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ON VARIOUS TYPES OF SHADOWING FOR
GEOMETRIC LORENZ FLOWS

A. ARBIETO, J.E. REIS AND R. RIBEIRO

ABSTRACT. We show that Lorenz flows have neither
limit shadowing property nor average shadowing property
nor the asymptotic average shadowing property where the
reparametrizations related to these concepts relies on the set
of increasing homeomorphisms with bounded variation.

1. Introduction. The shadowing property is a dynamical property
that plays a key role in the study of the stability of dynamics. This
property is found in hyperbolic dynamics, and it was used with success
to prove their stability, see for instance [12]. Roughly speaking, it
allows us to trace a set of points which looks like an orbit, but with
errors, by a true orbit. For practical applications, we can suppose
that φ is viewed as the orbit realized in numerical calculation by
computer, or in physical experiments; thus, it could have errors. Then
the shadowing property allows us to “correct” these errors, finding a
true evolution which nicely approximates φ. Thus, to decide which
systems possess the shadowing property is an important problem in
dynamics.

The geometric Lorenz model is an important example in the theory
of dynamical systems. It was inspired by the equations found by
Lorenz related to a model of fluid convection [10]. Moreover, it is
one of the most famous examples, since it is often related with the
notion of chaos. It was studied in the initial stages by Guckenheimer
and Williams [7, 14, 15], Afraimovich, Bykov and Shil’nikov [1] and
Yorke and Yorke [16]. Moreover, it is an attractor which is transitive
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and contains both regular orbits and singularities. As we mentioned
before, hyperbolic dynamical systems possess the shadowing property.
However, these Lorenz systems are not hyperbolic, since they have
singularities approximated by regular orbits. Even so, they have some
robust properties which are also shared by hyperbolic dynamics.

It is natural then to ask if these Lorenz systems have the shadowing
property. Komuro [9] showed that geometric Lorenz flows do not satisfy
the (parameter-fixed) shadowing property except in very restricted
cases. Even so, in [8], it was shown that the geometric Lorenz attractors
have the parameter-shifted shadowing property. However, this notion is
very technical. So, we could ask if these systems have some shadowing-
type properties which are more easy to check.

Related to this, many properties were suggested and studied by
several authors. As a kind of generalization of the shadowing property,
Blank [3] introduced the notion of the average shadowing property in
the study of chaotic dynamical systems. Essentially it allows great
errors, but they must be compensated with small errors.

On the other hand, Eirola et al. [4] posed the notion of the limit-
shadowing property. From the numerical point of view this property on
a dynamical system X means that if we apply a numerical method of
approximation to X with “improving accuracy” so that one step errors
tend to zero as time goes to infinity, then the numerically obtained
trajectories tend to real ones. Such situations arise, for example,
when one is not so interested in the initial (transient) behavior of
trajectories but wants to reach areas where “interesting things” happen
(e.g., attractors) and then improve accuracy. In the sequence, Gu [5]
introduced the notion of asymptotic average shadowing property for
flows. This is a certain generalization of the limit-shadowing property
in random dynamical systems.

It could be checked that these weaker shadowing properties are
present in hyperbolic dynamics. Thus, following Komuro, a natural
question is to decide if the Lorenz systems has some of these weaker
shadowing properties. We remark also, as is well known, that the
analysis of shadowing on flows becomes more complicated than the
analysis for diffeomorphisms, due to the presence of reparametrizations
of the systems on those concepts.

The purpose of this paper is to seek sufficient conditions over the
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Lorenz map which implies these kinds of shadowing: ∆-asymptotic
average shadowing property (∆-AASP), ∆-limit shadowing property
(∆-LSP) and ∆-average shadowing property (∆-ASP). The constant ∆
is an upper bound to the variation of the respective reparametrizations
(see Section 2).

Let (Λ, φ) be a geometric Lorenz flow with Poincaré map P : S∗ → S
(see the definitions in Section 2). Let f : F∗ → F be the map associated
to the foliation F on S and L+ and L− the lateral leaves of F . Our
main result is the following:

Theorem 1.1. Lorenz flows (Λ, φ) satisfying f(L+) ̸= L+ or f(L−) ̸=
L− have neither ∆-ASP, ∆-LSP nor ∆-AASP for any ∆ ≥ 0.

This paper is organized as follows: in Sections 2 and 3 we give
the precise definitions of the objects used in the statement above. In
Section 4, we prove Theorem 1.1.

2. Various types of shadowing. There are several types of shad-
owing in the literature. In this section, we define the ones which will
be worked in this paper.

Let

Rep = {g : R −→ R : g is a monotone increasing homeomorphism

with g(0) = 0}.

Fixing ∆ ∈ R+, define

Rep (∆) =

{
g ∈ Rep :

∣∣∣∣g(s)− g(t)

s− t
− 1

∣∣∣∣ ≤ ∆, for every s ̸= t s, t ∈ R
}
.

Let X ∈ X1(M) be a vector field and φ the associated flow. A
sequence (xi, ti)i∈Z is a δ-average-pseudo orbit of φ if ti ≥ 1 for all
i ∈ Z and there is a positive integer N such that for any n ≥ N and
k ∈ Z, we have

1

n

n∑
i=1

d(φ(ti+k, xi+k), xi+k+1) < δ.
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A δ-average-pseudo orbit, (xi, ti)i∈Z, of φ is ∆-positively ϵ-shadowed on
average by the orbit of φ through x, if there exists h ∈ Rep (∆) such
that

(2.1) lim sup
n→∞

1

n

n∑
i=1

∫ si+1

si

d(φ(h(t), x), φ(t− si, xi)) dt < ϵ,

where s0 = 0 and sn =
∑n−1

i=0 ti, n ∈ N. It is ∆-negatively ϵ-shadowed

on average by the orbit of φ through x if there is h̃ ∈ Rep (∆) for

which the limit (2.1) is true when replacing h by h̃ and the limits of

integration by −s−i and −s−i+1 (in this case s−n =
∑−1

i=−n ti).

Definition 2.1. The flow φ has the ∆-average shadowing property (∆-
ASP) if, for any ϵ > 0, there exists δ > 0 such that any δ-average-pseudo
orbit of φ is both ∆-positively (negatively) ϵ-shadowed in average by
some orbit of φ.

A sequence (xi, ti)i∈Z is a limit-pseudo orbit of φ if ti > 1 for all
i ∈ Z and

lim
|i|→∞

d(φ(ti, xi), xi+1) = 0.

A limit-pseudo orbit, (xi, ti)i∈Z, of φ is ∆-positively shadowed in limit
by an orbit of φ through x if there is h ∈ Rep (∆) such that

lim
i→∞

∫ si+1

si

d(φ(h(t), x), φ(t− si, xi)) dt = 0.

Analogously, as before, we define when a limit-pseudo orbit is ∆-
negatively shadowed in limit by an orbit.

Definition 2.2. The flow φ has the ∆-limit shadowing property (∆-
LSP) if every limit-pseudo orbit is both ∆-positively (negatively) shad-
owed in limit by an orbit of φ.

A sequence (xi, ti)i∈Z is an asymptotic average-pseudo orbit of φ if
ti ≥ 1 for all i ∈ Z and

lim
n→∞

1

n

n∑
i=−n

d(φ(ti, xi), xi+1) = 0.
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An asymptotic average-pseudo orbit, (xi, ti)i∈Z, of φ is ∆-positively
asymptotically shadowed in average by an orbit of φ through x if there
exists h ∈ Rep (∆) such that

lim
n→∞

1

n

n∑
i=0

∫ si+1

si

d(φ(h(t), x), φ(t− si, xi)) dt = 0.

Similarly, we define when an asymptotic average-pseudo orbit is ∆-
negatively asymptotic shadowed in average by an orbit.

Definition 2.3. The flow φ has the ∆-asymptotic average shadowing
property (∆-AASP) if every asymptotic average-pseudo orbit is both
∆-positively (negatively) asymptotically shadowed in average by an
orbit of φ.

3. Geometric Lorenz flows.

3.1. Construction. Let S3 = R3 ∪ {∞} be the 3-sphere. The
geometric Lorenz attractor is an attractor set in S3 of a flow denoted by
Yt that we are about to describe. This attractor has, as a local basin,
a solid 2-torus U in R3 such that the flow Yt is inwardly transverse
to the boundary of U . In S3\U , the flow Yt has three saddle type
hyperbolic singularities with stable complex eigenvalues and a source
at {∞}. Define

Λ =
∩
t≥0

Yt(U)

as the maximal Yt-invariant set in U . The set Λ is called the geometric
Lorenz attractor. See Figure 1(b). This geometric model is motivated
by Lorenz’s equations:

(3.1) X(x, y, z) = (−ax+ ay, rx− y − xz, xy − bz), a, r, b > 0,

which were the result of tentatively modeling the weather forecast in
the sixties (1963). When the parameters in (3.1) are a = 10, r = 28 and
b = 8/3, then the numeric simulation of this field exhibits a behavior
which is similar to the field Y called the geometric Lorenz model, which
was introduced by Guckenheimer [7, 1976] and by Shilnikov [1]. To
understand this geometric model first consider the flow Xt associated
to the Lorenz field near the origin O = (0, 0, 0). Analogously, the field
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(a) Behavior near the origin. (b) The flow takes Σ± to S.

Figure 1. Construction of the geometric Lorenz flow.

Y has a hyperbolic singularity at O and, by the Hartman-Grobman
theorem, it is conjugated to the linearized equations in a neighborhood
of the origin

x′ = λ1x, y′ = λ2y, z′ = λ3z.

Solving this system with initial data (x(0), y(0), z(0)) = (x0, y0, 1), we
have:

x(t) = x0(e
t)λ1 , y(t) = y0(e

t)λ2 , z(t) = (et)λ3 .

Fix x0 > 0, and let T be the positive time for which the orbit
intersects the plane x = 1, that is, x(T ) = 1. Then eT = (x0)

1/λ1 and
so

x(T ) = 1, y(T ) = y0(x0)
−λ2/λ1 , z(T ) = (x0)

−λ3/λ1 .

Let S = {(x, y, 1) : |x| ≤ 1/2, |y| ≤ 1/2} be a transversal section
to the field Y such that the first return map P is defined in S∗ =
S \ {x = 0}. The line x = 0 in S is contained in the intersection
between W s(0, Y ) and S. Let

P : S∗ −→ int (S) : p 7→ P (p)

be defined by P (p) = Yτ (p), where τ is the first positive time such that
Yτ (p) ∈ S. Assume the following hypothesis over the field Y (for more
details see [6, page 273]:
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(h1) The point O has eigenvalues λ1, λ2, λ3 such that 0 < −λ3 < λ1 <
−λ2, where λ3 is the eigenvalue of the z-axis, which is supposed to be
Yt-invariant.

(h2) There exists a foliation Fs of S whose vertical leaves are such that:
if L ∈ Fs and P is defined in L, then P (L) is contained in a leaf of
Fs. The foliation Fs is part of the strong stable manifold of the flow in
the attractor which can be extended to a neighborhood of the attractor
[11].

(h3) Every point of S∗ returns to S, and the return map P is expansive
enough in the direction which is transverse to the leaves of Fs.

(h4) The flow is symmetric with respect to the rotation θ = π around
the y-axis.

These four hypothesis define the geometric Lorenz flow. Analytically,
these hypothesis may be reformulated by a coordinate system (x, y)
over S such that P has the following properties:

(P1) The leaves of Fs are given by x = c, with −1/2 ≤ x ≤ 1/2.

(P2) There are functions f and g such that P has the form:

P (x, y) = (f(x), g(x, y))

for x ̸= 0 and P (−x,−y) = −P (x, y).

(P3) f ′(x) ≥ λ >
√
2, for all x ̸= 0 and limx→0 f

′(x) = ∞.

(P4) 0 <
∂g

∂y
< δ < 1, for all x ̸= 0 and limx→0

∂g

∂y
= 0.

3.2. Foliations. In the text, the leaves of the foliation Fs, of hypoth-
esis (h2), will be identified to the lines in S whose x-coordinate is fixed.
For simplicity we will denote such a foliation by F and its leaves by

Fx0 =

{
(x0, y, 1) ∈ R3 | y ∈

[
− 1

2
,
1

2

]}
.

Additionally, we will denote by

L− = F−1/2, L0 = F0, L+ = F1/2.
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We call L0 of singular leaf and denote F∗ = F \ L0. The one-

dimensional map f , (P2), induces a map f̂ given by

f̂ : F∗ −→ F
Fx 7−→ Ff(x).

Whenever there is no ambiguity, we shall denote f̂ by f .

We define an order relation on F by:

Fx ≤ Fy ⇐⇒ x ≤ y

where x, y ∈ [−1/2, 1/2].

4. Proof of Theorem 1.1. The proof of Theorem 1.1 will be
developed in the next three subsections. In Section 4.1, we define a
pseudo orbit. In Section 4.2, we prove some technical lemmas. Lastly,
in Section 4.3, we prove the theorem itself.

From now on, (Λ, φ) is a geometric Lorenz flow, P : S∗ → S is the
associated Poincaré map and f : F∗ → F is the map associated to the
foliation F over S.

4.1. The pseudo orbit. This section concerns the description of the
pseudo orbit to be used in the proof of the Theorem 1.1. We will
develop it under the assumption that

f(L−) > L− and f(L+) = L+

(recall the order relation on the set of leaves of S). The remainder
case, which is f(L−) ≥ L− and f(L+) < L+, will be commented in
Remark 4.2 (subsection 4.1.3).

Recall that a pseudo orbit is a bi-sequence (when dealing with flows)
composed by points and times. We are going to separately construct
two sequences. Firstly, the sequence of points and then the sequence of
times. Finally, we will argue that such a sequence is, in fact, a pseudo
orbit in the sense of the three kinds of pseudo orbit defined in Section 2.

4.1.1. Sequence of points. Denote by V the set contained in the stable
manifold of the singularity σ =(0,0,0) and “under” the singular leaf L0
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of S (see Figure 4), namely,

V =
∪

x∈L0

φ(R+, x).

The positive orbit of points in V converges to σ; thus, they do not cross
the section S. In turn, all the other points cross S in the future. Now,
for any x ∈ U \ V , let τ(x) be the time spent by the flow to intersect
S,

τ(x) = min{t ∈ R+
∗ | φ(t, x) ∈ S},

where R+
∗ denotes the set of positive real numbers, and let π(x) be such

an intersection point

(4.1) π(x) = φ(τ(x), x).

Put

π0(x) = x and πn(x) = π(πn−1(x)) for all n > 0.

Fix a constant Γ much smaller than the distance between the lateral
leaves:

(4.2) Γ ≪ d(L−, L+)

(here d(A,B) = inf{d(x, y) | x ∈ A and y ∈ B} for any sets A and B).
We will construct a one-sided sequence (xn)n∈N in four steps. In the
construction, we assume that k is an arbitrary natural number or zero.

Step 1. The terms of the sequence of type x4k are points in Wu,−(σ)
which verify

d(x4k, σ) =
Γ√
2.2k

,

(see Figure 2).

Step 2. In the terms of type x4k+1 we will impose two conditions.
From the above item, we have defined the term x0 and we also have
π(x4k) = π(x0). So, we take x4k+1 ∈ S+ satisfying a first condition

(4.3) d(x4k+1, π(x0)) =
Γ

2k
.

Now, the positive orbit of any point in the set U∞
i=1f

−i(L0) intersects
L0. In turn, such a set is dense in S. Based on this fact, we impose a
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second condition on x4k+1:

φ(s1k, x4k+1) ∈ L0 for some s1k > 1.

Note that, naturally, we have

(4.4) Fx4k+1
< L+ = Fπ(x0).

Step 3. Similarly as in Step 1, we take x4k+2 ∈ Wu,+(σ), verifying

(4.5) d(x4k+2, σ) =
Γ√
2.2k

.

Step 4. Finally, the terms of type x4k+3 belong to S− and we will
demand three conditions for them. Before this, note that π(x4k+2) =
π(x2) (and thus π2(x4k+2) = π2(x2)), and we can reduce Γ such that
d(π(L−), L−) > Γ/2k. So, the first two conditions are:

d(x4k+3, π
2(x2)) =

Γ

2k

and
φ(s3k, x4k+3) ∈ L0 for some s3k > 1.

In addition, note that Fπ(x4k+2) = L− and Fπ2(x4k+2) = f(L−).

Moreover, we know that f(L−) > L−. These facts allow us to choose
x4k+3 ∈ S− satisfying the third condition:

(4.6) Fπ(x4k+2) = L− < Fx4k+3
< f(L−) = Fπ2(x4k+2).

Now we extend the above sequence to a two-sided sequence (xn)n∈Z
by setting

(4.7) x4k+i = x4(−k−1)+i,

for k ≤ −1 and i ∈ {0, . . . , 3}. Moreover, the expressions

Γ

2k
and

Γ√
2.2k

in the above equalities must be replaced, respectively, by

(4.8)
Γ

2(−k)
and

Γ√
2.2(−k)

.

This ends the construction of the sequence of points.
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4.1.2. Sequence of times. In the same way as the last subsection
we will construct a sequence of times (tn)n∈N in four steps. In the
construction we assume that k is an arbitrary natural number or zero.

Step 1. The terms of type t4k are the times that the points x4k spend
to reach π(x4k) ∈ S, namely:

(4.9) t4k = τ(x4k).

Step 2. Recall that x4k+1 spends a time s1k (through the flow) to reach
the point φ(s1k, x4k+1) in the singular leaf L0. In turn, such a point
tends to the singularity. So there exists a time s̃1k, verifying

(4.10) d(φ(s1k + s̃1k, x4k+1), σ) =
Γ√
2.2k

.

Therefore, we define the terms of type t4k+1 as

(4.11) t4k+1 = s1k + s̃1k.

Step 3. The terms of type t4k+2 are the times that the points x4k+2

spend to reach π2(x4k+2) ∈ S, namely:

t4k+2 = τ(x4k+2) + τ(π(x4k+2)).

Step 4. As in item (iii), s3k is a time such that φ(s3k, x4k+3) lies in the
singular leaf L0. So there is s̃3k satisfying

d(φ(s3k + s̃3k, x4k+3), σ) =
Γ√
2.2k

.

Therefore, we define the terms of type t4k+3 as

t4k+3 = s3k + s̃3k.

Now we extend the above sequence to a two-sided sequence (tn)n∈Z
by setting

(4.12) t4k+i = t4(−k−1)+i,

for k ≤ −1 and i ∈ {0, . . . , 3}. As in (4.8), we replace k by −k. This
ends the construction of the sequence of times.
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4.1.3. The pseudo orbit.

Definition 4.1. Let

(4.13) (xn, tn)n∈Z

be the bi-sequence whose component sequence (xn)n∈Z is the sequence
of points constructed in subsection 4.1.1 and the component sequence
(tn)n∈Z is the sequence of times constructed in subsection 4.1.2.

x4k+1

x4k+2
x4k

x4k+3

f(L
-
) L

+

L
-

Figure 2. k ≥ 0. The points in shape of circle compose the pseudo orbit.
Square points: in L+ is π(x4k), in f(L−) is π2(x4k+2), near the origin at right
is φ(t4k+1, x4k+1), and at left is φ(t4k+3, x4k+3). Star points: in the singular
leaf at right is φ(s1k, x4k+1), at left is φ(s

3
k, x4k+3) and in L− is π(x4k+2).

Remark 4.2. To the case

f(L−) = L− and f(L+) < L+

we set another bi-sequence, say (xn, tn)n∈Z, whose construction is the
same of (4.13), up to demanding

(4.14) Fπ2(x4k) = f(L+) < Fx4k+1
< L+ = Fπ(x0),

instead of (4.4), and

L− = Fπ(x4k+2) < Fx4k+3
,
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instead of (4.6) (the construction of the sequence of times does not
change).

Additionally, to the case

f(L−) > L− and f(L+) < L+

we order as in (4.14) and (4.6).

The proofs of the further results are done only to the bi-sequence
(xn, tn)n∈Z. In Lemma 4.6, the analyzed cases are symmetrically
the same. The remaining facts (which deal only with distances) are
verbatim.

Proposition 4.3. The bi-sequence

(4.15) (xn, tn)n∈Z,

given by Definition 4.1, is a δ-average-pseudo orbit for any δ > 0.
Moreover, it is also a limit-pseudo orbit and an asymptotic average-
pseudo orbit.

Proof. Define a (positive) sequence (Am)m∈Z by

Am = d(φ(tm, xm), xm+1).

Firstly we claim that

(4.16) A4k+i =
Γ

2|k|
,

for any k ∈ Z and any i ∈ {0, 1, 2, 3} (see Figure 3).

Indeed, suppose that k ≥ 0. Then

(i)

d(φ(t4k, x4k), x4k+1)
(4.9)
= d(φ(τ(x4k), x4k), x4k+1)

(4.1)
= d(π(x4k), x4k+1)

(4.3)
=

Γ

2k
.
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Γ/2

Γ/4

Γ

m

A(m)

3/2 4 8-1-5

Figure 3. Graphic of the sequence Am.

(ii)

d(φ(t4k+1, x4k+1), x4k+2) =

√
[d(φ(t4k+1, x4k+1), σ)]

2
+ [d(σ, x4k+2)]2

(4.11)
=

√
[d(φ(s1k+s̃1k, x4k+1), σ)]2+[d(σ, x4k+2)]2

(4.10),(4.5)
=

√[
Γ√
2.2k

]2
+

[
Γ√
2.2k

]2
=

Γ

2k
.

The cases whose subscript indices are 4k + 2 and 4k + 3 are analogous
to (i) and (ii), respectively. Summarizing, we have

d(φ(t4k+i, x4k+i), x4k+i =
Γ

2k
,

for k ≥ 0 and i ∈ {0, 1, 2, 3}. On the other hand, following the same
procedure, one can use the conversion formulas (4.7), (4.8) and (4.12),
to prove that

d(φ(t4k+i, x4k+i), x4k+i) =
Γ

2(−k)
,

for k ≤ −1 and i ∈ {0, 1, 2, 3}. This proves our claim.

From (4.16), we conclude that:

(a)
lim

|m|→∞
Am = 0.
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that is, the sequence (xn, tn)n∈Z is a limit-pseudo orbit.

Now we will verify that the sequence (xn, tn)n∈Z is an asymptotic
average-pseudo orbit. In fact,

n∑
j=−n

d(φ(tj , xj), xj+1) ≤
2n∑
j=0

d(φ(tj , xj), xj+1)

≤ 4
2n∑
j=0

d(φ(t4j , x4j), x4j+1)

≤ 4

2n∑
j=0

Γ

2j
.

Therefore,

(4.17) lim
n→∞

1

n

n∑
j=−n

d(φ(tj , xj), xj+1) = 0.

Finally, we are going to show that the bi-sequence (xn, tn)n∈Z is a
δ-average-pseudo orbit for any δ > 0. Given δ > 0, then we have, by
(4.17), that there exists N > 0 such that, for all n > N and all u ∈ Z,
we have:

1

n

n∑
i=1

d(φ(ti+u, xi+u), xi+u+1) ≤
1

n

n∑
i=−n

d(φ(ti, xi), xi+1) < δ. �

4.2. Technical lemmas. In this section, we are going to prove two
technical lemmas. Before that, let us define an object and review some
notation.

Let U be an isolating block of geometric Lorenz attractors (Section
3). For any fixed point y in U , the function t 7→ φ(h(t), y) is continuous
(because the flow is smooth and h is a homeomorphism). Hence, from
the compactness of manifold M we can get the following definition.

Definition 4.4. Let h be a reparametrization in Rep (∆). Then β is
a positive real constant such that

(4.18) d (φ(h(t), y), y) <
Γ

2
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for all t ∈ [−β, β] and all y ∈ U .

Recall that, if (zn, tn)n∈Z is an arbitrary bi-sequence, then for any
n ∈ N, we denote by

sn =

n−1∑
i=0

ti and s−n =

−1∑
i=−n

ti.

Additionally, we set s0 = 0.

Lemma 4.5. Let (xn, tn)n∈Z be the sequence (4.15). Take a point y in
U , a reparametrization h in Rep (∆) and an integer number k. If

(4.19) d(φ(h(t), y), φ(t− s4k+u, x4k+u)) < 2Γ

for any u ∈ {0, . . . , 3} and all t ∈ [s4k+u, s4k+u+1 − β), then

(4.20) d(φ(h(t), y), φ(t− s4k+u, x4k+u)) < 3Γ

for any u ∈ {0, . . . , 3} and all t ∈ [s4k+u, s4k+u+1).

Proof. Fix u ∈ {0, . . . , 3}. We are going to verify the inequality
(4.20) for any t ∈ [s4k+u, s4k+u+1).

If
t ∈ [s4k+u, s4k+u+1 − β),

then we get (4.20) directly from (4.19).

Now we will analyze the remainder case:

t ∈ [s4k+u+1 − β, s4k+u+1).

We will proceed by contradiction. Assume that there exist t0 ∈
[s4k+u+1 − β, s4k+u+1) for which the inequality (4.20) does not hold,
that is,

(4.21) d(φ(h(t0), y), φ(t0 − s4k+u, x4k+u) > 3Γ.

To shorter the expressions, we will denote by

p(t) = φ(h(t), y)

and
q(t) = φ(t− s4k+u, x4k+u)
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for t ∈ R. Then

d(p(t0 − β), q(t0 − β)) > d(q(t0), p(t0 − β))− d(q(t0), q(t0 − β)),

> [d(p(t0), q(t0))− d(p(t0), p(t0 − β))]

− d(q(t0), q(t0 − β)),

(4.21)
> 3Γ−[d(p(t0), p(t0−β))+d(q(t0), q(t0−β))] ,

(4.18)
> 3Γ−

(
Γ

2
+

Γ

2

)
= 2Γ.

Summarizing, we have

d(φ(h(t0 − β), y)φ((t0 − β)− s4k+u, x4k+u)) > 2Γ.

On the other hand, note that the time t0 − β belongs to the interval
[s4k+u, s4k+u+1 − β). This contradicts the inequality (4.19) of our
hypothesis. This contradiction ends the proof. �

Given a real time t, then we can associate the following point in U :

φ(t− sn, xn)

where n is such that t ∈ [sn, sn+1). From now on, we will say the pseudo
orbit (xn, tn)n∈Z, as a reference to all the points in M obtained by
the above association. We will also write the pseudo orbit (xn, tn)n∈Z
instead of the sequence (xn, tn)n∈Z.

If necessary, we can reduce the size of Γ (see (4.2)) in order to have

(4.22) d(V,Σ−) > 3Γ and d(V,Σ+) > 3Γ.

(see Figure 4). From the above inequalities and the definition of the
regions U+ and U−, we also get

(4.23) d(Σ+, U−) > 3Γ and d(Σ−, U+) > 3Γ.

Lemma 4.6. Let (xn, tn)n∈Z be the pseudo orbit (4.15). Take a point y
in U , a reparametrization h in Rep (∆). Then, for each number k ∈ Z,
there exist a number

u ∈ {0, . . . , 4}

and a time
t ∈ [s4k+u, s4k+u+1 − β)



1084 A. ARBIETO, J.E. REIS AND R. RIBEIRO

L
-

L+

Σ
- Σ+

V

L
0

S+S
-

U+U-

Figure 4. Regions.

such that the following holds

(4.24) d(φ(h(t), y), φ(t− s4k+u, x4k+u)) ≥ 2Γ.

Proof. Fix k ∈ Z. The proof will follow by exclusion: suppose that
there is no number u ∈ {0, . . . , 3} and no time t ∈ [s4k+u, s4k+u+1 − β)
for which the inequality (4.24) is verified. Then we are going to exhibit
a time t0 inside the interval [s4k+4, s4k+5 − β) satisfying

(4.25) d(φ(h(t0), y), φ(t0 − s4k+4, x4k+4)) > 2Γ.

Such an exhibition concludes the proof of this lemma.

Before we begin with the rest of the proof let us recall some defi-
nitions. If z is a point in U , then τ(z) is the time spent by the flow
through z to reach the cross section S; π(z) is such an intersection
point; πn(z) = π(πn−1(z)), and Fπ(z) is the leaf of the foliation F on
S containing the point π(z).

Firstly, observe that, from our exclusion hypothesis at the beginning
and Lemma 4.5, we have

(4.26) d(φ(h(t), y), φ(t− s4k+u, x4k+u)) < 3Γ

for any u ∈ {0, . . . , 3} and all t ∈ [s4k+u, s4k+u+1). In other words,
for each time t in the interval [s4k, s4k+4), the point associated by the
pseudo orbit (xn, tn)n∈Z and the point associated by the (reparameter-
ized) orbit through y are at a distance less than 3Γ. Therefore, as the
time in such an interval goes forward, the orbit and the pseudo orbit
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intersect the cross section S the same number of times. In particular,
the points π(y) and x4k+1 are close.

From the definition of the terms of type x4k+1, there exists a number
m ∈ N such that the point πm(x4k+1) lies on the singular leaf L0.
Recall that the cross section S is a (disjoint) union of the leaf L0 with
the “pieces” S− and S+.

Now we suppose that there exists a number j ∈ {0, . . . ,m − 1} for
which the points πj(π(y)) and πj(x4k+1) are in distinct pieces, namely,

(4.27) πj(π(y)) ∈ S+ =⇒ πj(x4k+1) ∈ S−

or

(4.28) πj(π(y)) ∈ S− =⇒ πj(x4k+1) ∈ S+.

Let us proceed with our argument using the implication (4.27) (the
usage of (4.28) would be symmetrical). In this case, there exists a time
t0 ∈ [s4k+1, s4k+2) such that

• either

φ(h(t0), y) ∈ Σ+ and φ(t0 − s4k+1, x4k+1) ∈ U−

• or

φ(t0 − s4k+1, x4k+1) ∈ Σ− and φ(h(t0), y) ∈ U+.

In the first case, we have

d(φ(t0), y), φ(t0 − s4k+1, x4k+1)) ≥ d(Σ+, U−)
(4.23)
> 3Γ.

In the second case, we have

d(φ(t0), y), φ(t0 − s4k+1, x4k+1)) ≥ d(U+,Σ−)
(4.23)
> 3Γ.

In both cases we fall into contradiction with (4.26). So, this contradic-
tion means that the points πj(π(y)) and π(j(x4k+1) are always in the
same piece, namely:

(4.29) πj(π(y)) ∈ S± =⇒ πj(x4k+1) ∈ S±

for all j ∈ {0, . . . ,m− 1}.
Now consider the leaves Fπ(y) and Fx4k+1

of the foliation F defined
on S. Recall that we defined an order relation “≤” on F . We will finish
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the proof of this lemma by analyzing such an order relation over these
leaves, Fπ(y) and Fx4k+1

.

Case (1): Fπ(y) > Fx4k+1
. Observe that the functions f |S+ and f |S−

are increasing. This fact, together with the implication (4.29) and the
hypothesis of this case imply

L0 = Fπm(x4k+1) < Fπm+1(y),

(see Figure 5). Thus,

π
m

(x )4k+1

x4k+2

π
m+1

(y)

π(y)x4k+1π
m+3

(y)x4k+3

Figure 5. The orbit and the pseudo orbit are still close for times in
[s4k, s4k+4). The star point is π2(x4k+2).

Fπ(x4k+2) = L− < Fπm+2(y) < L0.

Hence,

(4.30) Fx4k+3

(4.6)
< Fπ2(x4k+2) < Fπm+3(y).

From the definition of the terms of type x4k+3, there exists a number
q ∈ N such that the point πq(x4k+3) lies on the singular leaf L0. From
the same argument we used to conclude the implication (4.29) (that the
orbit and the pseudo orbit must hit S simultaneously in same pieces)
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we get

(4.31) Fπj(x4k+3) ∈ S± =⇒ Fπj+m+3(y) ∈ S±

for all j ∈ {0, . . . , q − 1}. Since the functions f |S+ and f |S− are
increasing, then, by (4.30) and (4.31), we have

L0 = Fπq(x4k+3) < Fπq+m+3(y).

Therefore,

• either

(4.32) φ(h(t0), y) ∈ Σ+ and φ(t0 − s4k+3, x4k+3) ∈ V

for some t0 ∈ [s4k+3, s4k+4),
•

φ(h(t0), y) ∈ Σ+ and φ(t0 − s4k+3, x4k+3) ∈ U−

for some t0 ∈ [s4k+4, s4k+5) (see Figure 6),
• or

φ(t0 − s4k+3, x4k+3) ∈ Σ− and φ(h(t0), y) ∈ U+

for some t0 ∈ [s4k+4, s4k+5).

π
q
(x )4k+3 π

q+m+3
(y)

φ(t -s ,x )0 4k+4 4k+4 x4k+4 φ(h(t ),y)0

Figure 6. The orbit and the pseudo orbit gets far for a time t0 in
[s4k+4, s4k+5 − β).

The pertinent relations in (4.32) may not occur because, using
(4.22), we can contradict (4.26). On the other hand, the two remaining
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conditions means that

d(φ(t0), y), φ(t0 − s4k+4, x4k+4))
(4.23)
> 3Γ > 2Γ

for some t0 ∈ [s4k+4, s4k+5). This is almost what we wanted to show
(see (4.25)).

Recall the definition of β on (4.18). We conclude the current case
claiming that

t0 ∈ [s4k+4, s4k+5 − β).

In fact, the pseudo orbit through x4k+4 must cross Σ−. This implies
that there exists η ≥ 0,

φ((t0 + η)− s4k+4, x4k+4) ∈ Σ−.

On the other hand, we have

φ(s4k+5 − s4k+4, x4k+4) ∈ S+.

Once Σ− and S+ are disjoint, then the time

s4k+5 − (t0 + η)

is bounded away from zero (uniformly on k). Hence, we can reduce β,
if necessary, to get

β < s4k+5 − (t0 + η).

So
t0 < s4k+5 − β,

as we wanted to show.

Case (2): Fπ(y) ≤ Fx4k+1
. In this case, we have

Fπm(π(y)) ≤ Fπm(x4k+1) = L0.

Therefore, the orbit either gets into V and stays there or gets into
U− and “escapes” through Σ−. In turn, the pseudo orbit gets into V
and escapes through Σ+. Anyway, we can use the same argument as
in Case (1) to contradict the inequality (4.26). This means that this
current case may not occur. The proof of the lemma is over. �

4.3. Conclusion. In this section, we are going to prove the Theo-
rem 1.1.
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Proof of Theorem 1.1. Firstly, we will prove that Lorenz flows (Λ, φ)
do not have the ∆-asymptotic average shadowing property (∆-AASP).

Our argument will be by contradiction: suppose that (Λ, φ) has
the ∆-AASP. According to Definition 2.3, for any asymptotic average-
pseudo orbit (zn, tn)n∈Z, there exist a point y ∈ U and a reparametriza-
tion h ∈ Rep (∆) such that:

(4.33) lim
n→∞

1

n

n∑
i=0

∫ si+1

si

d(φ(h(t), y), φ(t− si, zi)) dt = 0.

Our target is to contradict this last sentence.

Let (xn, tn)n∈Z be the asymptotic average-pseudo orbit given by
the Proposition 4.3. Take a point y ∈ U and a reparametrization
h ∈ Rep (∆). The procedure is as follows. We will find a subsequence
of (xn, tn)n∈Z such that the limit (4.33) will be strictly positive. This
shall be enough to conclude the proof due to the arbitrariness of the
point y and the reparametrization h.

By Lemma 4.6, there exist sequences (uk)k∈Z and (tk)k∈Z verifying

uk ∈ {0, . . . , 4}

and

(4.34) tk ∈ [s4k+uk
, s4k+uk+1 − β),

for all k ∈ Z and such that the following holds:

(4.35) d(φ(h(tk), y), φ(tk − s4k+uk
, x4k+uk

)) ≥ 2Γ,

for all k ∈ Z.

Now we claim that

(4.36) d(φ(h(tk + r), y), φ((tk + r)− s4k+uk
, x4k+uk

)) > Γ

for all r ∈ [−β, β].

In fact, one can verify this claim by using equation (4.35), the
definition of β (Definition 4.4) and the same argument as used in the
proof of Lemma 4.5. In other words, this claim says that: the points
φ(h(tk), y) and φ((tk)−s4k+uk

, x4k+uk
), once Γ-far, spend a time larger

than β to be Γ-close again (if they do).
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Therefore, consider the following subsequence of (xn, tn)n∈Z:

(x4k+uk
, t4k+uk

)k∈Z.

Then

lim
k→∞

1

4k + uk

4k+uk∑
i=0

∫ si+1

si

d(φ(h(t), y), φ(t− si, xi) dt ≥

lim
k→∞

1

5k

k∑
i=1

∫ s4i+ui+1

s4i+ui

d(φ(h(t), y), φ(t− s4i+ui , x4i+ui) dt
(4.34)

≥

lim
k→∞

1

5k

k∑
i=1

∫ ti+β

ti

d(φ(h(t), y), φ(t− s4i+ui , x4i+ui) dt
(4.36)

≥

lim
k→∞

1

5k

k∑
i=1

βΓ =
βΓ

5
,

as we wanted to show.

In this second part we are going to argue about Lorenz flows
not having the ∆-average shadowing property (∆-ASP). The proof
is done also by the indirect method: suppose that (Λ, φ) has the ∆-
ASP. Then consider the same pseudo orbit as before, (xn, tn)n∈Z. By
Proposition 4.3, it is a δ-average-pseudo orbit for every δ > 0. On the
other hand,

lim
n→∞

1

n

n∑
i=0

∫ si+1

si

d(φ(h(t), y), φ(t− si, xi)) dt >
βΓ

5
,

for any y ∈ U and any h ∈ Rep (∆). So Definition 2.1 fails for every

ϵ < βΓ
5 (the lim sup in (2.1) would be larger than ϵ). This finishes the

second part.

Finally, one can show that Lorenz flows (Λ, φ) do not have the ∆-
LSP. �
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