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FINITE INDEX CONDITIONS IN RINGS

CHARLES LANSKI

ABSTRACT. This paper determines the structure of an
associative ring R when either all of its additive subgroups,
all of its subrings, all of its (right) ideals, or all of its Lie
ideals have finite additive index in R.

There are a number of results in the literature that impose finite-
ness conditions on certain subsets or substructures of rings to study
consequent restrictions on the structure of the ring (e.g., [1, 2, 5–7,
9–13]).

The work here was motivated by a result about infinite groups in
which each nonidentity subgroup has finite index [1]. It is immediate
that an infinite cyclic group satisfies this property. The converse,
that an infinite group must be cyclic if every nonidentity subgroup
has finite index, is not obvious but was proved by Fedorov [1] using
rather sophisticated group theoretic ideas and results (see [11] for an
elementary proof). Is there a corresponding result for rings? Of course,
to consider any quotient R/S of a ring R, S must be an additive
subgroup of R. The usual kinds of additive subgroups that one might
consider in a ring R are the additive subgroups themselves, subrings,
one-sided ideals, ideals and perhaps Lie ideals. Our purpose here is to
study, for each of these types of substructures, what restrictions on R
result if all nonzero such have finite additive index in R.

The result of Fedorov [1] is crucial for our results, and we state it
here for reference.

Theorem A. If all nonidentity subgroups of an infinite group G have
finite index, then G is cyclic.
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For the following discussion, we assume that R is an infinite ring.
Clearly, for m ≥ 1 if R ∼= mZ as rings, or if R2 = (0) with (R,+) ∼=
(Z,+), then the quotient (R,+)/S is finite for any nonzero additive
subgroup S. Let us call these the standard examples. The strongest
assumption we can make, and the exact analogue of Theorem A, is to
assume that R/A is finite, as an additive group, for all nonzero additive
subgroups A of R. In this case, the ring structure of R follows easily
from its additive structure given by Theorem A, and must be a standard
example.

Our main result (Theorem 4), which is the closest natural analogue
of Theorem A for rings, assumes the finiteness of R/S for all nonzero
subrings S of R. Surprisingly, this assumption yields the same charac-
terization of R as for the additive subgroup case–the standard exam-
ples, but is considerably more difficult to prove.

By assuming the finite index condition for other ring theoretic struc-
tures we can obtain only necessary conditions on R, not characteriza-
tions. The weakest assumption we can make is that all nonzero ideals
of R have finite quotients. We can show in this case (Theorem 1) that
R is a standard example or R must be prime. Of course, all simple
rings satisfy this condition. Also, any prime ring R containing an ideal
M that is a simple ring so that R/M is finite satisfies the finite index
condition for ideals. Examples of such rings, and other examples, are
provided after Theorem 1. The finite index condition for right ideals
(Theorem 3) implies that R is a standard example or an Ore domain.
Finally, the finite index condition for Lie ideals (Theorem 5) leads to a
description for R similar to that for ideals, but examples of such rings
are more difficult to find. It is particularly interesting that in all of
these cases either R has trivial multiplication or R is a prime ring.

For any additive subgroup A of a ring R we denote the index of A in
R, as additive groups, by [R : A]. For any x ∈ R, we let ⟨x⟩ denote the
additive subgroup generated by x. Our first theorem, for ideals, gives
an important dichotomy for the structure of R that will be used in our
subsequent results.

Theorem 1. If R is an infinite ring so that [R : I] is finite for every
nonzero ideal I of R, then R2 = (0) and (R,+) ∼= (Z,+), or R is a
prime ring. If R is prime and is an algebra over an infinite field, then
R must be a simple ring.
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Proof. If R2 = (0), then every additive subgroup of R is an ideal
of R, so applying Theorem A yields (R,+) ∼= (Z,+). Otherwise, let
Ann (R) be the two-sided annihilator of R, a proper ideal of R. Assume
first that Ann (R) ̸= (0). Using R/Ann (R) finite, let

R =
∪

(Ann (R) + rj) for {r1, . . . , rt} ⊂ R.

If R3 ̸= (0), then there is x ∈ R with RxR a nonzero ideal of R. Since
xAnn (R) = Ann (R)x = (0), it follows that RxR is generated as an
additive group by {rjxri | 1 ≤ i, j ≤ t}, a finite set. Now, if R/Ann (R)
has order v > 1 as a finite nonzero additive group, then vR ⊆ Ann (R).
Therefore, all vrjxri = (vrj)xri = 0 so RxR is a finite nonzero ideal.
This, together with our assumption that R/RxR is finite, results in
R finite, a contradiction. Thus, we may assume that R3 = (0) when
Ann (R) ̸= (0).

We are assuming that R2 ̸= (0), so it is a proper nonzero ideal of R.
Thus, R/R2 is finite, and so there is an integer w > 0 with wR ⊆ R2.
Further, for some {0 = t1, t2, . . . , tk} ⊆ R, with k ≥ 2, we have

R =
∪

(R2 + tj).

Therefore, any r ∈ R can be written as r = x + tj for some x ∈ R2

and some 1 ≤ j ≤ k. Since R3 = (0) but R2 ̸= (0), there is
some 0 ̸= y = titj ∈ R2. It follows that y ∈ Ann (R) and that
wy = (wti)tj ∈ R2R = (0), so ⟨y⟩ is a finite ideal of R. Using that
R/⟨y⟩ is finite yields the contradiction that R is finite. Consequently,
Ann (R) ̸= 0 forces R2 = (0) and (R,+) ∼= (Z,+), and we may now
assume that Ann (R) = (0).

Let N be a nonzero nilpotent ideal of R with Nm = (0) for m > 1
and minimal. We proceed much as above. Now Nm−1 is a nonzero
ideal of R so R/Nm−1 is finite, and there is an integer v > 1 with
vR ⊆ Nm−1 and also some {s1, . . . , sq} ⊆ R so that

R =
∪

(Nm−1 + sj).

Hence, (vN)R = N(vR) = (0) = (vR)N = R(vN). This shows first
that vN ⊆ Ann (R) = (0), and then that v2R = v(vR) ⊆ vNm−1 = (0).
Let 0 ̸= y ∈ N , and let I be the ideal of R generated by y. Thus, I =
⟨y⟩+Ry+yR+RyR is generated as an additive subgroup by the finite
set {y, ysi, sjy, sjysi | 1 ≤ i, j ≤ q}, using that R =

∪
(Nm−1 + sj).
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But v2R = (0), so I is a nonzero finite ideal, and once again this forces
the contradiction that R is finite. Hence, if Ann (R) = (0), then R
cannot have a nonzero nilpotent ideal.

Finally, if I and J are nonzero ideals of R then R/I and R/J are
finite, and so R/(I ∩ J) embeds isomorphically into the finite ring
R/I ⊕ R/J via r 7→ (I + r, J + r). Thus, I ∩ J ̸= (0), since otherwise
R would be finite. But (I ∩ J)2 ⊆ IJ , and since R has no nonzero
nilpotent ideals, we are forced to conclude that IJ ̸= (0), proving that
R must be a prime ring. Now assume that R is a prime algebra over
the infinite field F and has a proper nonzero ideal I. Then IR is a
proper nonzero algebra ideal of R, so R/IR is an algebra over F and,
by our assumption, is a nonzero finite ring. This obvious contradiction
shows that R must be a simple ring. This completes the proof of the
theorem. �

Aside from the standard examples, what are some nonsimple infinite
prime rings R for which R/I is finite for all nonzero ideals I? A com-
mutative domain of characteristic zero with this property is Z[

√
−5],

and many others can be obtained by replacing −5 with other integers
or suitable integral elements in the complex numbers. The idea here is
that the ideal I of Z[

√
−5] generated by any nonzero element α contains

mZ for m the norm of α, so card R/I ≤ m2. These examples show
that R need not be a PID or a UFD. To get examples when charR = p,
a prime, let F be a finite field with charF = p. Since F [x] is a PID, it
is easy to see that F [x] and F [x2, x3] are examples. Similarly the power
series ring F [[x]] is an uncountable PID with all proper quotients finite,
since any proper, nonzero ideal is generated by a power of x. The last
three examples give rise to noncommutative versions

F [x;ϕ], F [x2, x3;ϕ], and F [[x;ϕ]]

for ϕ a nonidentity automorphism ϕ of F , by twisting the scalar
multiplication via xkf = ϕ(x)k(f)xk for f ∈ F . Just as for the
commutative ring F [x], if I is a nonzero ideal, or right ideal, of F [x;ϕ]
and if 0 ̸= g(x) ∈ I has minimal degree, say n, then every f(x) ∈ F [x;ϕ]
has the form

f(x) = h(x) + p(x)

for h(x) ∈ I and deg p(x) < n. Consequently, F [x;ϕ]/I has at
most (cardF )n elements. Similar considerations hold for F [x2, x3;ϕ]
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and F [[x;ϕ]]; in the latter case, because each nonzero (right) ideal is
generated by a power of x, as for F [[x]].

An example of a noncommutative domain of characteristic zero with
all nonzero ideals of finite index is the ring of quaternions over the
integers. That is, if Q is the division ring of real quaternions, then
let R = {a + bi + cj + dk ∈ Q | a, b, c, d ∈ Z}. Clearly, R is a
noncommutative domain and R/I is finite for every nonzero ideal I.
To see the latter, for 0 ̸= α = a + bi + cj + dk ∈ I, its norm, the
product of α with a− bi− cj−dk, is a2+ b2+ c2+d2, so I contains the
quaternions over some nonzero ideal of Z. This forces the quotient ring
R/I to be a finite module over the ring of integers modulo the norm of
α: |R/I| ≤ (norm (α))4.

Let A represent any of the examples above that have an identity
element. For any ring R with identity element each ideal in the matrix
ring Mn(R) is just Mn(J) for J an ideal of R. Thus, matrix rings
Mn(A) are examples: nonsimple rings with zero divisors and nilpotent
elements having every proper quotient finite.

More generally, if J is a nonzero ideal of A, then any subring
S ⊆ Mn(A) that contains Mn(J) is an example. The reason is that
any nonzero ideal W of S contains the ideal Mn(JaJ) for any nonzero
entry a of any element of W ; this forces S/W to be finite by the choice
of A. It follows that Mn(J) itself is an example without an identity
element. Similarly, matrices over the ring mZ yield examples without
identity elements and having all proper quotients finite.

We present characteristic p examples that are finite extensions of
simple rings, as mentioned in the introduction. These require a bit of
notation.

Example 1. Let K be a field, V a countably infinite dimensional vector
space over K, and consider HomKV to be the row (or column) finite,
countable by countable matrices over K. Denote by M0(K) the subring
of HomKV consisting of all matrices with only finitely many nonzero
entries. It is straightforward to show that M0(K) is a simple ring by
using the standard matrix units in M0(K). When charK = p > 0,
then for any fixed integer n > 1 and any finite subfield F of K, choose
a nonzero subring S ⊆ Mn(F ). Now let R be the subring of HomKV
generated by M0(K) and all n×n block diagonal matrices that have a
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fixed A ∈ S for all n×n diagonal blocks–the n×n block matrices with
A in the upper left corner and repeated consecutively and countably
infinitely down the diagonal. Then M0(K) is the unique minimal ideal
of R and R/M0(K) ∼= S, which is finite. Hence, if I is any nonzero
ideal of R, then R/I is finite. Further, these examples can be extended
naturally to the case when dimKV has arbitrary infinite cardinality.
Thus, there are examples R for Theorem 1 that are uncountable, and
of arbitrary infinite cardinality.

In Example 1, although K with charK = p may be infinite, those
R ̸= M0(K) are not algebras over K but only over the finite field
F : K is the extended centroid of R. In Example 1 with V infinite
dimensional over K, when S contains the identity matrix In ∈ Mn(F ),
then R has an identity element and FIR is the center of R. However,
no similar example, having a simple ideal, exists if charR = 0. That
is, if a prime ring R satisfies the property that R/I is finite for all
nonzero ideals I, if R has a nonzero ideal M that is a simple ring, and
if charR = 0, then R = M . For, if y ∈ R−M , then R/M finite implies
that {M + ky | k ∈ Z} ⊆ R/M is finite. It follows that ny ∈ M for
an integer n > 1. Since M is simple and torsion free, nM = M , so
for some x ∈ M,ny = nx. Now R torsion free forces y = x ∈ M .
Consequently, any such R must be a simple ring.

We show next that the same assumption as in Theorem A gives a
similar result for rings: R must be a standard example. The argument
is quite easy. Recall that, for y ∈ R, the additive subgroup of R
generated by y is ⟨y⟩.

Theorem 2. If R is an infinite ring so that [R :A] is finite for every
nonzero additive subgroup A of R, then (R,+) ∼= (Z,+) and as a ring
R2 = (0) or R ∼= mZ for some m ≥ 1.

Proof. A direct application of Theorem A shows that (R,+) ∼=
(Z,+). Consequently, if (R,+) = ⟨y⟩, then the ring structure of R is
determined by y2 = my ∈ ⟨y⟩ for an integer m. When m = 0, R2 = (0),
suppose that m ≥ 1. It is clear that, for an indeterminate x over
Z, R ∼= xZ[x]/(x2 − mx) as rings. Let g : xZ[x] → mZ be given by
g(p(x)) = p(m). Now g is a surjective homomorphism of rings with
ker g = (x2 − mx), since these are the polynomials divisible by both
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x and x − m. Thus, R ∼= mZ as rings. When m < 0, then using
⟨−y⟩ = ⟨y⟩ and then (−y)2 = y2 = my = (−m)(−y), we get again that
R ∼= (−m)Z as rings. �

We next consider the structure of a ring R so that the quotient of
R by any nonzero right ideal is finite as an additive group. With this
assumption, it is immediate that R is a right Noetherian ring. What
infinite rings have this finite index property for right ideals? Clearly, the
standard examples and the domains presented after Theorem 1 do, but
the matrix examples over those domains do not. The example F [x2, x3]
shows that R need not be a PID, or a UFD. Are there examples with
zero divisors?

Our next result has the same kind of dichotomy as in Theorem 1 but
the stronger hypothesis about right ideals yields a bit more information
about the structure of R: it is a domain or is (Z,+) with trivial
multiplication.

Theorem 3. Let R be an infinite ring so that, for each nonzero right
ideal T , the index [R : T ] as an additive group is finite. Then R is a
division ring, R is a right Noetherian Ore domain with every proper,
nonzero, prime ideal maximal, or R2 = (0) and (R,+) ∼= (Z,+).
Furthermore, if R is a simple domain, then R must be a division ring.

Proof. Our hypothesis shows immediately that R must be a right
Noetherian ring. Since every nonzero ideal of R is a right ideal we
may apply Theorem 1 and conclude that R is prime or R2 = (0) and
(R,+) ∼= (Z,+). Thus, we may assume that R is a prime ring. Suppose
that, for nonzero a, b ∈ R, ab = 0. Hence, r(a), the right annhilator
of a, is a proper nonzero right ideal. Note that aR ̸= (0) since R is
prime. The map ϕ : R → aR via ϕ(r) = ar is a surjective R-module
homomorphism with kernel r(a). Since r(a) ̸= (0) and aR ∼= R/r(a),
we must have aR finite, and its quotient R/aR is finite by assumption,
forcing the contradiction that R is finite. This proves that R must be a
right Noetherian domain, from which it follows that R must be an Ore
domain. It is simple to see this directly in our situation. If, for nonzero
right ideals T and S of R, we had T ∩ S = (0), then R would embed
isomorphically in the finite additive group R/T ⊕ R/S, contradicting
R infinite. Hence, R must be an Ore domain.
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Next, if I is any proper, nonzero, prime ideal of R, then R/I is a
finite prime ring, so a simple ring, forcing I to be a maximal ideal of
R.

Finally, suppose that R is an infinite, simple domain but not a
division ring, so R contains a proper nonzero right ideal T . Using
that R/T is finite, R =

∪
(T + xj) for a finite {x1, . . . , xk} ⊆ R, where

no xj = 0 and some xi ∈ T . Since R is a domain, xjR is infinite for
each j. Using that R is an Ore domain shows first that, for each j,

T ∩ xjR ̸= (0),

so
W (xj) = {y ∈ R | xjy ∈ T}

is a nonzero right ideal of R, and then that

W =
∩

W (xj)

is a nonzero right ideal of R. But now, since R is simple,

R = RW =
∪

(T + xj)W ⊆ T.

This contradiction shows that R must be a division ring, completing
the proof of the theorem. �

Since in a commutative ring every right ideal is an ideal, examples
of infinite commutative rings satisfying the finite index condition in
Theorem 3 are the examples given after Theorem 1. As mentioned
after Theorem 1, the twisted polynomial rings

F [x;ϕ] and F [x2, x3;ϕ],

and the twisted power series ring F [[x;ϕ]], all over a finite field F ,
satisfy the finite index condition on right ideals. An example in
characteristic zero is the ring R of quaternions over the integers, also
discussed after Theorem 1. Just as mentioned there, any nonzero right
ideal T contains the norm of each of its elements, so it contains an ideal
mR for some nonzero m ∈ Z. Thus,

[R : T ] ≤ m4.

Using Theorem 3, we can obtain our main result, the natural ring
theoretic analogue of Theorem A that assumes all nonzero subrings
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of R have finite index. The conclusion for infinite rings is the same
characterization as in Theorem 2: the ring must be mZ or the additive
group of integers with trivial multiplication. Our argument requires a
certain fact that we prove first. In any ring R let [y] denote the subring
of R generated by y ∈ R.

Lemma 1. Let R be a ring with 1R, charR = 0 and with the property
that each nonzero subring has finite additive index in R. Then y /∈ [1R]
forces 1R /∈ Zy = ⟨y⟩.

Proof. We obtain a contradiction to the finite index condition for
subrings by assuming that there is

y /∈ [1R] with ny = 1R

for some integer n. Should n < 0, then replace y with −y /∈ [1R], and
now (−n)(−y) = 1R. Thus, we may assume that ny = 1R for a minimal
positive integer n > 1. It follows that

[1R] ⊆ [y].

Since R/[1R] is finite, the set of cosets {[1R] + yj | j > 0} is finite, so
there are positive integers t > s with yt − ys = m1R for some integer
m. Thus,

y = nt−1yt = nt−1(m1R + ys) = nt−1m1R + nt−1−s1R ∈ [1R].

This contradiction proves the lemma. �

Theorem 4. Let R be an infinite ring so that for every nonzero subring
S, the index [R : S] of (S,+) in (R,+) is finite. Then (R,+) ∼= (Z,+)
and either for some integer m ≥ 1, R ∼= mZ as rings, or R2 = (0).

Proof. Since any right ideal of R is a subring of R we may apply
Theorem 3 to conclude that R2 = (0) and (R,+) ∼= (Z,+), or else R
is a domain. Thus, we may assume that R is a domain. Note that the
only idempotents in R can be 0 or 1R, if R has an identity element.
As above let [x] denote the subring generated by x ∈ R. Should [x] be
finite for some x ̸= 0, then

(R,+)/([x],+)
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finite forces the contradiction that R is finite, so nonzero elements of R
generate infinite subrings. Next assume that, for some nonzero x ∈ R,
[x] = [x2]. Since x ∈ [x2], for some polynomial q(Y ) ∈ Z[Y ],

x = x2q(x2);

let e = xq(x2) ∈ R, and observe that e2 = e is an idempotent. If e = 0,
then also x = xe = 0. Thus, when x ̸= 0, [x] = [x2] implies that

1R ∈ R and 1R ∈ [x].

Since we are assuming that R is a domain, consider first when
charR = p > 0, so R is an algebra over Fp, the field of p elements.
We have seen that, for any x ∈ R − {0}, [x] must be infinite. But, if
R has an identity element 1R, then [1R] would be finite, so R cannot
have an identity element. Thus, as we saw above, if x ∈ R− {0}, then

[x] ̸= [x2].

In [x]/[x2], the subset

{[x2] + x2k−1 | k ≥ 1}

must be finite, so for some k < t,

x2t−1 − x2k−1 ∈ [x2].

Consequently, x satisfies some nonzero polynomial over Fp. Since R
is a domain, we may, if necessary, cancel powers of x to assume that
x = x2g(x) for some nonzero g(Y ) ∈ Fp[Y ]. As above, this leads to a
nontrivial idempotent in R, another contradiction. Therefore, it is not
possible that charR = p.

We may now assume that charR = 0. Since R and its subrings are
torsion free Z algebras, if R has an identity element 1R, then

[1R] = {k1R | k ∈ Z} ∼= Z

as rings. Suppose there is some y ∈ R − [1R]. Since R/[1R] is a finite
additive group, its subset

{[1R] + ky | k ∈ Z}

is finite. Consequently, there are integers t > s > 0 so that (t − s)y ∈
[1R]. Then

A = {n ∈ Z | ny ∈ [1R]} ≠ (0)
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is an additive subgroup of the integers, so A = mZ for m > 1 the
smallest positive integer in A. We conclude from Lemma 1 that
my ̸= ±1R.

Suppose my = v1R ∈ [1R]. If v = 0, then since R is torsion free,
y = 0, contradicting its choice, so

v ̸= 0 and |v| > 1.

If the integers m and v have a common factor d > 1, say m = dw and
v = dz, then

d1R(wy − z1R) = d(wy − z1R) = 0,

so R torsion free forces wy = z1R. Thus,

|w| ∈ A with |w| < m,

contradicting the minimality of m. The result is that

GCD ({m, v}) = 1.

Assume that k > 1 and yk ∈ [1R]. Then

vk−1y = mk−1yk ∈ [1R],

so vk−1 ∈ A, contradicting GCD ({m, v}) = 1. Just as above, since
yk /∈ [1R], there is Ak = {n ∈ Z | nyk ∈ [1R]} = mkZ for some mk > 1,
using Lemma 1. Now mk ∈ Ak = mkZ, so mk | mk. Also, as above,
mky

k = w1R ∈ [1R]− (0). It follows that

mkw1R = mkm
kyk = mkv

k1R

and, by unique factorization in [1R] ∼= Z, we have that mk must divide
mk, forcing mk = mk. That is,

Ak = mkZ.

In particular,

{[1R] + yk, [1R] + 2yk, . . . , [1R] +mkyk}

is a subset of distinct elements in the additive group R/[1R]. But, if
cardR/[1R] = t and if mk > t, we arrive at a contradiction. Therefore,
we must conclude that there is no y ∈ R− [1R]: that R = [1R] ∼= Z.

Finally, we consider when R is a torsion free domain without an
identity element. For any nonzero x, y ∈ R, since R/[x] is finite, either
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y ∈ [x] and xy = yx, or else in R/[x], {[x] + my | m > 0} must be a
finite set of cosets. Thus, there is an integer n > 0 so that ny ∈ [x],
and it follows that

n(yx) = (ny)x = x(ny) = n(xy).

But R torsion free means xy = yx, proving that R must be commuta-
tive. Further, from above, [x] ̸= [x2] when x ̸= 0. Therefore, R/[x2]
finite shows that the set of cosets {[x2]+mx | m > 0} is finite, resulting
in

nx = x2q(x2)

for some n > 0 and q(Y ) ∈ Z[Y ].

Since R is a torsion free Z module, there is a ring isomorphism from
Z to a subring of End ((R,+)) via left multiplication: the image z# of
z ∈ Z is given by

z#(r) = zr = rz ∈ (R,+).

Similarly, left multiplication by a ∈ R gives

a# ∈ End ((R,+))

via a#(r) = ar. Our assumptions on R show that all of these z# and
a# are injective maps and that

#: R −→ #(R) = R# ⊆ End ((R,+)),

and
#: Z −→ {z# | z ∈ Z} = Z# ⊆ End ((R,+))

are isomorphisms of rings. A direct computation shows that

za# = (za)# = z#a# = a#z#.

Therefore, if W is the subring of End ((R,+)) generated by the images

Z# and R#,

then W is a torsion free Z module via multiplication by Z#, and W is
a commutative ring with identity 1#. A typical element of W can be
expressed as z# + a# for some

z ∈ Z and a ∈ R,

and R# ∼= R as rings, is an ideal of W . We show that nonzero subrings
of W have finite index.
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Suppose some z#+a# ∈ W is not injective. Then, for some nonzero
b ∈ R,

0 = (z# + a#)(b) = zb+ ab.

Thus, for any r ∈ R,
0 = zrb+ arb,

using that R is commutative, so R a domain yields (z# + a#)(r) = 0
for all r ∈ R, which means z# + a# = 0. Hence, each 0 ̸= w ∈ W is
injective, and we may conclude that W is itself a domain.

As we saw above, for any nonzero x ∈ R, there is a positive n ∈ Z
so that nx = xp(x2)x ∈ [x2] for some nonzero p(Y ) ∈ Z[Y ]. Since
n# − (xp(x2))# ∈ W has x in its kernel, we must have

n# = (xp(x2))# ∈ [x#].

Let T be any nonzero subring of W . If T ⊆ Z#, then our computation
shows that, for any nonzero x ∈ R, S# = T ∩ [x#] ̸= (0): if 0 ̸= k# ∈ T
and 0 ̸= n# ∈ [x#], then for m = kn, m# ∈ S#. Thus, S# ⊆ R# is
a subring of T and of R#, and for some positive integer m, m# ∈ S#.
When, instead, T ⊆ R#, then certainly T ∩ Z# ̸= (0) as above, so
some m# ∈ T for m > 0. Finally, when T contains a nonzero element
z# + a# with z# ̸= 0 and a# ̸= 0, then for a positive integer k with
k# ∈ [a#],

k(z# + a#) = kz# + ka# = k#z# + ka# = z#k# + ka#

= zk# + ka# ∈ T ∩ [a#] ̸= (0),

and again T contains a nonzero subring of R#, which also contains
some m# for some m > 0.

Thus, in all cases, any nonzero subring T of W contains a nonzero
subring S# of R# that also contains some n# ∈ Z# with n > 0. Since
R# ∼= R, we may write

R# =
∪

(S# + r#i )

for a finite {r#j } ⊆ R#. It follows that

W =
∪

(S# + z# + r#i )
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for 0 ≤ z < n and r#i ∈ {r#j }. Therefore, [W : S#] is finite, and since

S# ⊂ T we also have [W : T ] is finite.

We proved above that a commutative ring with identity element for
which each nonzero subring has finite index must be isomorphic to the
ring Z. Thus, W ∼= Z and, since R# is an ideal in W , we must conclude
that, for some positive integer m,

R ∼= R# ∼= mZ

as rings, completing the proof of the theorem. �

Our final comments concern the situation when every nonzero Lie
ideal of an infinite ring R has finite index in (R,+). Recall that a Lie
ideal of R is any additive subgroup L so that, for all x ∈ L and all
r ∈ R,

xr − rx = [x, r] ∈ L.

From this definition, it is clear that in a commutative ring R any
additive subgroup is a Lie ideal. Thus, if R is an infinite commutative
ring in which every nonzero Lie ideal has finite index in R, then R is
a standard example by Theorem 2. Consequently, the only interest in
considering Lie ideals is for noncommutative rings. Now every ideal of
R is a Lie ideal, so assuming the finite index condition for Lie ideals,
we have by Theorem 1 that R is a prime ring or R2 = (0) and

(R,+) ∼= Z.

Using these observations, we can prove the following:

Theorem 5. Let R be an infinite ring so that for every nonzero Lie
ideal L the index [R : L] of (L,+) in (R,+) is finite. Then R2 = (0)
and (R,+) ∼= Z; as rings R ∼= mZ for some m ≥ 1; or R is a prime
ring with center Z(R) = (0). Further, if R is a simple ring, then either
L = R for all nonzero Lie ideals L, or the centroid F of R must be
finite, so charR = p > 0, and R contains only finitely many Lie ideals.

Proof. Since any ideal of R is a Lie ideal, Theorem 1 shows that R
is a standard example or is a prime ring, so we may assume that R
is prime. Assume that Z(R) ̸= (0), and note that Z(R) is a Lie ideal
of R. Thus, R/Z(R) is a finite additive abelian group so there is a
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positive integer m with mR ⊆ Z(R), and there is {a1, . . . , ak} ⊆ R
with R =

∪
(Z(R) + aj). It follows first that, for any s, t ∈ R,

[s, t] = [ai, aj ]

for some 1 ≤ i, j ≤ k, and then, using

m[ai, aj ] = [mai, aj ] = 0,

that [R,R] is finite. But [R,R] is a Lie ideal of R, so either R is
commutative and applying Theorem 2 finishes the proof, or R/[R,R]
is finite forcing R to be finite. Consequently, we may assume that
Z(R) = (0).

For the last statement of the theorem, when R is simple with centroid
F and contains a nonzero proper Lie ideal L, we follow the argument
in the proof of Theorem 3. Since [L,R] ⊆ L and Z(R) = (0), we have
that [L,R] is a proper nonzero Lie ideal of R. Using that

[L,R] = [L,FR] = F [L,R]

is also an F -vector space, we conclude that R/[L,R] is finite, not zero
and an F -vector space, so F must be finite.

Further, R a simple ring with Z(R) = (0) implies that every nonzero
Lie ideal of R must contain [R,R] [4, page 9, Theorem 1.5]. Either
[R,R] = R or [R,R] is the unique, minimal, nonzero Lie ideal in R.
In this case, R/[R,R] is finite, so there are only finitely many additive
subgroups of R containing [R,R]. Hence, R can contain only finitely
many Lie ideals. �

It is not obvious that examples of noncommutative rings satisfying
the hypothesis of Theorem 5 exist, and if so whether any can be simple.
A prime ring that satisfies the conditions of Theorem 5 must be highly
noncommutative, since any prime ring satisfying a polynomial identity
has a nontrivial center [14]. In addition, most standard examples
of infinite, noncommutative, prime rings contain Lie ideals of infinite
index. We present some examples relevant for Theorem 5. Our first
one is a simple algebra with finite centroid. We then can describe some
finite extensions of it that are examples of prime rings that are not
simple and satisfy the finite index condition of Theorem 5.
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Example 2. As in Example 1, for K a finite field, let M0(K) be the
ring of all countable by countable matrices over K with only finitely
many nonzero entries. It is straightforward to show that M0(K) is a
simple ring, that

[M0(K),M0(K)]

consists of all matrices in M0(K) having trace zero, and that

M0(K)/[M0(K),M0(K)] ∼= e11K

as additive groups, for the usual matrix unit e11. Since M0(K) is a
simple ring with zero center, as above, every nonzero, proper Lie ideal
of M0(K) contains

[M0(K),M0(K)]

[4, page 9, Theorem 1.5]. Thus, M0(K) is a simple ring with finite
centroid K so that M0(K)/L is finite for every nonzero Lie ideal of
M0(K).

Just as in Example 1, we can extend Example 2 to find some prime,
but not simple rings, satisfying the finite index condition in Theorem 5.

Example 3. Let S ⊆ Mn(K) for n > 1, and let K be a finite field,
so that S is a subring containing no invertible matrix in Mn(K). An
example would be the subring of strictly upper triangular matrices,
perhaps with arbitrary entries in a subset of positions on the main
diagonal. As in Example 1, let R be the subring of the countable by
countable matrices over K generated by M0(K) in Example 2, and, for
some n > 1, the block diagonal n×n matrices with each diagonal block
the same fixed element of S: these have A ∈ S in the upper left corner,
and A is repeated consecutively and infinitely down the diagonal. Then
it is easy to see that R is a prime ring with unique, nonzero, minimal
ideal M0(K).

If L is any nonzero Lie ideal of R, then since

Z(R) = (0),

[L,L] ̸= 0 [12, page 120, Lemma 6], and it follows that L must contain
[M0(K),M0(K)] [12, page 123, Theorem 13]. As in Example 2, the
cosets of [M0(K),M0(K)] in M0(K) are generated by e11K, so the
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cosets of
[M0(K),M0(K)]

in R are generated by the elements of e11K ∪ S, a finite set. Thus,
R/L must be finite. The choice of S containing no invertible matrix is
essential for ensuring that R has no center.

Our final example is a simple ring, of any characteristic, that
contains no proper, nonzero Lie ideal.

Example 4. A result of Harris [3] constructs division rings D, for each
possible characteristic, that satisfies

[D,D] = D.

Further, for any d ∈ D, there are a, b ∈ D so that

d = [a, b] = ab− ba.

Let R = M0(D) be as in Example 1; R is the ring of countable by
countable matrices with entries in D so that each matrix has only
finitely many nonzero entries. Since D is a simple ring, it follows easily
that R is as well, and that Z(R) = (0). As in Example 2, every
nonzero Lie ideal of R contains [R,R]. Using that [D,D] = D, a direct
computation with matrix units in R shows that [R,R] contains

eij [D,D] = Dij for all i, j.

This means that
[R,R] = R,

so R is the only proper Lie ideal in R.

In the same way that Example 3 obtained prime rings via finite
extensions of the simple ring in Example 2, one can obtain prime, finite
extensions of the simple ring M0(D) in Example 4 when the division
ring D has prime characteristic. In this case, the center of D contains
finite subfields, say K is such. In analogy with Example 3, if, for any
n > 1 S ⊆ Mn(K) is a subring without an identity element, then define
R to be the ring generated by M0(D) and the block diagonal matrices
with a fixed entry A ∈ S in each diagonal block.
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The examples above for Theorem 5 are all of the following form: R
is a prime ring with Z(R) = (0) and is a finite extension of an ideal M
so that M is a simple ring with unique, nonzero, minimal Lie ideal L,
necessarily [M,M ] (see [4]), of finite index in R. Any such ring must
satisfy the hypothesis of Theorem 5. For, if V is a nonzero Lie ideal of
R, then by [12, page 120, Lemma 6], for some ideal I of R,

[I, I] ⊆ V.

Since M = MI ⊆ I, we must have

[M,M ] ⊆ V,

so [M,M ] is the unique, minimal Lie ideal in R (and in M), and
R/[M,M ] finite forces R/V to be finite.

We have been unable to find examples for Theorem 5 of prime rings
that are not simple and that are not of the form just mentioned above.
Are there infinite, noncommutative rings that satisfy the assumption
in Theorem 5 but do not contain a (unique) nonzero simple ideal? In
any case, could there be a noncommutative ring containing an infinite
collection of Lie ideals that satisfies the assumption in Theorem 5? We
suspect that, if an infinite, noncommutative, prime ring R satisfies the
finite index condition for its nonzero Lie ideals, then R must contain
only finitely many Lie ideals, or at least must satisfy the descending
chain condition on Lie ideals. In the latter case, R would contain a
unique, minimal, nonzero Lie ideal, so only finitely many Lie ideals.
We have been unable to prove such a result.
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