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PICARD GROUPS AND TORSION-FREE
CANCELLATION FOR ORDERS IN Z× Z× Z

RYAN KARR

ABSTRACT. We examine the question of direct-sum
cancellation of finitely generated, torsion-free modules over
ring orders R contained in Z ⊕ Z ⊕ Z. Using conditions
involving the Picard group and the unit group of R, we
give a nearly complete classification of those orders R for
which torsion-free cancellation holds. There is exactly one
‘exceptional’ order to which our methods do not apply.

1. Introduction. In the paper [4], Krull-Schmidt uniqueness fails
dramatically over subrings of Z ⊕ · · · ⊕ Z, Levy gives, among other
pathologies, examples of how direct-sum cancellation of finitely gener-
ated modules can fail for subrings R of Z ⊕ · · · ⊕ Z. In that paper’s
notation, Z can be taken to be Z, the ring of integers. The examples
depend on rings Z ‘involving non-liftability of units modulo maximal
ideals to units of Z itself.’

In a later paper [6], Wiegand considers direct-sum cancellation of
torsion-free modules over one-dimensional reduced rings R (having
finite integral closure). In Section 4 of that paper, conditions involving
liftable units and the Picard groups of R and its integral closure are
used to obtain explicit results for torsion-free cancellation over orders
R in real and imaginary quadratic number fields.

In this work, we combine aspects of the two cancellation problems
mentioned above as we examine the question of torsion-free cancellation
over orders in Z×Z×Z. Working exclusively in the context of Picard
groups and unit groups we give a nearly complete determination of
those orders R in Z × Z × Z for which torsion-free cancellation holds
(this is our main theorem, stated in the following section). There is
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exactly one ‘exceptional’ order to which our methods do not apply; see
the next section and Section 8 for details.

2. Definitions and assumptions. All rings are Noetherian and
unital. All modules are finitely generated and unital.

Throughout this paper, we set Γ = Z× Z× Z. We always regard Γ
as a Z-algebra with respect to the diagonal embedding Z ⊆ Γ.

Let R be a subring of Γ containing (the diagonal copy of) Z such
that R has rank three as a Z-module. Then R is a Z-order in Γ, or just
an order for short. The order Γ itself is the maximal order. To avoid
trivialities, we will often assume R ̸= Γ.

We say that torsion-free cancellation holds for R if the implication

M ⊕ C ∼= N ⊕ C =⇒ M ∼= N

holds for all (finitely generated) torsion-free R-modules C, M and N .
The main goal of this paper is to establish the following:

Let R be an order in Γ = Z × Z × Z such that R ̸=
Z + (4, 6, 12) Γ. Then torsion-free cancellation holds
for R if and only if the Picard group of R is trivial.

This is the content of our main theorem in Section 7. See Section 3
for definitions pertaining to the Picard group. We briefly point out
the well-known fact that torsion-free cancellation holds for the maxi-
mal order Γ, since direct-sum cancellation holds for arbitrary finitely
generated Γ-modules.

2.1. Notation and terminology. We shall use the notation A× for
the unit group of an arbitrary ring A. To avoid confusion, we use the
term ‘size’ (instead of ‘order’) when we refer to the cardinality of a
group.

3. Picard groups and conductors. We begin with some prelimi-
naries regarding the Picard group of a commutative ring A. Recall that
all modules are finitely generated. Let A be an arbitrary (Noetherian,
unital) commutative ring. Let M be an A-module. Then M is invert-
ible if there exists an A-module N such that M ⊗A N ∼= A. The set
of isomorphism classes of invertible A-modules forms an abelian group,
with tensor product over A as the group multiplication. This is called
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the Picard group of A, or PicA. The equation PicA = 1 will mean
that PicA is the trivial group.

For later use, we now mention a well-known fact concerning Picard
groups and pairs of commutative rings A and B: Pic . If A ⊆ B, then
there is a natural surjection PicA → PicB.

Returning to the context of orders, let Γ = Z× Z× Z, and let R be
an order in Γ. We assume throughout that R ̸= Γ. Next, we let

f = (R : Γ) = {x ∈ R : xΓ ⊆ R}

denote the conductor of R. This is the largest common ideal of R and
Γ.

From the ring inclusion R ⊆ Γ we obtain R/f ⊆ Γ/f and a
corresponding conductor square, which yields a Mayer-Vietoris exact
sequence (see [5])

· · · −→ Γ× × (R/f)× −→ (Γ/f)× −→ PicR −→ Pic Γ −→ 1.

We note that Γ× is generated by (−1, 1, 1), (1,−1, 1) and (1, 1,−1) and
thus is finite of order 8. Let Λ denote the image of Γ× in (Γ/f)× under
the natural projection. We call this image the group of liftable units of
Γ/f.

Since Γ = Z × Z × Z is a principal ideal ring, we have Pic Γ = 1.
From the above exact sequence it follows that

(Γ/f)×

Λ · (R/f)×
∼= PicR.

Intuitively, if f is large, then both Λ and (R/f)× will be small compared
to (Γ/f)×. This will force PicR to be nontrivial in ‘most’ cases, leading
to a failure of cancellation for R (by Proposition 7.1 in Section 7).

4. Structure of the orders. Before continuing our investigation
of orders R in Z×Z×Z, let us note the following. It is an easy exercise
to prove that every order S in Z × Z is equal to Z + n(Z × Z) for
some positive integer n. Furthermore, every ideal of such an S is two-
generated. The methods used in [6, Section 4] can be directly applied
to this much easier situation. Details are left to the interested reader.

Let R be an order in Γ = Z×Z×Z of conductor f. Then f∩Z = nZ
for some positive integer n, with n > 1 if and only if R ̸= Γ. Suppose
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n = pm for some prime integer p and some positive integer m. In
this paper, we will refer to such an order as a p-order. For such an R
we have Z + pmΓ ⊆ R, and m is the smallest integer k for which the
containment Z+ pkΓ ⊆ R holds.

Most of the results relevant to our main theorem follow from the
structure of p-orders. The next theorem follows directly from the work
of Drozd and Skuratovskii. It is essentially a restatement of Theorem
2.5 in [1], but specialized to our context.

Theorem 4.1. [1]. Let Γ = Z × Z × Z. Suppose R is a p-order in
Γ, and let m be the smallest positive integer such that Z + pmΓ ⊆ R.
Then, for some primitive idempotents e ̸= e′ in Γ, the following hold :

(i) R is contained in an order of the form

S = Z+ pl(e+ pqae′)Z+ p2l+qΓ,

where a ∈ Z is a unit modulo p and l, q ≥ 0;
(ii) If q = 0, then a ̸≡ 1 modulo p;
(iii) R = Z+ pkS for some k ≥ 0 with k + 2l + q = m.

Remark 4.2. In the above, if 2l+ q = 0 then S = Γ, necessarily k ≥ 1
since R ̸= Γ. Similarly, if k = 0, then necessarily 2l + q > 0.

Note that Γ has exactly three primitive idempotents: e1 = (1, 0, 0),
e2 = (0, 1, 0) and e3 = (0, 0, 1). Some results that follow depend on the
idempotents e and e′, but only up to a permutation of the components
of Γ = Z×Z×Z. We will use the phrase up to permutation in situations
that involve such a result.

We shall denote by R(p; k, l,m) a p-order R having the form de-
scribed above in Theorem 4.1. Also, note that q = m − k − 2l is
determined by k, l,m. Let us now describe how to generate such an
order R as a Z-algebra.

Corollary 4.3. Let Γ = Z × Z × Z, and let R ̸= Γ be a p-order,
so that R has the form R(p; k, l,m) as described above. Then, up to
permutation, R is generated as a Z-algebra by these three elements of
Γ:

(1, 1, 1), (0, pk+l, apk+l+q), (0, 0, pm)
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where m = k+2l+q and a ∈ Z satisfies the conditions in Theorem 4.1.

Proof. By permuting the components of Γ, we may assume (using
the notation from Theorem 4.1) that e = (0, 1, 0) and e′ = (0, 0, 1).
The corollary follows upon verifying that (0, pm, 0) and (pm, 0, 0) are
already in the Z-algebra of the three given generators. �

Now, we will compute the conductor of a p-order R. Before we
proceed, let us make a couple of observations. Suppose R is a p-order.
Let f be the conductor of R. By the definition of a p-order, f∩Z = pmZ
for some m ≥ 1. Since f is an ideal of Γ, we have f = (px, py, pz) Γ for
some nonnegative integer exponents x, y, z, with at least one of these
exponents being positive.

However, suppose we start with an arbitrary ideal (px, py, pz) Γ, with
x, y, z as just described. Such an ideal is not necessarily the conductor
of a p-order. Furthermore, there may be several distinct p-orders that
have this same ideal as a conductor. Having said that, we proceed to
the next result, which helps clarify these issues.

Lemma 4.4. Let Γ = Z×Z×Z, and let R be a p-order, so that R has
the form R(p; k, l,m) as described above. The conductor f of R equals
(pm, pk+2l, pm) Γ, up to permutation.

Proof. Using Corollary 4.3, we see right away that (0, pk+2l, 0) is in
R. Additionally, the fact that (pm, 0, 0) is in R was required as part of
the verification of Corollary 4.3. Thus, we have (pm, pk+2l, pm) Γ ⊆ R.

It remains to show that (pm, pk+2l, pm) Γ is the largest ideal of Γ
contained in R. We leave this to the reader but mention in passing that
the condition ‘if q = 0, then a ̸≡ 1 modulo p,’ given in Theorem 4.1
must be invoked at some point. �

5. Orders modulo their conductors. To analyze the Picard
group of an order R ̸= Γ having conductor f, we will need some re-
sults concerning the unit groups of R/f and Γ/f. As noted above, we
can write f ∩ Z = nZ for some positive integer n. Let S be the finite
set of primes p that divide n.
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Since f is an ideal of Γ, we can factor f as follows:

(5.1) f =
∏
p∈S

fp,

where each fp is an ideal of Γ such that the radical of fp ∩Z equals pZ.
Using the fact that the ideals fp ⊆ Γ are coprime in pairs, we have

Γ/f ∼=
∏
p∈S

Γ/fp.

By considering the contraction of each ideal fp to R, we are led to the
following.

Proposition 5.1. With notation and definitions as above, we have a
ring isomorphism

R/f ∼=
∏
p∈S

(R+ fp)/fp,

where each order R+ fp is a p-order whose conductor equals fp.

Proof. For each p ∈ S we have a ring isomorphism (R + fp)/fp ∼=
R/(fp ∩ R). Since f =

∩
(fp ∩ R), it suffices to show that the ideals

fp ∩R are coprime in pairs. Take primes p ̸= q in S. Since fp + fq = Γ,
there exist x ∈ fp and y ∈ fq such that x+ y = 1.

Next, notice that fp ∩Z = paZ for some a, and likewise fq ∩Z = qbZ
for some b. It is easy to see that there exist x′ and y′ in Γ such that
x′x = pa and y′y = qb. Now we have

pa = x′x ∈ fp ∩ Z ⊆ fp ∩R

and

qb = y′y ∈ fq ∩ Z ⊆ fq ∩R.

Since pa and qb are relatively prime in Z ⊆ R, it follows that fp ∩R +
fq ∩R = R, as required.

Now, since f is the conductor of R, the ring Γ/f contains no nonzero
R/f-ideals. It follows that Γ/fp contains no nonzero (R+ fp)/fp-ideals.
Hence, fp is the conductor of R+ fp. �



PICARD GROUPS AND TORSION-FREE CANCELLATION 1879

We now work with the p-orders. We assume R has the form
R(p; k, l,m) for some k, l,m ≥ 0 and some fixed prime p, and f is
the conductor of R. We also assume (from Lemma 4.4 above, and up
to permutation) that

f = (pm, pk+2l, pm) Γ.

In what follows, we have m > 0, but k + 2l = 0 is allowed.

Clearly, the order of the unit group of Γ/f equals

(5.2) φ(pm)φ(pk+2l)φ(pm) = (p− 1)2p2(m−1)φ(pk+2l)

Additionally, we have the following result that gives the size of the unit
group of R/f, assuming R = R(p; k, l,m) as above.

Proposition 5.2. With notation as above, let R = R(p; k, l,m) with
conductor f. Then the size of the unit group of R/f equals φ(pm)pl =
(p− 1)pm−1+l.

Proof. By Corollary 4.3, every element ρ of R has the form

r(1, 1, 1) + s(0, pk+l, apk+l+q) + t(0, 0, pm),

where r, s, t ∈ Z.
Suppose ρ is a unit of R. Recall from Lemma 4.4 that the conductor

of R is equal to (pm, pk+2l, pm). We see that r uniquely determines a
unit residue modulo pm, and s uniquely determines a residue modulo
pl. Conversely, any triple of integers r, s, t such that p does not divide
r gives a unit of R. �

6. The sizes of the Picard groups. In this section, we begin by
allowing R to be an arbitrary but proper order in Γ = Z×Z×Z (i.e., R
is not necessarily a p-order). Recall that Λ is the image of Γ× in (Γ/f)×

and has size at most 8. Since the image of (−1,−1,−1) is already a
unit in R/f, we see that, as subgroups of (Γ/f)×,

|Λ · (R/f)×| ≤ 4 |(R/f)×|.

Employing the isomorphism

(Γ/f)×

Λ · (R/f)×
∼= PicR,
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we see that if the strict inequality

(6.1) 4 |(R/f)×| < |(Γ/f)×|

holds, then |PicR| > 1, and hence PicR is nontrivial.

Some special cases must be mentioned at this point. If f ei = 1 or
f ei = 2 for one of the primitive idempotents ei of Γ, then the size of Λ
is now at most 4, but again (−1,−1,−1) is a unit in R/f. Hence, we
can conclude

|Λ · (R/f)×| ≤ 2 |(R/f)×|

so that the strict inequality

(6.2) 2 |(R/f)×| < |(Γ/f)×|

implies the nontriviality of PicR in these two special cases.

At this point, we specialize to p-orders R in Γ. Equation (5.2) and
Proposition 5.2 above allow us to rewrite the inequality in (6.1) as

(6.3) 4 < (p− 1)2pm−1pk+l−1 if k + 2l > 0,

and rewrite the inequality in (6.2) as

(6.4) 2 < (p− 1)pm−1 if k + 2l = 0

(since k+2l = 0 implies f ei = 1 for some ei). In the special case where
f ei = 2 for some i, we can use the following:

2 < 2m−12k+l−1 if k + 2l > 0,(6.5)

or

2 < 2m−1 if k + 2l = 0.(6.6)

We immediately put these inequalities to work.

Lemma 6.1. Let R ̸= Γ be an order in Γ = Z× Z× Z with conductor
f. Write

f =
∏
p∈S

fp

as in (5.1) above. Then PicR is nontrivial whenever one of the
following holds:

(i) S contains any prime p ≥ 5;



PICARD GROUPS AND TORSION-FREE CANCELLATION 1881

(ii) S contains p = 3 and R+ f3 = R(3; k, l,m) with m ≥ 2;
(iii) S contains p = 2 and R+ f2 = R(2; k, l,m) with m ≥ 3.

Proof. For every p in S we have R ⊆ R + fp. Since PicR maps
surjectively onto Pic (R + fp), it suffices to show that the latter is
nontrivial.

(i) If p ≥ 5, it follows from either (6.3) or (6.4) that Pic (R + fp) is
nontrivial.

(ii) If p = 3 and m ≥ 2, we use (6.3) or (6.4) again to conclude that
Pic (R+ fp) is nontrivial.

(iii) If p = 2 and m ≥ 3, we use (6.5) or (6.6) to conclude that
Pic (R+ fp) is nontrivial. �

7. Proof of the main theorem. Before we state the main theorem,
we recall two important facts concerning Picard groups, unit groups
and torsion-free cancellation. The following is a direct restatement of
Corollary 2.4 in [6].

Proposition 7.1. [6]. Let R be a reduced, one-dimensional ring with
integral closure O. Assume O is finitely generated as an R-module. Let
f = (R : O) be the conductor of R.

(i) Torsion-free cancellation fails for R if the map PicR → PicO is
not injective.

(ii) Torsion-free cancellation holds for R if the map O× → (O/f)× is
surjective.

In our context, O = Γ = Z × Z × Z, so the conditions of Proposi-
tion 7.1 are clearly satisfied.

Theorem 7.2 (Main theorem). Let Γ = Z × Z × Z, and let R be an
order in Γ. Assume that R ̸= Z+ (4, 6, 12) Γ. Then R has torsion-free
cancellation if and only if PicR is trivial.

Proof. The theorem is well known to be true if R = Γ, so we suppose
throughout the proof that R ̸= Γ.
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First, suppose PicR is nontrivial. By Proposition 7.1, torsion-free
cancellation fails for R since Pic Γ = 1. To establish the converse, we
assume that PicR is trivial for the remainder of the proof.

Let
f = (R : Γ) = {x ∈ R : xΓ ⊆ R}

be the conductor of R. As in (5.1), we factor f in Γ as follows:

f =
∏
p∈S

fp.

By Lemma 6.1, S ⊆ {2, 3}. We now consider three cases.

(i) Suppose S = {3} so that f = f3. By Lemma 6.1, we must have
f3 = (3, 1, 3) Γ or f3 = (3, 3, 3) Γ, up to permutation. But then
all units of Γ/f lift to units of Γ. By Proposition 7.1, torsion-free
cancellation holds for R and hence holds whenever S = {3} and
PicR = 1.

(ii) Suppose S = {2} so that f = f2. By Lemma 6.1, f2 = r Γ, where
r is equal to one of the following, up to permutation:

(7.1) (2, 1, 2), (2, 2, 2), (4, 1, 4), (4, 2, 4), (4, 4, 4)

For each r above, all units of Γ/f lift to units of Γ, so torsion-free
cancellation holds (Proposition 7.1). Thus, torsion-free cancella-
tion holds whenever S = {2} and PicR = 1.

(iii) Finally, suppose S = {2, 3}. Then we have f = f2 f3. In this case,
by Proposition 5.1,

R/f ∼= (R+ f2)/f2 × (R+ f3)/f3.

Write f2 = r Γ and f3 = sΓ for some r and s in Γ. From
Lemma 6.1, the only possibilities for s, up to permutation, are
(3, 1, 3) and (3, 3, 3). Likewise, the only possibilities for r, up to
permutation, are (2, 1, 2), (2, 2, 2), (4, 1, 4), (4, 2, 4) and (4, 4, 4).

However, the two permutations (in the components of Z×Z×Z)
invoked above need not be equal. We shall fix the permutation
for f2, so that all the possible choices for r are given in the list
(7.1) above. Then, for each choice of r, s must equal one of

(7.2) (1, 3, 3), (3, 1, 3), (3, 3, 1), (3, 3, 3).
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If r = (2, 1, 2) or r = (2, 2, 2), then every possible choice
for s implies that all units of Γ/f lift to units of Γ. Hence, we
may assume that r = (4, 1, 4), r = (4, 2, 4) or r = (4, 4, 4). If
r = (4, 4, 4), then one can show that PicR is nontrivial for every
possible choice of s from the list (7.2).

Likewise, if either r = (4, 2, 4) or r = (4, 1, 4), but s = (3, 3, 3),
one can show that PicR is nontrivial. Therefore, we are left with
four possibilities:
(a) r = (4, 1, 4) or r = (4, 2, 4);
(b) s = (1, 3, 3) or s = (3, 3, 1).

By swapping e1 with e3, if necessary, we may now assume that
either (a) r = (4, 1, 4) and s = (1, 3, 3) or (b) r = (4, 2, 4) and
s = (1, 3, 3). Using Theorem 4.1, Proposition 5.1, and some
analysis involving the generators listed in Corollary 4.3, we are
left with the consideration of these two orders:

Z+ (4, 6, 12) Γ ⊆ Z+ (4, 3, 12) Γ.

However, it is easy to check that Z+ (4, 3, 12) Γ has the property
that every order between itself and Γ is Gorenstein. By [6,
Proposition 2.6 and Theorem 2.7], this order has torsion-free
cancellation.

In conclusion, we have shown in all three cases above that PicR =
1 implies torsion-free cancellation holds for R, provided R ̸= Z +
(4, 6, 12) Γ. This establishes the converse, as required, and completes
the proof of the Main Theorem. �

8. The exceptional order. The order ‘in limbo’ at the end of
Theorem 7.2,

Z+ (4, 6, 12) Γ

is exceptional because it is one of the only two orders in Γ = Z×Z×Z
such that each possesses a trivial Picard group and each has units of
Γ/f that do not lift to units of Γ (where f is the conductor of the order).
The only other such order, as we saw (in the proof of the main theorem)
above, is Z+ (4, 3, 12) Γ. For each of these two orders, Proposition 7.1
yields no conclusion. Hence, we were a bit ‘lucky’ in dispensing with
the order Z+ (4, 3, 12) Γ.
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It turns out that the remaining exceptional order has finite repre-
sentation type. The author of this paper conjectures that this order
does indeed have torsion-free cancellation, so that every order R in Γ
has torsion-free cancellation if and only if PicR is trivial.

If true, this situation stands in contrast with a cubic example found
by the author in [3]: There is an order S in a cubic field extension of
the rationals Q such that PicS = 1 but S does not have torsion-free
cancellation. Of course, the total quotient ring of Γ = Z × Z × Z is a
cubic algebra over Q, but not a field.

The calculations and techniques that support the following conjec-
ture go beyond the scope of the present paper. However, we do offer a
sketch of a strategy that might yield a proof of this conjecture.

Conjecture 8.1. Let R = Z+(4, 6, 12) Γ, where Γ = Z×Z×Z. Then
torsion-free cancellation holds for R.

Note that f = (4, 6, 12) Γ is the conductor of R. We let f2 = (4, 2, 4) Γ
and f3 = (1, 3, 3) Γ. Thus, by Proposition 5.1,

R/f ∼= (R+ f2)/f2 × (R+ f3)/f3.

Furthermore, it is easy to see that R+ f2 = Z+ f2 and R+ f3 = Z+ f3.
For ease of notation, let

R2 = Z+ f2 = Z+ (4, 2, 4) Γ

and

R3 = Z+ f3 = Z+ (1, 3, 3) Γ.

The inclusion R/f ⊆ Γ/f is called an Artinian pair. The idea is
to use results from [8, 7, 2] that reduce the question of torsion-free
cancellation for R to certain bimodules defined over this pair. At this
stage, we believe that there is a routine, but tedious, verification of the
following steps that will lead to a proof.

1. Let M be an arbitrary torsion-free R-module, where R = Z +
(4, 6, 12) Γ. The conductor f equals (4, 6, 12) Γ. By [8], it suffices
to consider the bimodule M/fM ⊆ ΓM/fM over the Artinian pair
R/f ⊆ Γ/f. Call this bimodule M.
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2. By [8], it suffices to show that the delta group of M, denoted ∆,
which is a subgroup of (Γ/f)×, has the property that ∆ ·Λ = (Γ/f)×.
(Recall that Λ is the group of units of Γ/f that lift to units of Γ.)

3. Show that
∆ ∼= ∆2 ·∆3 ≤ Γ/f2 × Γ/f3,

where ∆2 and ∆3 are two delta groups that correspond, respectively,
to two bimodules, say M2 and M3, obtained from M, one over the
Artinian pair R2/f2 ⊆ Γ/f2 and the other over the Artinian pair
R3/f3 ⊆ Γ/f3.

4. By [8], it suffices to assume that the bimodules M2 and M3, over
their respective Artinian pairs, are indecomposable. (The main fact
being that the delta group of a direct sum of bimodules equals the
product of the delta groups.)

5. From [2], verify that each of the two Artinian pairs in step (3) above
has finite representation type.

6. From [2], obtain a finite list of all (isomorphism classes of) indecom-
posable bimodules over the two Artinian pairs and compute all the
delta groups involved.

7. From step (6), for each delta group ∆′ of an indecomposable bimod-
ule over the Artinian pair R2/f2 ⊆ Γ/f2, verify that ∆′ ·Λ = (Γ/f2)

×.
Do the same for each ∆′′ obtained from an indecomposable bimodule
over the Artinian pair R3/f3 ⊆ Γ/f2 from step (6).

8. It should follow that ∆ · Λ = (Γ/f)× for the delta group in Step (2)
of the arbitrary bimodule M above from step (1), as was required.

This concludes a sketch of how to attack the conjecture regarding the
exceptional order Z+ (4, 6, 12) Γ.
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