$
\lim _{n \rightarrow \infty} \frac{\left|f^{\prime}\left(z_{n}+\varepsilon_{n} z_{n}^{*}\right)\right|}{1+\left|f\left(z_{n}+\varepsilon_{n} z_{n}^{*}\right)\right|^{2}}=\infty
$$

Set

$$
f_{n}(z)=f\left(\omega_{n}+z\right)
$$

Then, by Marty's criteria, we have that a sequence of a function $\left\{f_{n}(z)\right\}$ is not normal at $z=0$. We take $\alpha=0$ in Lemma 2.1. According to Lemma 2.1, there exist
(i) a sequence of point $\left\{z_{n}^{\prime}\right\} \subset\{|z|<1\}$;
(ii) a subsequence of $\left\{f_{n}(z)\right\}_{1}^{\infty}$. Without loss of generality, we still denote it by $\left\{f_{n}(z)\right\}$;
(iii) positive numbers ρ_{n} with $\rho_{n} \rightarrow 0(n \rightarrow \infty)$ such that

$$
h_{n}(z)=f_{n}\left(z_{n}^{\prime}+\rho_{n} z\right) \rightarrow g(z)
$$

in a spherical metric uniformly on a compact subset of \mathbf{C} as $n \rightarrow \infty$, where $g(z)$ is a non-constant meromorphic function.

Thus, for any positive integer k, we have

$$
h_{n}^{(k)}(\xi)=\rho_{n}^{k} f_{n}^{(k)}\left(z_{n}^{\prime}+\rho_{n} \xi\right) \rightarrow g^{(k)}(\xi)
$$

We claim $g^{\prime \prime}(\xi) \not \equiv 0$. Otherwise, $g(z)=c z+d,(c, d \in \mathbf{C}$ and $c \neq 0)$. We can choose ξ_{0} with $g\left(\xi_{0}\right)=a_{1}$. By Hurwitz's theorem, there exists a sequence $\xi_{n} \rightarrow \xi_{0}$ such that

$$
h_{n}\left(\xi_{n}\right)=f_{n}\left(z_{n}^{\prime}+\rho_{n} \xi_{n}\right)=g\left(\xi_{0}\right)=a_{1}
$$

Notice that f and f^{\prime} share a_{1} IM in $\left\{z:\left|\arg z-\theta_{0}\right|<\varepsilon\right\}$, and

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \arg \left(\omega_{n}+z_{n}^{\prime}+\rho_{n} \xi_{n}\right) \\
& =\lim _{n \rightarrow \infty}\left(\arg z_{n}+\arg \left(1+\frac{\varepsilon_{n} z_{n}^{*}+z_{n}^{\prime}+\rho_{n} \xi_{n}}{z_{n}}\right)\right) \\
& =\theta_{0}
\end{aligned}
$$

We have

$$
c=g^{\prime}\left(\xi_{0}\right)=\lim _{n \rightarrow \infty} h_{n}^{\prime}\left(\xi_{n}\right)
$$

$$
\begin{aligned}
& =\lim _{n \rightarrow \infty} \rho_{n} f^{\prime}\left(\omega_{n}+z_{n}^{\prime}+\rho_{n} \xi_{n}\right) \\
& =\lim _{n \rightarrow \infty} \rho_{n} f\left(\omega_{n}+z_{n}^{\prime}+\rho_{n} \xi_{n}\right) \\
& =\lim _{n \rightarrow \infty} \rho_{n} a_{1}=0 .
\end{aligned}
$$

This gives a contradiction. Hence, we can choose $\xi_{0} \in C$ such that

$$
g\left(\xi_{0}\right) \neq a_{1}, a_{2}, a_{3}, \infty, \quad g^{\prime}\left(\xi_{0}\right) \neq 0, \infty, \quad g^{\prime \prime}\left(\xi_{0}\right) \neq 0, \infty
$$

Let

$$
p_{n}(z)=f_{n}\left(z_{n}^{\prime}+\rho_{n} \xi_{0}+\varepsilon_{n} z\right)
$$

Then, for every sufficiently large $n\left(n \geq n_{0}\right)$, we have on $|z| \leq 1$,

$$
p_{n}(z)=a_{i} \stackrel{\mathrm{IM}}{\Longleftrightarrow} p_{n}^{\prime}(z)=\varepsilon_{n} a_{i} \quad(i=1,2,3)
$$

and

$$
\begin{aligned}
& p_{n}(0)=f_{n}\left(z_{n}^{\prime}+\rho_{n} \xi_{0}\right)=h_{n}\left(\xi_{0}\right) \rightarrow g\left(\xi_{0}\right) \neq a_{1}, a_{2}, a_{3}, \infty \\
& p_{n}^{\prime}(0)=\varepsilon_{n} f_{n}^{\prime}\left(z_{n}^{\prime}+\rho_{n} \xi_{0}\right)=\varepsilon_{n} \frac{h_{n}^{\prime}\left(\xi_{0}\right)}{\rho_{n}}, \\
& \quad h_{n}^{\prime}\left(\xi_{0}\right) \rightarrow g^{\prime}\left(\xi_{0}\right), \\
& p_{n}^{\prime \prime}(0)=\varepsilon_{n}^{2} f_{n}^{\prime \prime}\left(z_{n}^{\prime}+\rho_{n} \xi_{0}\right)=\varepsilon_{n}^{2} \frac{h_{n}^{\prime \prime}\left(\xi_{0}\right)}{\rho_{n}^{2}}, \\
& \quad h_{n}^{\prime \prime}\left(\xi_{0}\right) \rightarrow g^{\prime \prime}\left(\xi_{0}\right), \\
& \varepsilon\left(\left|z_{n}\right|\right)\left|z_{n}\right| p_{n}(0)-p_{n}^{\prime}(0)=\varepsilon\left(\left|z_{n}\right|\right)\left|z_{n}\right|\left(h_{n}\left(\xi_{0}\right)-\frac{h_{n}^{\prime}\left(\xi_{0}\right)}{\rho_{n}}\right) .
\end{aligned}
$$

Thus, we have

$$
\begin{aligned}
& \log \frac{\prod_{i=1}^{3}\left|p_{n}(0)-a_{i}\right|^{2}\left|p_{n}^{\prime}(0)-\varepsilon_{n} a_{i}\right|^{3}}{\left|\varepsilon_{n} p_{n}(0)-p_{n}^{\prime}(0)\right|^{5}\left|p_{n}^{\prime}(0)\right|^{2}}+3 \log \frac{1}{\left|p_{n}^{\prime \prime}(0)\right|} \\
& \quad=\log \frac{\prod_{i=1}^{3}\left|p_{n}(0)-a_{i}\right|^{2}\left|p_{n}^{\prime}(0)-\varepsilon_{n} a_{i}\right|^{3}}{\left|\varepsilon_{n} p_{n}(0)-p_{n}^{\prime}(0)\right|^{5}\left|p_{n}^{\prime}(0)\right|^{2}\left|p_{n}^{\prime \prime}(0)\right|^{3}} \\
&=4 \log \frac{1}{\varepsilon_{n}}+4 \log \rho_{n} \\
& \quad+\log \frac{\prod_{i=1}^{3}\left|h_{n}\left(\xi_{0}\right)-a_{i}\right|^{2}\left|h_{n}^{\prime}\left(\xi_{0}\right)-\rho_{n} a_{i}\right|^{3}}{\left|\rho_{n} h_{n}\left(\xi_{0}\right)-h_{n}^{\prime}\left(\xi_{0}\right)\right|^{5}\left|h_{n}^{\prime}\left(\xi_{0}\right)\right|^{2}\left|h_{n}^{\prime \prime}\left(\xi_{0}\right)\right|^{3}}
\end{aligned}
$$

and
(3.7) $\quad \log \frac{\prod_{i=1}^{3}\left|h_{n}\left(\xi_{0}\right)-a_{i}\right|^{2}\left|h_{n}^{\prime}\left(\xi_{0}\right)-\rho_{n} a_{i}\right|^{3}}{\left.\left|\rho_{n} h_{n}\left(\xi_{0}\right)-h_{n}^{\prime}\left(\xi_{0}\right)\right|^{5}\left|h_{n}^{\prime}\left(\xi_{0}\right)\right|^{2}\left|h_{n}^{\prime \prime}\left(\xi_{0}\right)\right|^{3}\right)}$

$$
\longrightarrow \log \frac{\prod_{i=1}^{3}\left|g\left(\xi_{0}\right)-a_{i}\right|^{2}}{\left|g^{\prime}\left(\xi_{0}\right)\right|^{-2}\left|g^{\prime \prime}\left(\xi_{0}\right)\right|^{3}},
$$

when $n \rightarrow \infty$.
By applying Lemma 2.3 to $p_{n}(z)$ with (3.7) and $\varepsilon_{n} \rightarrow s, s>0$, we obtain for $0<r \leq 3$ and every sufficiently large n that

$$
\begin{aligned}
T\left(r, p_{n}\right) \leq L D\left(r, p_{n} ; 2,3\right)+O(1)\left(\log ^{+}\left|z_{n}\right|\right. & +\log ^{+} \frac{1}{\varepsilon\left(\left|z_{n}\right|\right)} \\
& \left.+m\left(r, \frac{p_{n}^{\prime \prime}}{p_{n}^{\prime}-t a}\right)+1\right)
\end{aligned}
$$

where $a \neq a_{j}(j=1,2,3)$ and $a \in C$. By Lemmas 2.5 and 2.6, we have

$$
T\left(r, p_{n}\right) \leq O(1)\left(1+\log ^{+}\left|z_{n}\right|+\log ^{+} \frac{1}{\varepsilon\left(\left|z_{n}\right|\right)}\right)
$$

Hence,

$$
T_{0}\left(r, p_{n}\right) \leq O(1)\left(1+\log ^{+}\left|z_{n}\right|+\log ^{+} \frac{1}{\varepsilon\left(\left|z_{n}\right|\right)}\right)
$$

Thus, we get

$$
\begin{aligned}
& T_{0}\left(3 \varepsilon\left(\left|z_{n}\right|\right)\left|z_{n}\right|, z_{n}+\varepsilon\left(\left|z_{n}\right|\right)\left|z_{n}\right| z_{n}^{*}+z_{n}^{\prime}+\rho_{n} \xi_{0}, f\right) \\
& \quad \leq O(1)\left(1+\log ^{+}\left|z_{n}\right|+\log ^{+} \frac{1}{\varepsilon\left(\left|z_{n}\right|\right)}\right)
\end{aligned}
$$

Note that $\varepsilon\left(\left|z_{n}\right|\right)\left|z_{n}\right| \rightarrow s, s \neq 0$ and $\left|z_{n}^{*}\right| \leq 1, z_{n}^{\prime}+\rho_{n} \xi_{0} \rightarrow 0$ (when $n \rightarrow \infty)$. Thus, we have

$$
\begin{aligned}
&\left\{z:\left|z-z_{n}\right|\right.\left.<\varepsilon\left(\left|z_{n}\right|\right)\left|z_{n}\right|\right\} \\
& \subseteq\left\{z:\left|z-z_{n}-\varepsilon\left(\left|z_{n}\right|\right)\right| z_{n}\left|z_{n}^{*}-z_{n}^{\prime}-\rho_{n} \xi_{0}\right|\right. \\
&\left.<3 \varepsilon\left(\left|z_{n}\right|\right)\left|z_{n}\right|\right\}
\end{aligned}
$$

Hence, we can get

$$
A\left(\varepsilon_{n}, z_{n}, f\right) \leq O(1)\left(1+\log ^{+}\left|z_{n}\right|+\log ^{+} \frac{1}{\varepsilon\left(\left|z_{n}\right|\right)}\right) .
$$

Combining this with (2.6), we have

$$
\beta_{p}\left(r_{n}\right)^{1-2 / q}\left(\log r_{n}\right)^{p-2} \leq O(1)\left(1+\log ^{+}\left|z_{n}\right|+\log ^{+} \beta_{p}\left(r_{n}\right)\right)
$$

Notice that $\left|z_{n}\right| \leq r_{n}, p \geq 3$ and $\lim _{n \rightarrow \infty} \beta_{p}\left(r_{n}\right)=\infty$. We obtain a contradiction. Therefore, part (2) of the claim is proved, and so is Theorem 1.1.

As the end of this section, we conjecture that the conditions of Theorem 1.1, " f is a meromorphic function of lower order >2 in the complex plane" can be replaced by " $f(z) \not \equiv f^{\prime}(z)$."

REFERENCES

1. W.K. Hayman, Meromorphic functions, Clarendon Press, Oxford, 1964.
2. S.Y. Li, Hayman Directions of a meromorphic function, Acts Math. Sinica 4 (1988), 97-110.
3. W.C. Lin and L.Z. Yang, Normality of a family of holomorphic functions which share one finite value with their derivatives, Acta Math. Sinica 46 (2003), 530-544.
4. X.C. Pan and L. Zalcman, Normal families and Shared Values, Bull. Lond. Math. Soc. 32 (2000), 325-331.
5. L.A. Rubel and C.C. Yan, Values shared by an entire function and its derivative. Complex analysis, Lect. Notes Math. 599, Springer, Berlin, 1977.
6. W. Schwick, Sharing values and normality, Arch. Math. 59 (1992), 50-54.
7. Lin Weichuan and S. Mori, On one new singular direction of meromorphic functions. Compl. Var. Ellipt. Equat. 51 (2006), 295-302.
8. Y. Xu, Sharing values and normality criteria, Acta Math. Sinica 42 (1999), 833-838.
9. L. Yang, Value distribution and new study, Science Press, Beijing, 1982.
10. L.Z. Yang, Entire functions that share finite values with their derivatives, Bull. Austral. Math. Soc. 41 (1990), 337-342.
11. H.X. Yi and C.C. Yang, Uniqueness theory of meromorphic functions, Science Press, Beijing, 1995.
12. J.H. Zheng, Value distribution of meromorphic functions, Tsinghua University Press, Beijing, 2010.

Department of Mathematics, Fujian Normal University, Fuzhou 350007, China
Email address: bhpan@fjnu.edu.cn
Department of Mathematics, Fujian Normal University, Fuzhou 350007, China
Email address: sxlwc936@fjnu.edu.cn

[^0]: 2010 AMS Mathematics subject classification. Primary 30D35.
 Keywords and phrases. Meromorphic function, shared values, angular distribution.

 This work was supported by the Education Department of Fujian Province Foundation (No. JB06097). The first author is the corresponding author.

 Received by the editors on April 16, 2012, and in revised form on February 15, 2014.

