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INCUBATION PERIODS UNDER VARIOUS
ANTI-RETROVIRAL THERAPIES IN HOMOGENEOUS

MIXING AND AGE-STRUCTURED DYNAMICAL
MODELS: A THEORETICAL APPROACH

ARNI S.R. SRINIVASA RAO

ABSTRACT. With the launch of second line anti-retroviral
therapy for HIV infected individuals, there has been an in-
creased expectation of survival for people with HIV. We
consider previously well-known models in HIV epidemiology
where the parameter for the incubation period is used as one
of the important components to explain the dynamics of the
variables. Such models are extended here to explain the dy-
namics with respect to a given therapy that prolongs the life
of an HIV infected individual. A deconvolution method is
demonstrated for estimation of parameters in the situations
when no-therapy and multiple therapies are given to the in-
fected population. The models and deconvolution method
are extended in order to study the impact of therapy in
age-structured populations. A generalization for a situation
when n-types of therapies are available is given. Models are
demonstrated using hypothetical data, and sensitivity of the
parameters is also computed.

1. Preliminaries, basic ODE model and integro-differential
equations models. With the introduction of second line therapy [54]
to people living with HIV who were already on first line therapy, there is
a further hope for increasing the active life of HIV infected individuals.
Revised estimates of the people living with HIV are obtained for some
countries to address the impact of second line therapy (see, for example,
[40]). Second line theory is provided after failure to respond to the
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first line therapy among the infected individuals. Modeling the impact
of second line therapy and corresponding extended survival time is
complicated because the susceptible population can acquire the virus
from two infected classes of populations who are on therapy in addition
to the infected population which is without any therapy.

Identifying the first line of individuals who are no more responsive to
the first line of therapy through surveillance is still a challenging issue
in several countries. Difficulties in monitoring and recording the HIV
infected population who are on first and second line therapy will also
lead to difficulty in estimating parameters of disease progression and
disease related mortalities. Disease progression rate and incubation
period are related, and usually both are taken as reciprocal to each
other. The incubation period of HIV infected individuals is also
expected to increase since the advent of new anti-retroviral therapy
policies. The incubation period is generally defined as ‘the time
duration between the time a virus or bacteria enters the human body
and the time at which clinical clinical symptoms occur.’ This duration
can vary from case to case depending upon the route through which
the virus or bacteria enters the immune system of an individual and
in some cases depends upon the age of the infected individual. For
chickenpox, this duration is 10–21 days, for the common cold 2–5 days,
for mumps 12–25 days, for SARS a maximum of up to 10 days, for
rubella 14–21 days, for pertussis 7–10 days, and for HIV infection to
AIDS 6 months to 10 years or more. The incubation period can be
used as a measure of rapidity of the illness after interaction with the
virus or bacteria.

It is not easy to collect information on the incubation period of
infected individuals unless they are monitored. One of the direct ways
of estimating the average incubation period of a given virus in the
population is by surveillance and followup of the infected individuals
from the time of infection until development of symptoms of the disease.
All the infected individuals may not be aware of their infection until
symptoms appear, and individuals are available for followup when
symptoms do appear. It might not be possible to follow individuals in
a typical situation, where time taken for the onset of symptoms from
the infection is longer or infected individuals are lost to followup. Due
to second line therapy for HIV infected individuals the followup times
could be much longer when there is a good adherence for therapy and
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systematic health care practices exist among infected cohorts. Hence,
there are limitations on directly estimating the average incubation
period from prospective cohort studies. Nevertheless, the incubation
period occupies an important role, along with other parameters in
modeling the disease spread and understanding the basic reproductive
rate.

A useful description of various epidemic models, and of estimation of
parameters like the incubation period, transmission rates and forces of
infections are presented in [3]. The degree of importance of obtaining
accurate average incubation periods varies with the type of a disease
and impact of available therapies for treating this disease. This degree
of variation causes mathematical models to act sensitively in predicting
future burden. Models describing dynamics of disease spread where
the incubation period is shorter are less subject to produce misleading
results than models for the spread with longer and varying incubation
periods. Especially for predicting AIDS, the epidemic models developed
depend heavily on parameters that determine transmission rates of
infection from infected to susceptible and on the parameter which
explains the average time to progress to AIDS.

A review of various modeling approaches and quantitative techniques
for estimating the incubation period can be found in [9, 12]. The in-
troduction of anti-retroviral therapies and protease inhibitors during
the 1990s in several parts of the world resulted in a decline in oppor-
tunistic infections related to AIDS [14, 20, 29]. As a result of such
intervention, the average incubation period was prolonged. There have
been attempts to estimate the incubation period that vary due to drug
intervention using statistical density functions [4]. The impact of this
variation on the HIV dynamics, stability and on basic reproduction
number has been investigated [11, 12, 23].

In this section, we first consider an ODE model that explains the
dynamics of HIV spread in a population leading to AIDS (see [26]). We
then consider a similar model where incubation period is a variable with
respect to a given therapy. We address issues of estimating incubation
period to be used in such dynamical models and the impact of the
above-mentioned therapies. Various ideas and the outline of this work
are given at the end of this section.

Perhaps the most fundamental model for the epidemiology of AIDS
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is that given by [2, 3, 26], which takes the form

dX

dt
= Λ− (λ+ µ)X,

dY

dt
= λX − (d+ µ)Y,(1.1)

dDz

dt
= dY − γDz.

Here the total population (N) is divided into susceptibles (X),
infectives (Y ) and individuals with the full blown disease (Dz). The
parameter Λ is the input into the susceptible class, which can be defined
as the number of births in the population, λ is the force of infection, µ
is general (non-AIDS related) mortality, γ is disease related mortality
and 1/d is the average incubation period. Here the incubation period is
defined as the duration of time between infection and onset of full blown
disease. There are several other constructions of HIV transmission
dynamic models.

In the models involving the disease progression parameter, it has
been assumed that there is an increase in the mean length of life after
HIV infection since the availability of therapies for AIDS [49, 51].
There is much work describing the impact of anti-retroviral therapies
using data [1, 8, 15, 16, 17, 19, 22, 24, 25, 27, 28, 29, 31, 34, 35,
42, 45, 46, 47, 50, 52, 53] and impact is assessed through modeling
[5, 31, 43, 44, 49].

The time to start ART based on the CD4 count is still debatable, and
current WHO (World Health Organization) guidelines (released in 2010
[54]) recommend starting ART when CD4 count reaches 350 cell/mm3.
In a recent study on HIV-1 discordant couples [13], it was observed
that the incidence rates among early ART couples are lower than the
incidence rates among couples who were given ART at a standard time.

Drugs are available which cannot eliminate the virus from the body
but are helpful in prolonging the life of an individual by slowing the
disease progression (in other word, increasing the incubation period).
For example, protease inhibitors (say drug 1) facilitate in producing
non-infectious virus (only infectious virus participates in new virus pro-
duction), hence slowing the disease progression; anti-retroviral therapy
(say drug 2) blocks the virus from interacting with the non-infected
cells and hence reduces the infection process within the cell population
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(see [30, Section 5] and [32] for fuller details); and a combination of
the above two drugs (say drug 3) can be more effective by simultane-
ously combining the functions of drug 1 and drug 2. Note that, when
model (1.1) was developed, the above-described drugs were not avail-
able. Information on scale-up of anti-retroviral therapies and related
monitoring of individuals can be found elsewhere (for example, see
[7, 21, 31, 48]. We assume that, once individuals start taking drugs,
their average incubation period is prolonged. So, instead of assuming
a constant 1/d, we assume that it varies based on the drug type. Thus,
we define 1/di =

∫
R zig(zi) dzi, for i = 0, 1, 2, 3, where i = 0 denotes

the “without drug scenario,” i = 1 for drug 1, i = 2 for drug 2 and
i = 3 for drug 3. Here, g is the probability density function with a
certain parameter set (say B) and zi is a continuous random variable
representing the incubation period. Here, zi is a real valued function
defined on a standard probability space (S,A, P ), where S is the space
of elementary events, A is called a Borel fields and P (A) is the prob-
ability of the event A ∈ A. So, z : S → R. We can also denote this
integral as a Stieltjes integral

∫
R zidG(zi), where G(z) = P (Z < z). We

further assume without loss of generality that either of the following
two inequalities will hold at a time:∫

R z0 dG(z0)∫
R z3 dG(z3)

<

∫
R z1 dG(z1)∫
R z3 dG(z3)

≤
∫
R z2 dG(z2)∫
R z3 dG(z3)

< 1(1.2) ∫
R z0 dG(z0)∫
R z3 dG(z3)

<

∫
R z1 dG(z1)∫
R z3 dG(z3)

>

∫
R z2 dG(z2)∫
R z3 dG(z3)

< 1(1.3)

(In the next section, we will give a detailed estimation procedure for
B.) Applying these varying incubation periods, model (1.1) is modified
as follows:

dX

dt
= Λ− (λ0 + λ1 + λ2 + λ3 + µ)X,

dY0

dt
= λ0X −

{(∫
R
z0dG(z0)

)−1

+ µ

}
Y0,

dY1

dt
= λ1X −

{(∫
R
z1dG(z1)

)−1

+ µ

}
Y1,

dY2

dt
= λ2X −

{(∫
R
z2dG(z2)

)−1

+ µ

}
Y2,
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dY3

dt
= λ3X −

{(∫
R
z3dG(z3)

)−1

+ µ

}
Y3,

dDz0

dt
=

(∫
R
z0dG(z0)

)−1

Y0 − γ0Dz0 ,

dDz1

dt
=

(∫
R
z1dG(z1)

)−1

Y1 − γ1Dz1 ,

dDz2

dt
=

(∫
R
z2dF (z2)

)−1

Y2 − γ2Dz2 ,

dDz3

dt
=

(∫
R
z3dG(z3)

)−1

Y3 − γ3Dz3 ,(1.4)

where Y0, Y1, Y 2 and Y3 are variables for infectives, Dz0 , Dz1 , Dz2 and
Dz3 are variables for individuals with the full blown disease, λ0, λ1, λ2

and λ3 and γ0, γ1, γ2 and γ3 are variables for disease related mortality
for no-drug, drug 1, drug 2 and drug 3, respectively. See Figure 1 which
describes the flows in the model (1.4). General mortality and disease-
related mortality are incorporated into the model to demonstrate the
basic structure of the model, and our aim here is to demonstrate
methodology to estimate B and thus to estimate

∫
R zidG(zi) for all

i such that simulations of the model are performed. In model (1.4), the
total population N = X + Y0 + Y1 + Y2 + Y3 +Dz0 +Dz1 +Dz2 +Dz3

satisfies
dN

dt
= Λ− µX + µ

3∑
i=0

Yi −
3∑

i=0

γiDzi .

Estimation of parameters for the varying incubation periods is im-
portant for understanding the impact of drugs in prolonging the onset
of disease and thus to prolong the survival period of an HIV infected
individual. The set B will also be useful in obtaining varying basic
reproductive rates, R0i for all i = 0, 1, 2, 3. This can be computed
as R0i = λγi

∫
R zidG(zi) by assuming independence of the impact of

various drugs. There is a possibility that β, the probability of in-
fecting a susceptible partner, changes with the activation of a drug
in the body. If we assume this as a constant, then R00 ≥ R01 ≥
or < R02 ≥ R03. R01 < {R01, R02, R03}, because individuals are as-
sumed to have a longer incubation period due to the effect of drugs. In
the absence of clinical evidence, we assume that the impact of drug1
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Figure 1. Schematic diagram explaining the flow of infected individuals
without therapy to individuals who are on therapy.

and drug2 follows any one of the following relations:
∫
R z1dG(z1) ≤ or

>
∫
R z2dG(z2). Similarly, another important epidemiological measure,

the doubling time, tdi, is obtained as tdi = ln(2)
∫
R zidG(zi)/[R0i − 1].

Anti-retroviral therapy helps in blocking the virus from interacting with
cells and simultaneously providing protease inhibitors which helps in
producing non-infectious virus. So, without loss of generality, it was
previously assumed that the impact of double drug therapy is better
than a single drug therapy. If we assume disease related mortality is
constant for all i, then γi = γ. The number of AIDS related deaths in
general is high during the latter part of the incubation period due to an
increase in opportunistic infections. In general, over all AIDS related
mortality rate in a population is assumed to be higher than the general
mortality rate in that population. Where there are n types of drugs
available, we write the general form for the above dynamical model as
follows:

dX

dt
= Λ−

( n∑
i=0

λi + µ

)
X,

dY0

dt
= λ0X −

{(∫
R
z0dG(z0)

)−1

+ µ

}
Y0,
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...

...

dYn

dt
= λnX −

{(∫
R
zndG(zn)

)−1

+ µ

}
Yn,

dDz0

dt
=

(∫
R
z0dG(z0)

)−1

Y0 − γ0Dz0 ,

...(1.5)

...

dDzn

dt
=

(∫
R
zndG(zn)

)−1

Yn − γnDzn ,

As a special case, we can consider all the parameters in the above
model as Stieltjes integrals, and one can estimate them using the rigor-
ous procedure explained in the next section. For n = 3, the model (1.5)
becomes the model (1.4) after considering suitable variables. Practi-
cally, we do not have a situation where several drugs are available in
the market for HIV infected individuals. Hence, model (1.5) should be
treated as a theoretical generalization.

This paper is organized as follows. In Section 2, we present con-
temporary models constructed for understanding the transmission dy-
namics of HIV for policy formulations and the corresponding modified
disease progression component that captures the impact of therapy. In
Section 3, we describe in detail the estimation of the set B for up to
three drugs. Section 4 gives corresponding expressions for the condi-
tional probabilities of N -drugs. We construct theoretical examples us-
ing three functions: Gamma, Logistic and Log-normal in Section 5 to
demonstrate the method explained in Section 3. In Section 6, analysis
for age-structured populations is described in detail. Overall conclu-
sions are given in Section 7. Appendix I gives equations for conditional
probability when incubation period for various drug types does not
have the monotonicity property. Appendix II gives some more theo-
retical examples when the incubation period is truncated to the right.
Appendix III provides parameter values adopted for numerical simu-
lations and Appendix IV has numerical demonstration of the model
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outputs and sensitivity of parameters in projecting HIV and AIDS (see
Figures 4–10).

2. Contemporary models and modifications. In this section,
we present two contemporary models: the first one [41] was developed
for understanding the spread of Indian HIV epidemic, and the second
one [40] was developed to generate the number of people who are
eligible for second line ART. These models were found to be practically
useful in predicting the HIV numbers in total and those who need
second line therapy. For example, the projections of HIV numbers
for the year 2011 by running the model [41] were 2.08 million, and
the actual data released [33] by the Ministry of Health and Family
Welfare, Government of India, for the number of people living with
HIV in India for the year 2011, released in 2012, were 2,088,642 (note
that the output of the model was published three years prior to the
actual data released).

The HIV model [41] has three components: 1) Model for spread in
general population, 2) model for spread in homosexual men (MSM),
3) model for spread in intravenous drug users (IDU). We provide a de-
scription of this model and then write a corresponding revised model
with integro differential equations. The system of differential equations
in the three models has incorporated dynamics in 14 compartments:
U(i), susceptible population; V (i), sexually transmitted diseases pop-
ulation; W (i), HIV infected; T (i), AIDS in the general population for
gender i (say, i = 1 for male and i = 2 for female), U(m), suscep-
tible MSM; V (m), sexually transmitted infected MSM;, W (m), HIV
infected MSM; T (m), MSM population with AIDS; U(IDU), suscep-
tible intravenous drug users; W (IDU), HIV infected intravenous drug
users; and T (IDU), intravenous drug users with AIDS. Susceptible
males in the general population are eligible to acquire the virus from
the jth sub-population (j = 1, female married partner; j = 2, female
casual partner, j = 3, commercial sex worker; and j = 4, through blood
transfusions. All the sub-populations are allowed to contribute for the
transmission dynamics of HIV, and each sub-population is also subject
to the risk of acquiring the infection from other sub-populations wher-
ever applicable (see [41] for a complete description). The differential
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equations describing the Indian HIV epidemic model are:

General

model



dU(i)
dt = aiU(i)− U(i)

(∑4
j=1

bijV (i)
N(j) +

∑4
j=1

cijW (j)
N(j)

)
+ϕV (i)

dV (i)
dt = U(i)

∑4
j=1

bijV (i)
N(j) − V (i)

∑4
j=1

dijW (j)
N(j)

−µV (i)− ϕV (i)
dW (i)

dt = U(i)
∑4

j=1
cijW (j)
N(j) + V (i)

∑4
j=1

dijW (j)
N(j)

−δiW (i)− αiW (i)
dT (i)
dt = αiW (i)− µiT (i)

MSM

model



dU(m)
dt = amU(m)− U(m)

(
bmV (m)
N(m) + cmW (m)

N(m)

)
+ϕV (m)

dV (m)
dt = U(m) bmV (m)

N(m) − V (m)dmW (m)
N(m) − µV (m)

−ϕV (m)
dW (m)

dt = U(m) cmW (m)
N(m) + V (m)dmW (m)

N(m)

−δmW (m)− αmW (m)
dT (m)

dt = αmW (m)− µmT (m)

IDU

model



dU(IDU)
dt = aIDUU(IDU)− U(IDU)

(
cIDUW (IDU)

N(IDU)

)
+ϕV (IDU)

dW (IDU)
dt = U(IDU) cIDUW (IDU)

N(IDU) − δIDUW (IDU)

−αIDUW (IDU)
dT (IDU)

dt = αIDUT (IDU)− µIDUT (IDU),

where N(j) = V (j)+W (j) for j = 1, 2, 3, 4 and N(m) = V (m)+W (m).
The corresponding models with flexible incubation periods are:

dU(i)

dt
= aiU(i)− U(i)

( 4∑
j=1

bijV (i)

N(j)
+

3∑
k=0

4∑
j=1

cijkW (j)

N(j)

)
+ ϕV (i)

dV (i)

dt
= U(i)

4∑
j=1

bijV (i)

N(j)
− V (i)

3∑
k=0

4∑
j=1

dijkW (j)

N(j)
− µV (i)− ϕV (i)
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dW0(i)

dt
= U(i)

4∑
j=1

cij0W (j)

N(j)
+ V (i)

4∑
j=1

dij0W (j)

N(j)

−
{(∫

R
z0dG(z0)

)−1

+ δi

}
W0(i)

dW1(i)

dt
= U(i)

4∑
j=1

cij1W (j)

N(j)
+ V (i)

4∑
j=1

dij1W (j)

N(j)

−
{(∫

R
z1dG(z1)

)−1

+ δi

}
W1(i)

dW2(i)

dt
= U(i)

4∑
j=1

cij2W (j)

N(j)
+ V (i)

4∑
j=1

dij2W (j)

N(j)

−
{(∫

R
z2dG(z2)

)−1

+ δi

}
W2(i)

dW3(i)

dt
= U(i)

4∑
j=1

cij3W (j)

N(j)
+ V (i)

4∑
j=1

dij3W (j)

N(j)

−
{(∫

R
z3dG(z3)

)−1

+ δi

}
W3(i)

dTz0(i)

dt
=

(∫
R
z0dG(z0)

)−1

W0(i)− µ0Tzo

dTz1(i)

dt
=

(∫
R
z1dG(z1)

)−1

W1(i)− µ1Tz1

dTz2(i)

dt
=

(∫
R
z2dG(z2)

)−1

W2(i)− µ1Tz1

dTz3(i)

dt
=

(∫
R
z3dG(z3)

)−1

W3(i)− µ3Tz3

(2.1)

dU(m)

dt
= amU(m)− U(m)

(
bmV (m)

N(m)
+

3∑
k=0

cmW (m)

N(m)

)
+ ϕV (m)
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dV (m)

dt
= U(m)

bmV (m)

N(m)
− V (m)

3∑
k=0

dmW (m)

N(m)
− µV (m)− ϕV (m)

dW0(m)

dt
= U(m)

cm0W (m)

N(m)
+ V (m)

dm0W (m)

N(m)

−
{(∫

R
z0dG(z0)

)−1

+ δm

}
W0(m)

dW1(m)

dt
= U(m)

cm1W (m)

N(m)
+ V (m)

dm1W (m)

N(m)

−
{(∫

R
z1dG(z1)

)−1

+ δm

}
W1(m)

dW2(m)

dt
= U(m)

cm2W (m)

N(m)
+ V (m)

dm2W (m)

N(m)

−
{(∫

R
z2dG(z2)

)−1

+ δm

}
W2(m)

dW3(m)

dt
= U(m)

cm3W (m)

N(m)
+ V (m)

dm3W (m)

N(m)

−
{(∫

R
z0dG(z0)

)−1

+ δm

}
W3(m)

dTz0(m)

dt
=

(∫
R
z0dG(z0)

)−1

W0(m)− µmTz0(m)

dTz1(m)

dt
=

(∫
R
z1dG(z1)

)−1

W1(m)− µmTz1(m)

dTz2(m)

dt
=

(∫
R
z2dG(z2)

)−1

W2(m)− µmTz2(m)

dTz3(m)

dt
=

(∫
R
z3dG(z3)

)−1

W3(m)− µmTz3(m)

(2.2)

dU(IDU)

dt
= aIDUU(IDU)− U(IDU)

3∑
k=0

(
cIDU,kW (IDU)

N(IDU)

)
+ ϕV (IDU)
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dW0(IDU)

dt
= U(IDU)

(
cIDU,0W (IDU)

N(IDU)

)
−

{(∫
R
z0dG(z0)

)−1

+ δIDU

}
W0(IDU)

dW1(IDU)

dt
= U(IDU)

(
cIDU,1W (IDU)

N(IDU)

)
−

{(∫
R
z1dG(z1)

)−1

+ δIDU

}
W1(IDU)

dW2(IDU)

dt
= U(IDU)

(
cIDU,2W (IDU)

N(IDU)

)
−

{(∫
R
z2dG(z2)

)−1

+ δIDU

}
W2(IDU)

dW3(IDU)

dt
= U(IDU)

(
cIDU,3W (IDU)

N(IDU)

)
−

{(∫
R
z3dG(z3)

)−1

+ δIDU

}
W3(IDU)

dTz0(IDU)

dt
=

(∫
R
z0dG(z0)

)−1

W0(IDU)− µIDUTz0(IDU)

dTz1(IDU)

dt
=

(∫
R
z1dG(z1)

)−1

W1(IDU)− µIDUTz1(IDU)

dTz2(IDU)

dt
=

(∫
R
z2dG(z2)

)−1

W2(IDU)− µIDUTz2(IDU)

dTz3(IDU)

dt
=

(∫
R
z3dG(z3)

)−1

W3(IDU)− µIDUTz3(IDU)

(2.3)

where the variables with suffix z0, z1, z2, z3 are corresponding to the im-
pact of drug0, drug1, drug2, drug3, respectively. These contemporary
models are improvised versions of basic models presented in Section 1
and are tested to accurately predict the epidemic situation during the
era of anti-retroviral therapies.

The model [40] was basically developed for predicting the number of
HIV infected people on second line ART who have developed resistance
for first line ART. It consisted of five variables, namely, X1, the number
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of people with HIV who are yet to develop full-blown AIDS; X2, the
number of people with full-blown AIDS during the scale-up period; X3,
the number of people with full-blown AIDS and not currently on first
line ART (after removing the annual number of deaths among people
without first line ART); Y1, the number on first line ART (say, drug
1) and Y2, the number on second line ART (say, drug 2). The model
equations describing the dynamics in five variables are:

dX1

dt
= ΛX1 − α1X1

dX2

dt
= α1X1 − β1X2

dX3

dt
= α1X1 − p1X3 − β1X3

dY1

dt
= p1X3 − νY1 − β2Y1

dY2

dt
= νY1 − β3Y2(2.4)

Here, Λ is the annual growth rate in HIV, α1 is the mean incubation
period (without any drugs) (let the corresponding Stieltjes integral
variable, as before, be z0), β1, β2 and β3 are the average survival periods
after reaching full-blown AIDS when individuals are without drugs,
on first line ART, on second line ART (let the corresponding Stieltjes
integral variables be u1, u2 and u3), p1 is the annual rate of recruitment
into first line ART, ν is the annual rate of resistance development for
first line ART (for a detailed description, see [40]). This model was
built with the purpose of projecting the number of people who will be
eligible for second line ART, among whom are currently on first line
ART. Disease progression after HIV infection, eligibility to first line
ART (based on CD4 count definition), developing resistance for first
line ART and eligible for second line ART are continuous process, and
modeling such phenomena requires information on survival periods for
people of ART, rate of resistance development, etc. The model (2.4) is
different from standard HIV transmission dynamic models by the fact
that only HIV infected individuals are considered in (2.4) rather than
both susceptibles and those infected, because we are studying impact of
therapy. The data on cohorts of people who are on first line and second
therapy could involve variation in terms of the disease progression
because the time of initiation of therapy and other biological factors for
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each cohort may be different. The integro-differential equations model
corresponding to the model (2.4) is

dX1

dt
= ΛX1 −

(∫
R
z0dG(z0)

)−1

X1

dX2

dt
=

(∫
R
z0dG(z0)

)−1

X1 −
(∫

R
u1dG(u0)

)−1

X2

dX3

dt
=

(∫
R
z0dG(z0)

)−1

X1 − p1X3 −
(∫

R
u1dG(u1)

)−1

X3

dY1

dt
= p1X3 − νY1 −

(∫
R
u2dG(u2)

)−1

Y1

dY2

dt
= νY1 −

(∫
R
u3dG(u3)

)−1

Y2.(2.5)

3. Conditional probabilities. In this section, we will give a de-
tailed procedure for estimating B through a deconvolution technique.
Let B be split into a collection of four parameter sets, say B =
{B0, B1, B2, B3} for the four types of scenarios described in the pre-
vious section. Let H be the time of infection and Z the incubation
period. Then the time of onset of the disease can be represented as
D = H + Z. There have been studies (see, for list of references, [9]),
in which H and Z were assumed independent and D was estimated
through convolution. We outline the general idea of convolution and
then give the convolution of H and Z. Suppose (an) and (bn) are two
sequences of numbers over the time period. Then

(3.1) (an) ∗ (bn) =
n∑

k=0

anbn−k,

where (an)∗(bn) is the convolution of these sequences with an operator
‘∗’. Suppose a and b are mutually independent random variables, and
let AL(x) and BL(x) be their Laplace transformations. Then a + b
has the Laplace transformation ALBL. Since the multiplication of the
Laplace transformation is associative and commutative, it follows that
(an)∗(bn) is also associative and commutative. Instead of discrete nota-
tion, suppose a and b are continuous and independent with probability
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density functions h and g. Then the density of h+ g is given by

f(s) =

∫ ∞

−∞
h(t− s)g(t)dt =

∫ ∞

−∞
h(t)g(t− s) ds.

Suppose G(s) =
∫ s

−∞ g(s) ds, and F (s) =
∫ s

−∞ f(s) ds. Then

(3.2) F (s) =

∫ ∞

−∞
h(t)G(t− s) ds.

We call F the convolution of h and G. Suppose the above h and
G represent the infection density and incubation period distribution
functions. Then the convolution of h and G represents the cumulative
number of disease cases reported (or observed) and is given by

(3.3) h ∗G =

∫ ∞

−∞
h(t)G(t− s) ds.

This kind of convolution in (3.3) was used to estimate the number
of AIDS cases for the first time by [10]. Information on G may not
be available for some populations. In such situations, G has been
estimated through deconvolution from the information available on
h ∗ G and h [37, 38]. In this section, we will construct conditional
probabilities for each drug type and express the function that maximizes
B. These kinds of conditional probabilities derived for the drug type
were not available earlier for the incubation periods when the total
number of reported disease cases were considered. Note that h ∗ G is
the cumulative number of disease cases.

Let X0, X1, X2, . . . , Xn−k, . . . , Xn−l, . . . , Xn−m, . . . , Xn be the dis-
ease cases available in the time intervals [Ui−1, Ui) for i = 0, 1, 2, . . . , n−
k, . . . , n− l, . . . , (n−m)+1, . . . , n+1. Suppose E is the event of diagno-
sis of disease after the first infection at T0. Let E = {E0, E1, E2, E3},
and E0 occurs in the interval [U0, Un−k), E1 (or E2) in [Un−k, Un−l) (or
[Un−l, Un−m)) and E3 in [Un−m, Un). Now D, the cumulative number
of disease cases up to time Un, can be expressed from (3.3) as follows:

D(U0 ≤ s ≤ Un) =

∫ Un−k

0

h(t)G(t− s) ds+

∫ Un−l

Un−k

h(t)G(t− s) ds

+

∫ Un−m

Un−l

h(t)G(t− s) ds+

∫ Un

Un−m

h(t)G(t− s) ds,
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D(A,B/Un) =

∫ Un−k

0

h(t/A0)G(t− s/B0) ds

+

∫ Un−l

Un−k

h(t/A1)G(t− s/B1) ds

+

∫ Un−m

Un−l

h(t/A2)G(t− s/B2) ds

+

∫ Un

Un−m

h(t/A3)G(t− s/B3) ds.(3.4)

In the above equation, A0, A1, A2 and A3 are the parameter
sets for the h for drug 0, drug 1, drug 2 and drug 3. An infected
individual could fall into any of the intervals described above and,
similarly, a full-blown disease diagnosed individual could fall into the
same interval. But, for a given individual, the chronological time of
infection would be earlier than that of diagnosis of the disease. Un−k

is the time of introduction of drugs after infection at U0. Individuals
who were diagnosed on or after Un−k, and before Un, were taking one
of the three drugs. If E1 ∈ [Un−k, Un−l) and E2 ∈ [Un−l, Un−m),
Z1 < Z2; otherwise, if E1 ∈ [Un−l, Un−m) and E2 ∈ [Un−k, Un−l),
and if E1, E2 ∈ [Un−k, Un−m), then Z1 = Z2. An individual who was
diagnosed with the disease before Un must have developed symptoms
in one of the four intervals [U0, Un−k), [Un−k, Un−l), [Un−l, Un−m) or
[Un−m, Un). Let Ej ∈ [Uj−1, Uj) ⊆ [U0, Un−k). Then the conditional
probability of the occurrence of Ej given E is expressed as

P (Ej/E) = P (Uj−1 ≤ D ≤ Uj/D ≤ Un)

=
D(A0, B0/Uj)−D(A0, B0/Uj−1)

D(A0, B0/Un)

=

∫ Uj

0

h(t/A0)G(t− s/B0) ds

·
[ ∫ Un

0

h(t/A0)G(t− s/B0) ds

]−1

−
∫ Uj−1

0

h(t/A0)G(t− s/B0) ds

·
[ ∫ Un

0

h(t/A0)G(t− s/B0) ds

]−1

.(3.5)
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If drugs were initiated at Un−k, then these conditional probabilities
constructed above will change according to the occurrence of E1, E2

and E3. Consider E1 ∩ E2 = ∅. Let Ek ∈ [Uk−1, Uk) ⊆ [Un−k, Un−l),
and E1 ∈ [Un−k, Un−l). Then

P (Ek/E) = P (Uk−1 ≤ D ≤ Uk/D ≤ Un)

=
D(A1, B1/Uk)−D(A1, B1/Uk−1)

D(A1, B1/Un)

=

∫ Uk

0

h(t/A1)G(t− s/B1) ds

·
[ ∫ Un

0

h(t/A1)G(t− s/B1) ds

]−1

−
∫ Uk−1

0

h(t/A1)G(t− s/B1) ds

·
[ ∫ Un

0

h(t/A1)G(t− s/B1) ds

]−1

.(3.6)

Suppose Ek ∈ [Uk−1, Uk) ⊆ [Un−k, Un−l), and E2 ∈ [Un−k, Un−l),
i.e., a situation where Z1 > Z2. Then

P (Ek/E) =

∫ Uk

0

h(t/A2)G(t− s/B2) ds

·
[ ∫ Un

0

h(t/A2)G(t− s/B2) ds

]−1

−
∫ Uk−1

0

h(t/A2)G(t− s/B2) ds

·
[ ∫ Un

0

h(t/A2)G(t− s/B2) ds

]−1

.(3.7)

Letting El ∈ [Ul−1, Ul) ⊆ [Un−l, Un−m) and E2 ∈ [Un−l, Un−m), then

P (El/E) = P (Ul−1 ≤ D ≤ Ul/D ≤ Un)(3.8)

=
D(A2, B2/Ul)−D(A2, B2/Ul−1)

D(A2, B2/Un)

=

∫ Ul

0

h(t/A2)G(t− s/B2) ds
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·
[ ∫ Un

0

h(t/A2)G(t− s/B2) ds

]−1

−
∫ Ul−1

0

h(t/A2)G(t− s/B2) ds

·
[ ∫ Un

0

h(t/A2)G(t− s/B2) ds

]−1

.(3.9)

Suppose El ∈ [Ul−1, Ul) ⊆ [Un−l, Un−m), and E1 ∈ [Un−l, Un−m),
i.e., a situation where Z1 > Z2. Then

P (El/E) =

∫ Ul

0

h(t/A1)G(t− s/B1) ds

·
[ ∫ Un

0

h(t/A1)G(t− s/B1) ds

]−1

−
∫ Ul−1

0

h(t/A1)G(t− s/B1) ds

·
[ ∫ Un

0

h(t/A1)G(t− s/B1)ds

]−1

.(3.10)

Now consider E1 = E2 ∈ [Up−1, Up) ⊆ [Un−k, Un−m), i.e., Z1 = Z2.
Then the conditional probabilities contain the same parameter sets. In
this situation,

P (Ep/E) =

∫ Up

0

h(t/A1)G(t− s/B1) ds

·
[ ∫ Un

0

h(t/A1)G(t− s/B1) ds

]−1

−
∫ Up−1

0

h(t/A1)G(t− s/B1) ds

·
[ ∫ Un

0

h(t/A1)G(t− s/B1) ds

]−1

.(3.11)

Since Z3 > Z0, Z1, Z2, suppose E3 ∈ [Um−1, Um) ⊆ [Un−m, Un].
Then

P (Um−1 ≤ D ≤ Um/D ≤ Un) =
D(A3, B3/Um)−D(A3, B3/Um−1)

D(A3, B3/Un)
.
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Therefore,

P (Em/E) =

∫ Um

0

h(t/A3)G(t− s/B3) ds

·
[ ∫ Un

0

h(t/A3)G(t− s/B3) ds

]−1

−
∫ Um−1

0

h(t/A3)G(t− s/B3) ds

·
[ ∫ Un

0

h(t/A3)G(t− s/B3) ds

]−1

.(3.12)

The above conditional probabilities P (Ej/E), P (Ek/E), P (El/E),
P (Ep/E) and P (Em/E) are the probabilities associated with the inter-
vals [Uj′−1, Uj′), [Uk′−1, Uk′), [Ul′−1, Ul′), [Up′−1, Up′) and [Um′−1, Um′)
for the ranges of j, k, l, p and m defined above. Since, X0, X1, X2, . . . ,
Xn−k, . . . , Xn−l, . . . , Xn−m, . . . , Xn are mutually exclusive, we assume
they follow a parametric distribution with the above probabilities.
Therefore, we assume they follow the multinomial property of the dis-
tribution of values in time intervals and the above conditional proba-
bilities. Then the likelihood functions corresponding to the event set
E are:

L0(A,B/Pj) =
n−k∏
j′=1

Pj(A,B/Tj′),

L1(2)(A,B/Pk) =
n−l∏

k′=n−k

Pk′(A,B/Tk′),

L2(1)(A,B/Pl′) =
n−m∏
l′=n−l

Pl′(A,B/Tl′),

L1=2(A,B/Pp) =
n−m∏

p′=n−k

Pp′(A,B/Tp′)

and

L3(A,B/Pm) =
n∏

m′=n−m

Pm′(A,B/Tm′).
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Here P• = P (E•/E). We estimate A by fitting an infection curve
from the incidence data, and we then estimate B by maximizing the
likelihood functions expressed above. The best estimate of A could be
information for initial values of X and Y in the model (1.4). Using the
corresponding estimate of B, we obtain

∫
R zidF (zi). In such situations,

the above likelihood functions would be

L0 =
n−k∏
j′=0

P
Tj′

j , L1(2) =
n−l∏

k′=n−k

P
Tk′
k ,

L2(1) =

n−m∏
l′=n−l

P
Tl′
l , L1=2 =

n−m∏
p′=n−k

P
Tp′
p

and

L3 =

n∏
m′=n−m

PTm′
m .

4. Generalization for multiple drug impact. In this section,
expressions for the conditional probabilities are presented when mul-
tiple drugs are administrated in the population. Refer to Sections 2
and 3 for an introduction on the role of various drugs and refer to
Section 4 for basic formulations of conditional probabilities when there
are three types of drugs to prolong the incubation period and without
any drug situation that would not alter the natural process of disease
progression.

Modeling for the situation corresponding to no drug is highly rele-
vant for those countries where surveillance and diagnosis of infections
are not complete and several individuals with HIV are not taking drugs.

Let N = {N0, N1, N2, . . . , NN} be the number of available drugs and
Z = {Z0, Z1, Z2, . . . , ZN} be their corresponding incubation periods.
Further, let Z0 < Z1 < Z2 <, . . . , < ZN and A and B be their
parametric sets. Then

D (A,B/UNN
) =

∫ UN0

0

h(t/AN0)G(t− s/BN0) ds

+

∫ UN1

UN0

h(t/AN1)G(t− s/BN1) ds
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· · ·+
∫ UNN

UNN−1

h(t/ANN
)G(t− s/BNN

)ds.(4.1)

Now, P (ENi
/E) = P (UNi−1

≤ D ≤ UNi
/D ≤ UNN

) and LNi
(for

some i) can be computed as follows:

P (ENi/E) =

∫ UNi

0

h(t/ANi)G(t− s/BNi) ds×[ ∫ UNN

0

h(t/ANN
)G(t− s/BNN

) ds

]−1

−
∫ UNi−1

0

h(t/ANi−1)G(t− s/BNi−1) ds×[ ∫ UNN

0

h(t/ANN
)G(t− s/BNN

) ds

]−1

.(4.2)

LNi =
∏Ni

j=Ni−1
P

Tj

j is maximized for the set [Ai, Bi] by the

procedure explained in the previous section. We will obtain N
sets of [A,B] values, and the corresponding likelihood values are
LN1 , LN2 , LN3 , . . . , LNN . In the above, we have assumed monotonicity
of (Zi) to arrive at (4.2). If the (Zi) values are not monotonic, then the
various conditional probabilities can be constructed as explained in the
previous section. There we explained the general expression when there
were a finite number of drugs available on the market. For a detailed
construction of various conditional probabilities, refer to Appendix I.
When the Zis are not monotonic, and if they follow some order, say for
example, Z0 > Z1 < Z2 > · · · < ZN , then the conditional probabilities
can be constructed in the same way as in (3.7)–(3.10). Suppose (Zp)
are equal for each p. Then there will be two scenarios arising: one
before drug intervention and one after drug intervention. For this situ-

ation, the likelihood equation is LNp
=

∏Np

p=Np−1
P

Tp
p where P (ENp

/E)

is given as follows:

P
(
ENp/E

)
=

∫ UNp

0

h(t/ANp)G(t− s/BNp) ds

×
[ ∫ UNN

0

h(t/ANN )G(t− s/BNN ) ds

]−1
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−
∫ UNp−1

0

h(t/ANp−1)G(t− s/BNp−1)] ds

×
[ ∫ UNN

0

h(t/ANN
)G(t− s/BNN

) ds

]
.(4.3)

5. Theoretical examples. In this section, we show some examples
of the likelihood function constructed in the previous section to esti-
mate A and B. Let h(s) follow a quadratic exponential and B follow
a) a gamma function and b) a logistic function.

Infections in most of the countries started declining after the avail-
ability of antiretroviral therapies [14, 20], and incidence in the re-
cent period was found to be stable in some countries like India [41].
This motivated us to choose a quadratic exponential to represent h(s),
namely, h(s) = exp(α1s

2 + α2s+ α3) for all −∞ < α1, α2, α3 < ∞. A
quadratic exponential function has been shown to be a good model for
representing the above declines in the incidence rates [38].

The incubation period for AIDS is large as well as variable; therefore,
functions like the gamma, Weibull and logistic can mimic several shapes
to fit the incubation period data depending on their parameter values.
Such well-known functions were used by many researchers for modeling
the incubation period of AIDS.

We now demonstrate the application of such functions for the theory
explained in Section 2.

5.1. Example 1: Gamma function. If ω > 0 is the parameter and
Γ(ω) is the complete distribution function, then the incomplete gamma
distribution is

G(ω; tj) =
1

Γ(ω)

∫ tj

0

e−xxω−1dx,

for a ≥ 0, tj ≥ 0 and a+ tj ̸= 0.

From the conditional probability equations (3.5)–(3.12) and the
likelihood equations explained in the latter part of Section 3, the
following are the likelihood equations without a drug and with three
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types of drugs:

(5.1) L0 (α1, α2, α3;ω/Pj) =
∏
j

a1(j)a2(j)−
∏
j

a1(j − 1)a2(j),

where

a1(j) =

[∫ uj

0

eα1s
2+α2s+α3

{
1

Γ(ω)

∫ tj

0

e−(uj−s)(uj − s)ω−1duj

}
ds

]Tj

a1(j − 1) =

[ ∫ uj−1

0

eα1s
2+α2s+α3

×
{

1

Γ(ω)

∫ tj−1

0

e−(uj−1−s)(uj−1 − s)ω−1duj−1

}
ds

]Tj

a2(j) =

[∫ un

0

eα1s
2+α2s+α3

{
1

Γ(ω)

∫ tn

0

e−(un−s)(un − s)ω−1dun

}
ds

]−Tj

(5.2) L1(2) (α1, α2, α3;ω/Pk) =
∏
k

a1(k)a2(k)−
∏
k

a1(k − 1)a2(k),

where

a1(k) =

[∫ uk

0

eα1s
2+α2s+α3

{
1

Γ(ω)

∫ tk

0

e−(uk−s)(uk − s)ω−1duk

}
ds

]Tk

a1(k − 1) =

[∫ uk−1

0

eα1s
2+α2s+α3

×
{

1

Γ(ω)

∫ tk−1

0

e−(uk−1−s)(uk−1 − s)ω−1duk−1

}
ds

]Tk

a2(k) =

[∫ un

0

eα1s
2+α2s+α3

{
1

Γ(ω)

∫ tn

0

e−(un−s)(un − s)ω−1dun

}
ds

]−Tk

(5.3) L2(1) (α1, α2, α3;ω/Pl) =
∏
l

a1(l)a2(l)−
∏
l

a1(l − 1)a2(l),

where

a1(l) =

[ ∫ ul

0

eα1s
2+α2s+α3

{
1

Γ(ω)

∫ tl

0

e−(ul−s)(ul − s)ω−1dul

}
ds

]Tl

a1(l − 1) =

[ ∫ ul−1

0

eα1s
2+α2s+α3
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×
{

1

Γ(ω)

∫ tl−1

0

e−(ul−1−s)(ul−1 − s)ω−1dul−1

}
ds

]Tl

a2(l) =

[∫ un

0

eα1s
2+α2s+α3

{
1

Γ(ω)

∫ tn

0

e−(un−s)(un − s)ω−1dun

}
ds

]−Tl

(5.4) L1=2 (α1, α2, α3;ω/Pp) =
∏
p

a1(p)a2(p)−
∏
p

a1(p− 1)a2(p),

where

a1(p) =

[∫ up

0

eα1s
2+α2s+α3

{
1

Γ(ω)

∫ tp

0

e−(up−s)(up − s)ω−1dup

}
ds

]Tp

a1(p− 1) =

[∫ up−1

0

eα1s
2+α2s+α3

×
{

1

Γ(ω)

∫ tp−1

0

e−(up−1−s)(up−1 − s)ω−1dup−1

}
ds

]Tp

a2(p) =

[∫ un

0

eα1s
2+α2s+α3

{
1

Γ(ω)

∫ tn

0

e−(un−s)(un − s)ω−1dun

}
ds

]−Tp

(5.5) L3 (α1, α2, α3;ω/Pm) =
∏
m

a1(m)a2(m)−
∏
m

a1(m− 1)a2(m),

where

a1(m) =

[∫ um

0

eα1s
2+α2s+α3

{
1

Γ(ω)

∫ tm

0

e−(um−s)(um − s)ω−1dum

}
ds

]Tm

a1(m− 1) =

[ ∫ um−1

0

eα1s
2+α2s+α3

×
{

1

Γ(ω)

∫ tm−1

0

e−(um−1−s)(um−1 − s)ω−1dum−1

}
ds

]Tm

a2(m) =

[∫ un

0

eα1s
2+α2s+α3

{
1

Γ(ω)

∫ tn

0

e−(un−s)(un − s)ω−1dun

}
ds

]−Tm

.

5.2. Example 2: Logistic function. Suppose θ1 and θ2 are param-
eters and

F (θ1, θ2; tj) =
{
1 + e−(tj−θ1/θ2)

}−1

, for θ1, θ2 > 0,
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is the distribution function. The likelihood equations to obtain the
parameters of logistic distribution without drugs and for three types of
drugs are as follows:

(5.6) L0 (α1, α2, α3; θ1, θ2/Pj) =
∏
j

a′1(j)a
′
2(j)−

∏
j

a′1(j − 1)a′2(j)

where

a′1(j) =

[ ∫ uj

0

eα1s
2+α2s+α3

{{
1 + e−(

uj−θ1
θ2

)

}−1}
ds

]Tj

a′1(j − 1) =

[ ∫ uj−1

0

eα1s
2+α2s+α3

{{
1 + e−(

uj−1−θ1
θ2

)

}−1}
ds

]Tj

a′2(j) =

[ ∫ un

0

eα1s
2+α2s+α3

{{
1 + e−(

un−θ1
θ2

)

}−1}
ds

]−Tj

(5.7) L1(2) (α1, α2, α3; θ1, θ2/Pk) =
∏
k

a′1(k)a
′
2(k)−

∏
k

a′1(k−1)a′2(k),

where

a′1(k) =

[ ∫ uk

0

eα1s
2+α2s+α3

{{
1 + e−(

uk−θ1
θ2

)

}−1}
ds

]Tk

a′1(k − 1) =

[ ∫ uk−1

0

eα1s
2+α2s+α3

{{
1 + e−(

uk−1−θ1
θ2

)

}−1}
ds

]Tk

a′2(k) =

[ ∫ un

0

eα1s
2+α2s+α3

{{
1 + e−(

un−θ1
θ2

)

}−1}
ds

]−Tk

(5.8) L2(1) (α1, α2, α3; θ1, θ2/Pl) =
∏
l

a′1(l)a
′
2(l)−

∏
l

a′1(l − 1)a′2(l),

where

a′1(l) =

[ ∫ ul

0

eα1s
2+α2s+α3

{{
1 + e−(

ul−θ1
θ2

)

}−1}
ds

]Tl

a′1(l − 1) =

[ ∫ ul−1

0

eα1s
2+α2s+α3

{{
1 + e−(

ul−1−θ1
θ2

)

}−1}
ds

]Tl

a′2(l) =

[ ∫ un

0

eα1s
2+α2s+α3

{{
1 + e−(

un−θ1
θ2

)

}−1}
ds

]−Tl
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(5.9) L1=2 (α1, α2, α3; θ1, θ2/Pp) =
∏
p

a′1(p)a
′
2(p)−

∏
p

a′1(p−1)a′2(p),

where

a′1(p) =

[ ∫ up

0

eα1s
2+α2s+α3

{{
1 + e−(

up−θ1
θ2

)

}−1}
ds

]Tp

a′1(p− 1) =

[ ∫ up−1

0

eα1s
2+α2s+α3

{{
1 + e−(

up−1−θ1
θ2

)

}−1}
ds

]Tp

a′2(p) =

[ ∫ un

0

eα1s
2+α2s+α3

{{
1 + e−(

un−θ1
θ2

)

}−1}
ds

]−Tp

(5.10)

L3 (α1, α2, α3; θ1, θ2/Pm) =
∏
m

a′1(m)a′2(m)−
∏
m

a′1(m− 1)a2(m),

where

a′1(m) =

[ ∫ um

0

eα1s
2+α2s+α3

{{
1 + e−(

um−θ1
θ2

)

}−1}
ds

]Tm

a′1(m− 1) =

[ ∫ um−1

0

eα1s
2+α2s+α3

{{
1 + e−(

um−1−θ1
θ2

)

}−1}
ds

]Tm

a′2(m) =

[ ∫ un

0

eα1s
2+α2s+α3

{{
1 + e−(

un−θ1
θ2

)

}−1}
ds

]−Tm

.

5.3. Example 3: Log-normal function. Suppose µ and σ are
parameters and LNF (µ, σ; tj) = {1 + erf( lnx−µ

σ
√
2
)}/2, for µ, σ > 0,

is the distribution function. (Here, erf{·} is the error function of the
Gaussian function).

The likelihood equations for obtaining the parameters of logistic
distribution without drugs and for three types of drugs are as follows:

(5.11) L0 (α1, α2, α3;µ, σ/Pj) =
∏
j

a′′1(j)a
′′
2(j)−

∏
j

a′′1(j − 1)a′′2(j),

where

a′′1(j) =

[
1

2

∫ uj

0

eα1s
2+α2s+α3

{
1 + erf

(
lnx− µ

σ
√
2

)}
ds

]Tj
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a′′1(j − 1) =

[
1

2

∫ uj−1

0

eα1s
2+α2s+α3

{
1 + erf

(
lnx− µ

σ
√
2

)}
ds

]Tj

a′′2(j) =

[
1

2

∫ un

0

eα1s
2+α2s+α3

{
1 + erf

(
lnx− µ

σ
√
2

)}
ds

]−Tj

(5.12)

L1(2)

(
α1, α2, α3;µ, σ/Pk

)
=

∏
k

a′′1(k)a
′′
2(k)−

∏
k

a′′1(k − 1)a′′2(k),

where

a′′1(k) =

[
1

2

∫ uk

0

eα1s
2+α2s+α3

{
1 + erf

(
lnx− µ

σ
√
2

)}
ds

]Tk

a′′1(k − 1) =

[
1

2

∫ uk−1

0

eα1s
2+α2s+α3

{
1 + erf

(
lnx− µ

σ
√
2

)}
ds

]Tk

a′′2(k) =

[
1

2

∫ un

0

eα1s
2+α2s+α3

{
1 + erf

(
lnx− µ

σ
√
2

)}
ds

]−Tk

(5.13) L2(1)

(
α1, α2, α3;µ, σ/Pl

)
=

∏
l

a′′1(l)a
′′
2(l)−

∏
l

a′′1(l− 1)a′′2(l),

where

a′′1(l) =

[
1

2

∫ ul

0

eα1s
2+α2s+α3

{
1 + erf

(
lnx− µ

σ
√
2

)}
ds

]Tl

a′′1(l − 1) =

[
1

2

∫ ul−1

0

eα1s
2+α2s+α3

{
1 + erf

(
lnx− µ

σ
√
2

)}
ds

]Tl

a′′2(l) =

[
1

2

∫ un

0

eα1s
2+α2s+α3

{
1 + erf

(
lnx− µ

σ
√
2

)}
ds

]−Tl

(5.14)

L1=2

(
α1, α2, α3;µ, σ/Pp

)
=

∏
p

a′′1(p)a
′′
2(p)−

∏
p

a′′1(p− 1)a′′2(p),

where

a′′1(p) =

[
1

2

∫ up

0

eα1s
2+α2s+α3

{
1 + erf

(
lnx− µ

σ
√
2

)}
ds

]Tp
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a′′1(p− 1) =

[
1

2

∫ up−1

0

eα1s
2+α2s+α3

{
1 + erf

(
lnx− µ

σ
√
2

)}
ds

]Tp

a′′2(p) =

[
1

2

∫ un

0

eα1s
2+α2s+α3

{
1 + erf

(
lnx− µ

σ
√
2

)}
ds

]−Tp

(5.15)

L3 (α1, α2, α3;µ, σ/Pm) =
∏
m

a′1(m)a′2(m)−
∏
m

a′1(m− 1)a2(m),

where

a′′1(m) =

[
1

2

∫ um

0

eα1s
2+α2s+α3

{
1 + erf

(
lnx− µ

σ
√
2

)}
ds

]Tm

a′′1(m− 1) =

[
1

2

∫ um−1

0

eα1s
2+α2s+α3

{
1 + erf

(
lnx− µ

σ
√
2

)}
ds

]Tm

a′′2(m) =

[
1

2

∫ un

0

eα1s
2+α2s+α3

{
1 + erf

(
lnx− µ

σ
√
2

)}
ds

]−Tm

.

6. Age-structured populations. In this section, we extend mod-
els 1.4 and 1.5 to accommodate age structure into the population mix-
ing and epidemiology parameters. The incubation period for children is
shorter than that for adults. Within the adult population, there could
be variability due to age at the time of infection. There are studies
that analyze the HIV data collected on age at the time of infection in
order to study parameters like incubation period [6], and some studies
incorporate age structure in the models to explain the impact of an
age-dependent incubation period [18].

Information on population age structure is an important source
of data in countries with a severe AIDS epidemic. Countries with
a high number of young adults with high-risk behavior need special
interventions in terms of behavioral counseling, treatment with drugs,
monitoring and evaluation of the epidemic. For most of the countries
with high numbers of HIV infected individuals, age-related data for
measuring impact of drugs are not available. Virus transmission rates,
disease progression rates and mortality rates could be highly age-
dependent. Improving surveillance activities by age-structure of the
HIV infected and susceptible populations would benefit the overall
disease control programs in a country.
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In the absence of availability of cohort data, the methods explained
in Section 2 could be of great use to estimate the incubation period.
The analysis and method explained there could be carried out based on
the data available for individuals of every age (rounded to the closest
integer). We describe the age-structure model and the method for
obtaining the incubation period in this section by considering j age
groups. In a hospital set-up it is relatively easy to follow cohorts of age
groups compared to following cohorts of individuals for each age group.

Suppose the population in the jth age group is divided into Xj

susceptible, Y0,j , Y1,j , Y2,j and Y3,j are infected and Dz0,j , Dz1,j , Dz2,j

and Dz3,j are individuals with the disease without drugs, for drug1,
drug2 and drug3, respectively. The differential equations explaining
these variables are:

dXj

dt
= Λj −

(
λ0
jk + λ1

jk + λ2
jk + λ3

jk + µj

)
Xj ,

dY0,j

dt
= λ0

jkXj −
{(∫

R
z0,jdG(z0,j)

)−1

+ µj

}
Y0,j ,

dY1,j

dt
= λ1

jkXj −
{(∫

R
z1,jdG(z1,j)

)−1

+ µj

}
Y1,j ,

dY2,j

dt
= λ2

jkXj −
{(∫

R
z2,jdG(z2,j)

)−1

+ µj

}
Y2,j ,

dY3,j

dt
= λ3

jkXj −
{(∫

R
z3,jdG(z3,j)

)−1

+ µj

}
Y3,j ,(6.1)

dDz0,j

dt
=

(∫
R
z0,jdG(z0,j)

)−1

Y0,j − γ0,jDz0,j ,

dDz1,j

dt
=

(∫
R
z1,jdG(z1,j)

)−1

Y1,j − γ1,jDz1,j ,

dDz2,j

dt
=

(∫
R
z2,jdF (z2,j)

)−1

Y2,j − γ2,jDz2,j ,

dDz3,j

dt
=

(∫
R
z3,jdG(z3,j)

)−1

Y3,j − γ3,jDz3,j .

Here, Λj is the input of susceptibles for the individuals in the age
group j, µj is the mortality rate, λ0

jk, λ
1
jk, λ

2
jk and λ3

jk are the forces
of infection at which a susceptible in the age group j is infected by
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an infected individual in the age group k, and γ0,j , γ1,j , γ2,j and γ3,j
are disease related mortality rates for the infected individuals in the
age group j without drugs, and with drug1, drug2 and drug3 for the
individuals. (

∫
R zi,jdG(zi,j))

−1 is the rate of disease progression for
the infected individual for the age group j for the drug type i. Special
attention is necessary in data collection for understanding the forces of
infection by age group.

If there are n drug types available, then the general model describing
the dynamics of various variables described above is as follows:

dXj

dt
= Λj −

(
λ0
jk + λ1

jk + λ2
jk + λ3

jk + µj

)
Xj ,

dY0,j

dt
= λ0

jkXj −
{(∫

R
z0,jdG(z0,j)

)−1

+ µj

}
Y0,j ,

...

...

dYn,j

dt
= λn

jkXj −
{(∫

R
zn,jdG(zn,j)

)−1

+ µj

}
Yn,j ,(6.2)

dDz0,j

dt
=

(∫
R
z0,jdG(z0,j)

)−1

Y0,j − γ0,jDz0,j ,

...

...

dDzn,j

dt
=

(∫
R
zn,jdG(zn,j)

)−1

Yn,j − γn,jDzn,j ,

where αi,j is the mortality rate of infected individuals of drug type i in
the age group j.

6.1. Varying incubation periods for age-structured popula-
tions. We are interested in the average incubation period for a group
of individuals in the age group j. If H(j) is the time of infection and
Z(j) is the incubation period for the jth age group, then the time of
onset of the disease for this age group isD(j) = H(j)+Z(j). This is the
time of onset of the disease for an individual who acquired the infection
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Figure 2. Age-structured infection and disease development matrix. Here
row values indicate infection age group (H(j)) and column values for age
group in which infected individual developed disease (D(j)). An individual
who acquired the infection in j, and developed disease in j + ω, is indicated
by the cell (j, j + ω).

while in the jth age group. Development of the disease will be some
time units (for example: months, years) after infection at age j. An
individual who acquired the infection at age j is assumed to develop the
full disease before completion of the same age j or > j. Given H(j), for
some j, then D(j) is allowed to occur at age j′(j′ = j, j +1, · · · , j +ω,
where j+ω is the last age group for the possibility of infection). Clearly,
H(j) ≤ D(j). H(j) = D(j) is possible if an individual acquired infec-
tion and attains disease before completion of age j. One can do an
analysis using a bi-annual (or half-yearly) aging process.

Consider an infection and disease development matrix (see Figure 2)
where each cell (j, j′) denotes the (infection age groups, disease onset
age groups) for j = 0, 1, 2, . . . , j + ω; j′ = 0, 1, 2, . . . , j + ω. Only those
cells for which j ≤ j′ are provided, and other cells are left blank for
which the incubation period is not defined. In the matrix, all the eligible
cells are denoted, so obviously there are more cells present where the
condition j ≤ j′ is satisfied, and also j is very low. (In fact, the average
incubation period is not beyond a certain duration. It is not intended
in the matrix to suggest that the lower the value of j, the larger the
value of the incubation period). If the age of infection is higher, for
some j, and towards the last few possible age groups, then it is possible
that j′ − j is shorter because individuals die naturally in old age. At
the same time, the chance of infection in the very higher age groups
(say 60+) is negligible for HIV (unless there are some rare causes). In
the absence of age specific cohorts of infected individuals and follow-up
data, it is not feasible to calculate disease progression rates and survival
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probabilities using direct cohort methods.

In this section, we extend the method given in Section 2 to estimate
the average disease progression rates (or average incubation periods)
for infections in age group j. This method is dependent on infection
densities and data on disease occurrences for the age group j.

Let p(t, j) and q(t, j) be the probability density functions of infection
density and incubation period for the age group j. If Q(t, j) is
the distribution function of the incubation period, then Q(t, j) =∫ t

−∞ q(t, j) dt. Now, the convolution of p(t, j) and Q(t, j) is given by

C(s, t) =

∫ ∞

−∞
p(t, j)Q(t− s, j) ds.

We call C the convolution of p and Q (i.e. p ∗ Q, where ∗ is the
convolution operator). Therefore,

p ∗Q =

∫ ∞

−∞
p(t, j)Q(t− s, j) ds.

Suppose an individual is diagnosed with a disease at age j in the
year Uk. Then there is a possibility that this individual acquired
the infection in any of the years prior to Uk (provided this individual
was born in the year ≥ U0). Similarly, all those individuals who are
diagnosed with the disease at age j + w in the year Un have actually
acquired infection in any of the years from U0 to Un. In the same way,
an individual infected at age j will be diagnosed with the disease in
an age group ≥ j. We consider model (6.1), where four types of drugs
were considered in Section 2.

Let A0(j), A1(j), A2(j) and A3(j) be the parameter sets in age
group j for the four kinds of drugs. Let B0(j), B1(j), B2(j) and B3(j)
be the parameter sets C and E0(j), E1(j), E2(j) and E3(j) be the
corresponding events of diagnosis of disease in the age group j for the
four types of drugs. The cumulative number of diagnosed disease cases
up to Un for individuals who are diagnosed in the age group j is

J(U0 < s < Un, j) =

j∑
j∗=0

I(j∗, j),

where I(0, j), I(1, j), . . . , I(j, j) are the numbers of disease cases di-
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agnosed in age group j and acquired the infection in the age group
0, 1, . . . , j.

I(0, j) =

∫ Un−k

0

p(t, 0)Q(t− s, j) ds

+

∫ Un−l

Un−k

p(t, 0)Q(t− s, j) ds

+

∫ Un−m

Un−l

p(t, 0)Q(t− s, j) ds

+

∫ Un

Un−m

p(t, 0)Q(t− s, j) ds

=

∫ Un−k

0

p(t, 0/A0)Q(t− s, j/B0) ds

+

∫ Un−l

Un−k

p(t, 0/A1)Q(t− s, j/B1) ds

+

∫ Un−m

Un−l

p(t, 0/A2)Q(t− s, j/B2) ds

+

∫ Un

Un−m

p(t, 0/A3)Q(t− s, j/B3) ds

I(1, j) =

∫ Un−k

0

p(t, 1)Q(t− s, j) ds

+

∫ Un−l

Un−k

p(t, 1)Q(t− s, j) ds

+

∫ Un−m

Un−l

p(t, 1)Q(t− s, j) ds

+

∫ Un

Un−m

p(t, 1)Q(t− s, j) ds

=

∫ Un−k

0

p(t, 1/A0)Q(t− s, j/B0) ds

+

∫ Un−l

Un−k

p(t, 1/A1)Q(t− s, j/B1) ds
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+

∫ Un−m

Un−l

p(t, 1/A2)Q(t− s, j/B2) ds

+

∫ Un

Un−m

p(t, 1/A3)Q(t− s, j/B3) ds

...

I(j, j) =

∫ Un−k

0

p(t, j)Q(t− s, j) ds

+

∫ Un−l

Un−k

p(t, j)Q(t− s, j) ds

+

∫ Un−m

Un−l

p(t, j)Q(t− s, j) ds

+

∫ Un

Un−m

p(t, j)Q(t− s, j) ds

=

∫ Un−k

0

p(t, j/A0)Q(t− s, j/B0) ds

+

∫ Un−l

Un−k

p(t, j/A1)Q(t− s, j/B1) ds

+

∫ Un−m

Un−l

p(t, j/A2)Q(t− s, j/B2) ds

+

∫ Un

Un−m

p(t, j/A3)Q(t− s, j/B3) ds.

Similar to unstructured populations, we assume that Un−k is the
time of the introduction of drugs after the first year of detection of
the disease in U0. If E1(j) ∈ [Un−k, Un−l) and E2(j) ∈ [Un−l, Un−m),
then Z1(j) < Z2(j); otherwise, if E2(j) ∈ [Un−k, Un−l) and E1(j) ∈
[Un−l, Un−m), then Z2(j) < Z1(j). If E1(j), E2(j) ∈ [Un−k, Un−m),
then Z1(j) = Z2(j). An individual who was diagnosed with the
disease in the age group j before Un is already developed in one of the
four intervals [U0, Un−k), [Un−k, Un−l), [Un−l, Un−m) and [Un−m, Un)
is assumed. If E0(j) ∈ [Ui′−1, Ui′) ⊆ [U0, Un−k), (for drug type i′),
then the conditional probability of occurrence of E0(j) given E(j) is:

Pr [E0(j)/E(j)] = Pr [Ui′−1 ≤ J ≤ Ui′ , j/J ≤ Un]
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=
J [A0(j), B0(j)/Ui′ , j]− J [A0(j), B0(j)/ui′−1, j]

J [A0(j), B0(j)/Un, j]
,

where J values for E0(j) are given by:

J [A0(j), B0(j)/Ui′ , j] =

∫ Ui′

0

p(t, 0/A0)Q(t− s, j/B0) ds

+

∫ Ui′

0

p(t, 1/A0)Q(t− s, j/B0) ds · · ·

+

∫ Ui′

0

p(t, j/A0)Q(t− s, j/B0) ds

J [A0(j), B0(j)/Ui′−1, j] =

∫ Ui′−1

0

p(t, 0/A0)Q(t− s, j/B0) ds

+

∫ Ui′−1

0

p(t, 1/A0)Q(t− s, j/B0) ds · · ·

+

∫ Ui′−1

0

p(t, j/A0)Q(t− s, j/B0) ds

J [A1(j), B1(j)/Un, j] =

∫ Un

0

p(t, 0/A0)Q(t− s, j/B0) ds

+

∫ Un

0

p(t, 1/A0)Q(t− s, j/B0) ds · · ·

+

∫ Un

0

p(t, j/A0)Q(t− s, j/B0) ds.

The above probability expressions are for the case without drug
interventions. When drugs were initiated at Un−k, then these prob-
abilities changed according to the occurrence of E1(j), E2(j) and
E3(j). Suppose E1(j) ∩ E2(j) = ∅. If [Uk′−1, Uk′) ⊆ [Un−k, Un−l)
and E1 ∈ [Un−k, Un−l) ,then

Pr [E1(j)/E(j)] = Pr [Uk′−1 ≤ J ≤ Uk′ , j/J ≤ Un]

=
J [A1(j), B1(j)/Uk′ , j]− J [A1(j), B1(j)/uk′−1, j]

J [A1(j), B1(j)/Un, j]
,

where J values for E1(j) are given by

J [A1(j), B1(j)/Uk′ , j] =

∫ Uk′

0

p(t, 0/A1)Q(t− s, j/B1) ds
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+

∫ Uk′

0

p(t, 1/A1)Q(t− s, j/B1) ds · · ·

+

∫ Uk′

0

p(t, j/A1)Q(t− s, j/B1) ds

J [A1(j), B1(j)/Uk′−1, j] =

∫ Uk′−1

0

p(t, 0/A1)Q(t− s, j/B1) ds

+

∫ Uk′−1

0

p(t, 1/A1)Q(t− s, j/B1) ds · · ·

+

∫ Uk′−1

0

p(t, j/A1)Q(t− s, j/B1) ds

J [A1(j), B1(j)/Un, j] =

∫ Un

0

p(t, 0/A1)Q(t− s, j/B1) ds

+

∫ Un

0

p(t, 1/A1)Q(t− s, j/B1) ds · · ·

+

∫ Un

0

p(t, j/A1)Q(t− s, j/B1) ds.

In the above, instead of E1(j), if E2 ∈ [Un−k, Un−l), then the proba-
bilities would be:

Pr [E2(j)/E(j)] = Pr [Uk′−1 ≤ J ≤ Uk′ , j/J ≤ Un]

=
J [A2(j), B2(j)/Uk′ , j]− J [A2(j), B2(j)/uk′−1, j]

J [A2(j), B2(j)/Un, j]
,

where J values for E1(j) are given by

J [A2(j), B2(j)/Uk′ , j] =

∫ Uk′

0

p(t, 0/A2)Q(t− s, j/B2) ds

+

∫ Uk′

0

p(t, 1/A2)Q(t− s, j/B2) ds · · ·

+

∫ Uk′

0

p(t, j/A2)Q(t− s, j/B2) ds

J [A2(j), B2(j)/Uk′−1, j] =

∫ Uk′−1

0

p(t, 0/A2)Q(t− s, j/B2) ds

+

∫ Uk′−1

0

p(t, 1/A2)Q(t− s, j/B2) ds · · ·



1010 ARNI S.R. SRINIVASA RAO

+

∫ Uk′−1

0

p(t, j/A2)Q(t− s, j/B2) ds

J [A2(j), B2(j)/Un, j] =

∫ Un

0

p(t, 0/A2)Q(t− s, j/B2) ds

+

∫ Un

0

p(t, 1/A2)Q(t− s, j/B2) ds

+

∫ Un

0

p(t, j/A2)Q(t− s, j/B2) ds.

If [Ul−1, Ul) ⊆ [Un−l, Un−m) and E1 ∈ [Un−l, Un−m), then

Pr [E1(j)/E(j)] = Pr [Ul′−1 ≤ J ≤ Ul′ , j/J ≤ Un]

=
J [A1(j), B1(j)/Ul′ , j]− J [A1(j), B1(j)/ul′−1, j]

J [A1(j), B1(j)/Un, j]
,

where J values for E1(j) are given by

J [A1(j), B1(j)/Ul′ , j] =

∫ Ul′

0

p(t, 0/A1)Q(t− s, j/B1) ds

+

∫ Ul′

0

p(t, 1/A1)Q(t− s, j/B1) ds · · ·

+

∫ Ul′

0

p(t, j/A1)Q(t− s, j/B1) ds

J [A1(j), B1(j)/Ul′−1, j] =

∫ Ul′−1

0

p(t, 0/A1)Q(t− s, j/B1) ds

+

∫ Ul′−1

0

p(t, 1/A1)Q(t− s, j/B1) ds · · ·

+

∫ Ul′−1

0

p(t, j/A1)Q(t− s, j/B1) ds

J [A1(j), B1(j)/Un, j] =

∫ Un

0

p(t, 0/A1)Q(t− s, j/B1) ds

+

∫ Un

0

p(t, 1/A1)Q(t− s, j/B1) ds · · ·

+

∫ Un

0

p(t, j/A1)Q(t− s, j/B1) ds.
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Suppose [Ul−1, Ul) ⊆ [Un−l, Un−m) and E2 ∈ [Un−l, Un−m). Then

Pr [E2(j)/E(j)] = Pr [Ul′−1 ≤ J ≤ Ul′ , j/J ≤ Un]

=
J [A2(j), B2(j)/Ul′ , j]− J [A2(j), B2(j)/ul′−1, j]

J [A2(j), B2(j)/Un, j]
,

where J values for E2(j) are given as below:

J [A2(j), B2(j)/Ul′ , j] =

∫ Ul′

0

p(t, 0/A2)Q(t− s, j/B2) ds

+

∫ Ul′

0

p(t, 1/A2)Q(t− s, j/B2) ds · · ·

+

∫ Ul′

0

p(t, j/A2)Q(t− s, j/B2) ds

J [A2(j), B2(j)/Ul′−1, j] =

∫ Ul′−1

0

p(t, 0/A2)Q(t− s, j/B2) ds

+

∫ Ul′−1

0

p(t, 1/A2)Q(t− s, j/B2) ds · · ·

+

∫ Ul′−1

0

p(t, j/A2)Q(t− s, j/B2) ds

J [A2(j), B2(j)/Un, j] =

∫ Un

0

p(t, 0/A2)Q(t− s, j/B2) ds

+

∫ Un

0

p(t, 1/A2)Q(t− s, j/B2) ds · · ·

+

∫ Un

0

p(t, j/A2)Q(t− s, j/B2) ds.

If E1(j) = E2(j) ∈ [Up′−1, Up′) ⊆ [Un−k, Un−m) i.e., Z1(j) = Z2(j),
then the conditional probabilities contain the same parameter sets. The
probabilities for this situation are:

Pr[E1(j) = E2(j)/E(j)] = Pr [Up′−1 ≤ J ≤ Up′ , j/J ≤ Un]

=
J [A2(j), B2(j)/Up′ , j]− J [A2(j), B2(j)/up′−1, j]

J [A2(j), B2(j)/Un, j]
,
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where J values for E2(j) are given by

J [A2(j), B2(j)/Up′ , j] =

∫ Up′

0

p(t, 0/A2)Q(t− s, j/B2) ds

+

∫ Up′

0

p(t, 1/A2)Q(t− s, j/B2) ds · · ·

+

∫ Up′

0

p(t, j/A2)Q(t− s, j/B2) ds

J [A2(j), B2(j)/Up′−1, j] =

∫ Up′−1

0

p(t, 0/A2)Q(t− s, j/B2) ds

+

∫ Up′−1

0

p(t, 1/A2)Q(t− s, j/B2) ds · · ·

+

∫ Up′−1

0

p(t, j/A2)Q(t− s, j/B2) ds

J [A2(j), B2(j)/Un, j] =

∫ Un

0

p(t, 0/A2)Q(t− s, j/B2) ds

+

∫ Un

0

p(t, 1/A2)Q(t− s, j/B2) ds · · ·

+

∫ Un

0

p(t, j/A2)Q(t− s, j/B2) ds.

Since Z3(j) > {Z0(j), Z1(j), Z2(j)}, suppose E3(j) ∈ [Um′−1, Um′) ⊆
[Un−m, Un]. Now the above probabilities are:

Pr [E3(j)/E(j)] = Pr [Um′−1 ≤ J ≤ Um′ , j/J ≤ Un]

=
J [A3(j), B3(j)/Um′ , j]− J [A3(j), B3(j)/um′−1, j]

J [A3(j), B3(j)/Un, j]
,

where the J values for E3(j) are given by

J [A3(j), B3(j)/Um′ , j] =

∫ Um′

0

p(t, 0/A3)Q(t− s, j/B3) ds

+

∫ Um′

0

p(t, 1/A3)Q(t− s, j/B3) ds · · ·

+

∫ Um′

0

p(t, j/A3)Q(t− s, j/B3) ds
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J [A3(j), B3(j)/Um′−1, j] =

∫ Um′−1

0

p(t, 0/A3)Q(t− s, j/B3) ds

+

∫ Um′−1

0

p(t, 1/A3)Q(t− s, j/B3) ds · · ·

+

∫ Um′−1

0

p(t, j/A3)Q(t− s, j/B3) ds

J [A3(j), B3(j)/Un, j] =

∫ Un

0

p(t, 0/A3)Q(t− s, j/B3) ds

+

∫ Un

0

p(t, 1/A3)Q(t− s, j/B3) ds · · ·

+

∫ Un

0

p(t, j/A3)Q(t− s, j/B3) ds.

Using the above conditional probabilities, likelihood functions can
be constructed by assuming some parametric form for the diagnosed
disease cases. For each age group above, an analysis is conducted to
estimate the incubation periods.

7. Conclusions. The methods and models developed support fur-
ther biological and epidemiological experiments in the HIV infected
population. As per the current WHO guidelines, ART is prescribed
only when CD4 count reaches 350 cells/mm3 [54]. Experiments indi-
cate the mortality rate among the HIV infected population drops after
individuals are on ART, and hence the expected life years remaining
once an individual reaches CD4 = 350 is different for those individu-
als who are on ART and those who are not on ART. After providing
ART for all the eligible people, the length of life gained by individuals
can be measured, and the resultant functional form can be modeled.
Similarly, models can be built for lengths of lives for those individuals
who reach CD4 = 350 and are not on ART. However, modeling on the
data for those who are not on ART and having lower levels of CD4 is
practically not feasible, because most countries have ART guidelines
which will be effective as soon as an individual is found HIV positive
and the CD4 count reaches a certain lower level such that ART is ini-
tiated. With a careful collection of published literature, a comparison
of disease progression rates obtained during pre-ART and ART years
can provide useful statistics on the mean incubation period.
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Until recently, the WHO recommended starting ART when the
CD4 count reaches 250 or lower. Guidelines for introducing ART
have been evolving over the years. Improved monitoring of cohorts
of infected individuals and improvements in medical technology will
help to improve the life of infected people.

There are debates regarding the introduction of ART to people who
have a CD4 count of 500 or above. A change in the guidelines for
initiating ART will lead to the formation of different study populations
for key parameters estimation and formation of cohorts of people with
differential drug exposure. The relation between the CD4 count and
time of initiation of therapy is important for disease progression rates
and mortality rates, and generation of such data requires scientific
planning and inference.

There could be several limitations in studies which capture the
impact of ART interventions using inaccurate experimental designs to
evaluate drug efficacy in the population. For example, survival patterns
of a cohort of people recruited for ART in the early 2000s based on a
CD4 count around 200 need not be same as the survival pattern of a
different cohort of people who were recruited in 2010s based on a CD4
count around 350. Analyzing the population data on ART which was
collected by mixing various cohorts formulated at various time points
requires allocation of weights for obtaining efficient descriptive statistics
on treatment efficacy. Careful planning of cohort based studies on
treatment for meaningful conclusions is necessary for population based
policies and guidelines. Simultaneous efforts of up to date statistical
data analysis and mathematical modeling of the impacts of ART are
necessary formulation of better guidelines for treatment.

Revised models that address the impacts of anti-retroviral therapy,
protease inhibitors and a combination of the drugs presented in Sec-
tion 1 are useful in understanding the dynamics of variables for individ-
uals with the full blown disease for no-drug, drug1, drug2 and drug3,
i.e., Dz0 , Dz1 , Dz2 and Dz3 . Using the methodologies in Sections 2 to
4, one is able to estimate the parameters for the incubation period for
each drug type by the deconvolution method. We have demonstrated
this method for three types of drugs, and one can obtain B for as many
drugs as possible from the formulas for n-types of drugs in Section 3.
There is evidence of drugs being useful in prevention programs (for
example, see [13]). Drugs may be useful for avoiding opportunistic in-
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fections for some specific periods of time. Eventually, an individual will
succumb to AIDS, whether or not that individual takes drugs (which
is also demonstrated in the truncation effect in Figure 3). The trun-
cation effect formulas can be used to obtain the parameter set (say,
BT ), but we did not demonstrate this numerically. There were other
types of methods for obtaining incubation periods (see [36] when data
is censored and see [39] when data is from a hospital based cohort).

We did not introduce intracellular delay that might arise due to drug
interventions. There are not many quantitative results available on the
relationship between the dose of a drug and the resultant delay in the
development of the disease. Suppose s1, s2, s3, . . . , sk are k levels of
doses of a single drug, and τ1, τ2, τ3, . . . , τk are the respective delays
obtained in producing a new infected cell. Then we can write the
relation R2(s, τ) between s and τ as{∑k

i=1 (si − s) (τi − τ)
}2

{∑k
i=1 (si − s)

}2 {∑k
i=1 (τi − τ)

}2 .

R2(s, τ) is called the correlation coefficient of dose-delay. s is the
mean dose-level and τ is the mean delay. This experiment can be
conducted for various doses sij (say) for drug type j = 1, 2, 3, . . . , n.
Each drug will produce a delay depending upon the dose level. From
this, the average delay can be statistically compared to understand the
mean dose effect due to a particular drug and hence the drug efficacy.
However, this does not give dynamics over the time period, but it is
very useful in preparing the baseline parameters for simulation studies,
and also for the models explained in Sections 1, 2 and 5.

Our work may be interesting for people working on developing com-
putational techniques for solving integro-differential equations, algo-
rithms to solve convolution type equations in epidemiology, and EM-
type algorithms. The age-structure analysis presented is more compli-
cated than the analysis presented for the non-age structured popula-
tions, and we provide a new kind of analysis for the incubation period.
When reported disease cases and densities of the infection are available
for a period of several years in the population, then this kind of analysis
offers a reliable method to estimate the incubation period distribution.

Second line therapy is further expected to raise the length of survival
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of people with HIV. There is a need to estimate parameters of the
survival period, disease related mortality rates, rate of development
of resistance among people on first line therapy such that models that
project the number of people eligible for second line therapy are utilized
for ART planning.

Existing transmission dynamics models for HIV (built without the
ART component) can be updated with compartments of people who are
on ART and who are without ART, because there could be differen-
tial rates of transmissions of HIV by the level adherence to second line
therapy. The possibility of eligible people for second line therapy while
still on first line therapy due to non availability or lesser availability
of diagnostic centers for detecting resistance levels for first line ther-
apy cannot be ruled out. The difficulty of identifying all HIV infected
individuals at the population level still remains high as all susceptible
individuals with risk behavior towards HIV are not diagnosed on a reg-
ular basis (unless they are recruited for a specific cohort base followup
study). With the invention of new therapies and new guidelines there is
an increasing need for continued efforts for modeling and data analysis
to strengthen the public health gains of ART.
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ronment at the Centre for Mathematical Biology, Oxford was highly
beneficial. My sincere gratitude to all (and for all financial support).

8. Appendix I: Conditional probabilities for generalized
multiple drug impact. Here we derive expressions for conditional
probabilities when several drugs are available and the incubation period
is non-monotonic. When such a situation arises there will be several
combinations of orders of Zs. We take one such situation and write
corresponding Ls for the purpose of demonstration.

Suppose Z0 < · · · < Zk = · · · = Zk+n+1 < · · · < ZN . Let us divide
this into the following two inequalities and an equality: Z0 < · · · < Zk,
Zk+1 = · · · = Zk+n and Zk+n+1 < · · · < ZN . If we consider the first
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and third inequalities, then

D (A,B/UNk
) =

∫ UN0

0

h(t/AN0)G(t− s/BN0) ds

+

∫ UN1

UN0

h(t/AN1)G(t− s/BN1) ds

· · ·+
∫ UNk

UNk−1

h(t/ANk
)G(t− s/BNk

) ds

D (A,B/UNN
) =

∫ UNn+k+1

0

h(t/ANn+k+1
)G(t− s/BNn+k+1

) ds

+

∫ UNn+k+2

UN0

h(t/ANn+k+2
)G(t− s/BNn+k+2

) ds

· · ·+
∫ UNN

UNN−1

h(t/ANN
)G(t− s/BNN

) ds.

We can express {P (ENθ
/E)}θ=k

θ=0 , {P (ENθ
/E)}θ=N

θ=n+k+1 and the corre-
sponding {LNθ

}θ as shown in Section 3. Then LNθ
is maximized for

the set [Aθ, Bθ]. We obtain N − n − k sets of [A,B] values, and the
corresponding likelihood functions {LNθ

}kθ=0 and {LNθ
}Nθ=n+k+1.

9. Appendix II: Truncated incubation period. Suppose there
is an upper bound for the impact of drugs on the incubation period,
that is, the incubation period cannot be increased after a certain time
point after the drug use. Then the likelihood equations explained in
Section 4 would change accordingly. There was an earlier attempt to
truncate the incubation period with the help of the truncated Weibull
distribution [38]. The impact of drugs using such functions has not
been seen. If Z is the length of the incubation period and if Zc is the
truncation point, then

G(Z) = 1− exp

{
−
(

z

δ1

)δ2}
, for 0 < Z < Zc,

and

G(Z) = 1− exp

{
−

(
z

δ1

)δ2}
exp

{
−
(
δ2
δ1

)(
tc
δ1

)(δ2−1)(z−zc)}
,
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Time 

1.0

0.5

0.0

Figure 3. Truncated incubation period. The idea of truncated cumulative
distribution of the incubation period is plotted. After a certain time duration,
there will not be any gain due to therapy. Median incubation period is
represented by the line cutting the curve at 0.5, corresponding to the Y-axis.

for Z ≥ Zc. Here, δ1 and δ2 are scale and shape parameters. One can
construct a likelihood function for each drug type using such functions
as follows:

(9.1) L (A,B/Pj) = L<Zc + L≥Zc ,

where

L<Zc =
∏
j

b1(j)b2(j)−
∏
j

b1(j − 1)b2(j)

L≥Zc =
∏
j

bt1(j)b
t
2(j)−

∏
j

bt1(j − 1)bt2(j)

and

b1(j) =

{∫ uj

0

eα1s
2+α2s+α3

{
1− exp

{
−
(

t

δ1

)δ2}}
ds

}Tj

b1(j − 1) =

{∫ uj−1

0

eα1s
2+α2s+α3

{
1− exp

{
−
(

t

δ1

)δ2}}
ds

}Tj
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b2(j) =

{∫ un

0

eα1s
2+α2s+α3

{
1− exp

{
−

(
t

δ1

)δ2}}
ds

}−Tj

bt1(j) =

[ ∫ uj

0

eα1s
2+α2s+α31− exp

{
−

(
z

δ1

)δ2}
× exp

{
−
(
δ2
δ1

)(
tc
δ1

)(δ2−1)(z−zc)}
ds

]Tj

bt1(j − 1) =

[ ∫ uj−1

0

eα1s
2+α2s+α31− exp

{
−
(

z

δ1

)δ2}
× exp

{
−
(
δ2
δ1

)(
tc
δ1

)(δ2−1)(z−zc)}
ds

]Tj

bt2(j) =

[ ∫ un

0

eα1s
2+α2s+α31− exp

{
−
(

z

δ1

)δ2}
× exp

{
−
(
δ2
δ1

)(
tc
δ1

)(δ2−1)(z−zc)}
ds

]−Tj

.

For each drug type, an expression of the type in (9.1) can be
derived. Despite the assumption on truncation as mentioned above,
the incubation period could vary according to the type of the drug.
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10. APPENDIX III: Parameters.

Table 1. Parameters

APPENDIX IV: Figures. In this section, using the parameters
in Appendix III, output of the models for hypothetical population sizes
and sensitivity of the parameters in projecting HIV and AIDS are
shown in Figures 4–10. The impact of drug1 and drug2 on Y1, Y2,
Dz1 and Dz2 is assumed to be equal when administered independently
in the population, and hence Y1 = Y2 and Dz1 = Dz2 in all the
simulations presented. Initial and final values for the parameters
are: d0 : (0.1, 0.15), d1, d2 : (0.06, 0.075), d3 : (0.045, 0.058), λ0 :
(0.001, 0.006), λ1, λ2 : (0.0006, 0.0012), λ3 : (0.00002, 0.0005), γ0 :
(0.4, 0.6), γ1, γ2 : (0.1, 0.4), γ3 : (0.2, 0.3), µ : (0.012, 0.016).
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(a)

(b)

(c)

Figure 4. (a) Number of HIV and AIDS (before therapy), (b) Number of
HIV infected (before therapy), (c) Number of HIV (after therapy)
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(a)

(b)

(c)

Figure 5. (a) Sensitivity of d0 on Y0, (b) Sensitivity of d1 and d2 on Y1

and Y2, (c) Sensitivity of d3 on Y3.
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(a)

(b)

(c)

Figure 6. (a) Sensitivity of d0 on Dz0, (b) Sensitivity of d1 and d2 on Dz1

and Dz2, (c) Sensitivity of d3 on Dz3.
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(a)

(b)

(c)

Figure 7. (a) Sensitivity of γ0 on Dz0, (b) Sensitivity of γ1 and γ2 on Dz1

and Dz2, (c) Sensitivity of γ3 on Dz3.
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(a)

(b)

(c)

Figure 8. (a) Sensitivity of λ0 on Y0, (b) Sensitivity of λ1 and λ2 on Y1

and Y2, (c) Sensitivity of λ3 on Y3.
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(a)

(b)

(c)

Figure 9. (a) Sensitivity of λ0 on Dz0, (b) Sensitivity of λ1 and λ2

on Dz1 and Dz2, (c) Sensitivity of λ3 on Dz3.
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(a)

(b)

(c)

Figure 10. (a) Sensitivity of µ on Y0, (b) Sensitivity of µ on Y1 and Y2,
(c) Sensitivity of µ on Y3.
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