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NEST GRAPHS AND MINIMAL COMPLETE
SYMMETRY GROUPS FOR MAGIC SUDOKU

VARIANTS
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1. Introduction. Felgenhauer and Jarvis famously showed in [2],
although it was first mentioned earlier, in [7], that there are 6,670,903,
752,021,072,936,960 possible completed Sudoku boards. In a later
paper, Jarvis and Russell [8] used a Sudoku symmetry group of size
3, 359, 232 · 9! = 1, 218, 998, 108, 160 and Burnside’s lemma to show
that there are 5,472,730,538 essentially different Sudoku boards. Both
of these results required extensive use of computers as magnitude
of the numbers makes non-computer exploration of these problems
prohibitively difficult. The ongoing goal of this project is to find and
implement methods to attack these and similar questions without the
aid of a computer.

One step in this direction is to reduce the size of the symmetry group
with purely algebraic, non-computer methods. The strategy of [1],
applied to the analogous symmetry group for a 4× 4 Sudoku variation
known as Shidoku, was to partition the set of Shidoku boards into so-
called H4-nests and S4-nests and then use the interplay between the
physical and relabeling symmetries to find certain subgroups of G4 that
were both complete and minimal. A symmetry group is complete if its
action partitions the set of Shidoku boards into the two possible orbits,
and minimal if no group of smaller size would do the same.

In [6], Lorch and Weld investigated a 9 × 9 variation of Sudoku
called modular-magic Sudoku that has sufficiently restrictive internal
structure to allow for non-computer investigation. In this paper, we
will apply the techniques from [1] to find a minimal complete symmetry
group for the modular-magic Sudoku variation studied in [6], as well
as for another Sudoku variation that we will call semi-magic Sudoku.
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We conclude this paper with a simple calculator computation which
leads to the non-obvious fact that the full Sudoku symmetry group is,
in fact, already minimal and complete.

2. Modular-magic Sudoku. A Sudoku board is a 9× 9 grid with
nine 3×3 designated blocks. We call the rows, columns and diagonals of
these blocks mini-rows, mini-columns and mini-diagonals, respectively.
A band is a horizontal union of three blocks and a pillar is a vertical
union of three blocks. A modular-magic Sudoku board is a standard
Sudoku board using the numbers 0–8 with the additional constraint
that each 3× 3 block is a magic square modulo 9, in the sense that the
entries of every mini-row, mini-column and mini-diagonal have a sum
that is divisible by 9; see Figure 1. In this section, we find a complete
minimal symmetry group for modular-magic Sudoku (Theorem 2.3).

0 2 7 3 1 5 6 4 8

1 3 5 8 6 4 2 0 7

8 4 6 7 2 0 1 5 3

3 5 1 6 4 8 0 7 2

4 6 8 2 0 7 5 3 1

2 7 0 1 5 3 4 8 6

6 8 4 0 7 2 3 1 5

7 0 2 5 3 1 8 6 4

5 1 3 4 8 6 7 2 0

Figure 1. A modular-magic Sudoku board.

2.1. Modular-magic Sudoku Properties. In this subsection, we
review some facts about modular-magic Sudoku boards. For details,
see [6].

Most, but not all, of the usual physical Sudoku symmetries in [2]
are valid for modular-magic Sudoku. In particular, band swaps, pillar
swaps, transpose, rotation and row or column swaps that do not change
the set of entries in the mini-diagonals, all preserve the modular-magic
condition. However, row or column swaps that change the center cell
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of a block are not modular-magic Sudoku symmetries. For example,
swapping the first and second rows of the board in Figure 1 would

1 8 0 7 5 6 4 2 3

2 3 4 8 0 1 5 6 7

6 7 5 3 4 2 0 1 8

7 5 6 4 2 3 1 8 0

8 0 1 5 6 7 2 3 4

3 4 2 0 1 8 6 7 5

4 2 3 1 8 0 7 5 6

5 6 7 2 3 4 8 0 1

0 1 8 6 7 5 3 4 2

1 8 0 7 5 6 4 2 3

2 3 4 8 0 1 5 6 7

6 7 5 3 4 2 0 1 8

8 4 6 5 1 3 2 7 0

7 0 2 4 6 8 1 3 5

3 5 1 0 2 7 6 8 4

5 1 3 2 7 0 8 4 6

4 6 8 1 3 5 7 0 2

0 2 7 6 8 4 3 5 1

Figure 2. Representatives of the two Gmm-orbits in the set of modular-
magic boards.

result in a board that fails the modular-magic mini-diagonal condition.
The order of the full group Hmm of physical modular-magic Sudoku
symmetries is 4608.

The set of allowable relabeling symmetries is greatly reduced for
modular-magic Sudoku, as very few relabelings will preserve the
modular-magic condition. In fact, there are only 36 elements in the
group Smm of modular-magic relabeling symmetries on the digits 0–8,
namely, the permutation

ρ = (12)(45)(78)

and permutations of the form

µk,l(n) = kn+ l mod 9

for k ∈ {1, 2, 4, 5, 7, 8} and l ∈ {0, 3, 6}. Together with the physical
symmetries this gives a full modular-magic Sudoku symmetry group
Gmm of size 165,888. Since there are only 32,256 possible modular-
magic Sudoku boards, this symmetry group is clearly larger than
necessary. Furthermore, the largest orbit of Gmm has 27,648 elements;
hence, this is the smallest size possible for a complete modular-magic
Sudoku symmetry group. Our goal is to determine if this minimum
can be obtained.

In [6], it is shown that the set of modular-magic boards breaks into
two orbits under the action of Gmm, with representatives shown in
Figure 2.
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Every 3× 3 block in a modular-magic Sudoku board has two mini-
diagonals, one of which must be from the set {0, 3, 6}. Therefore, each
modular-magic Sudoku board has exactly three blocks with center entry
0, three with center entry 3, and three with center entry 6. In any block
we will call the off-diagonal set the set of the two corner entries of the
mini-diagonal whose entries are not from {0, 3, 6}. For example, in the
first modular-magic Sudoku board from Figure 2, the off-diagonal set of
the first block is {1, 5}. The following lemma will be useful for proving
our first theorem in the next section.

Lemma 2.1. If M is a modular-magic Sudoku board, then the three
blocks with center j have at least two off-diagonal sets in common, for
j = 0, 3, 6.

Proof. Observe that the lemma holds for the two Gmm-orbit rep-
resentatives in Figure 2, and further that the property described in
the lemma is invariant under the action of Gmm. The latter assertion
is quickly seen by applying generators of Gmm to these representa-
tives. We conclude that the lemma holds for all modular-magic sudoku
boards. �

2.2. H-nest representatives for modular-magic Sudoku. Fol-
lowing the method of [1], in this subsection we identify modular-magic
Sudoku boards that can serve as representatives for equivalence classes,
called Hmm-nests, defined from the modular-magic physical symme-
tries. This will allow us to identify a restricted set of relabeling sym-
metries that, together with the physical symmetries, forms a minimal
complete modular-magic Sudoku symmetry group.

We say that two modular-magic Sudoku boards are in the same
Hmm-nest when one can be obtained from the other by a sequence of
physical symmetries from Hmm. In Theorem 2.2, we describe a unique
representative for each Hmm-nest.

Theorem 2.2. Each Hmm-nest has a unique representative of the form
shown in Figure 3, where α < β and the two entries marked γ are equal.

Proof. Band, pillar, row and column swaps fromHmm can transform
the upper-left block of any modular-magic board into one with {0, 3, 6}
on the decreasing mini-diagonal as shown in Figure 3, and with further
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band, pillar, row and column swaps from Hmm, we can obtain a board
M of the form shown in Figure 4.

0 α 3 6

3 6 0

β 6 0 3

3 6 0 γ

6 0 3

0 3 6

6 0 γ 3

0 3 6

3 6 0

0 α1 3 6

3 6 0

β1 6 0 3

3 6 0 α2

6 0 3

0 3 β2 6

6 0 α3 3

0 3 6

3 β3 6 0

FIGURE 3. An Hmm-nest repre- FIGURE 4. Modular-magic

sentative. Sudoku board M .

In light of Lemma 2.1, we can apply band/pillar permutations to
ensure that {α2, β2} = {α3, β3}. By applying the transpose symmetry
in Hmm (if necessary) we may assume that α1 < β1. Since α1 +3+ β1

must be divisible by 9, the condition α1 < β1 means that we must have
α1 = 1, 2, or 7. By completing partial boards, it can be shown that
if α1 = 1, then the only possible values for α2 and α3 are 1, 2, and
8. This, together with the fact that {α2, β2} = {α3, β3}, implies that
α2 = α3 when α1 = 1. A similar argument can be applied for the other
possible values of α1, and therefore M has the form of Figure 3.

We denote boards as depicted in Figure 3 by [α, γ]. Note that this
data completely determines every entry of the board. Suppose that
[α, γ] and [α′, γ′] are Hmm-equivalent. Then, either α = α′ and γ = γ′,
in which case the boards are identical, or α = γ′, γ = γ′ and γ = α′,
in which case α = γ = α′ = γ′, and again the boards are identical. We
conclude that the representatives M are unique. �

Following Theorem 2.2, we find that there are only nine possible
Hmm-representatives, corresponding to the following pairs [α, γ]:

[1, 1] [2, 2] [7, 7]
[1, 2] [2, 1] [7, 2]
[1, 8] [2, 7] [7, 5]

For example, the modular-magic Sudoku board shown in Figure 1 is
the representative board [7, 2].
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As mentioned in the proof of Lemma 2.1, the set of modular-magic
boards is a union of twoGmm-orbits. Observe that the threeHmm-nests
represented by [1, 1], [2, 2], and [7, 7] lie in the Gmm-orbit containing the
left board of Figure 2, which has size 4608 according to [6]. Meanwhile,
the remaining six Hmm-nests lie in the same Gmm-orbit as the right-
hand board of Figure 2, which has size 27648 by [6]. This tells us that
the three Hmm-nests represented by [1, 1], [2, 2], and [7, 7] have size
4608/3 = 1536 each while the remaining six Hmm-nests are each of size
27, 648/6 = 4608.

2.3. A minimal complete modular-magic Sudoku symmetry
group. The modular-magic Sudoku relabeling symmetries group Smm

described in subsection 2.1 can be expressed as

Smm = ⟨ρ, µ4,0, µ5,3, µ5,6⟩,

since the four permutations ρ = (12)(45)(78), µ4,0(n) = (147)(285),
µ5,3(n) = (03)(187245) and µ5,6 = (06)(127548) generate the entire
group.

Now define Hmm-nest graph for a group S to be the graph that con-
sists of nine vertices, one for each modular-magic Hmm-representative
board, where two vertices A and B are connected by a directed edge
σ if the permutation σ ∈ S takes the modular-magic representative
board A to a board that is Hmm-equivalent to representative board B.
It is sufficient to consider edges defined by a set of generators for S.
Since the set of modular-magic Sudoku boards has two orbits under the
action of Gmm = Smm×Hmm (see proof of Lemma 2.1), the Hmm-nest
graph for Smm corresponding to the four permutations ρ, µ4,0, µ5,3 and
µ5,6 must have two components.

If S′ is a subgroup of Smm, then S′ ×Hmm is a complete modular-
magic Sudoku symmetry group if the Hmm-nest graph for S′ corre-
sponding to a set of generators for S′ has two components. In fact, if
we take

S′ = ⟨ρ, µ4,0⟩,

then this is precisely what happens, as shown in Figure 5. In this
figure, the single arrow represents the permutation ρ and the double
arrow represents µ4,0.
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[1, 2] oo //

��

[2, 1]

|�

[1, 1]
OO

�� ��
[2, 7] oo //

��

[1, 8]

KS

[2, 2]

��
[7, 5] oo //

<D

[7, 2]

KS

[7, 7]
WWGG

Figure 5. Action of ⟨ρ, µ4,0⟩ on the set of Hmm-nests.

Furthermore, since ⟨ρ, µ4,0⟩ has order 27,648, which is equal to the
largest orbit of Gmm, we know that this group is of minimal size. This
proves our first main result of this paper:

Theorem 2.3. Hmm × ⟨ρ, µ4,0⟩ is a minimal complete modular-magic
sudoku symmetry group.

3. Semi-magic Sudoku. A semi-magic square is a 3 × 3 array
containing all of the symbols {0, 1, . . . , 8} with each row and column
adding to 12, and no condition on the diagonals. A semi-magic Sudoku
board is a Sudoku board whose 3 × 3 subsquares are semi-magic, see
Figure 6.

0 4 8 7 2 3 5 6 1

5 6 1 0 4 8 7 2 3

7 2 3 5 6 1 0 4 8

8 0 4 1 5 6 3 7 2

1 5 6 3 7 2 8 0 4

3 7 2 8 0 4 1 5 6

4 8 0 2 3 7 6 1 5

6 1 5 4 8 0 2 3 7

2 3 7 6 1 5 4 8 0

Figure 6. A semi-magic Sudoku board.
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3.1. Properties of semi-magic Sudoku.

Lemma 3.1. Mini-rows in a semi-magic Sudoku subsquare must be
permutations of {0, 4, 8}, {5, 6, 1} and {7, 2, 3} and the mini-columns
permutations of {0, 5, 7}, {4, 6, 2} and {8, 1, 3} or vice versa.

It is easy to check that this lemma holds. See Figure 6 as an
example. From the lemma, we can conclude that there are 3! ·3! ·2 = 72
distinct 3 × 3 semi-magic Sudoku subsquares. We will use the term
gnomon to denote the union of the first pillar and first band of a
semi-magic Sudoku board. Again, using the lemma, we see there are
72 · 3! · 2 · 3! = 722 possible semi-magic Sudoku bands and 723 semi-
magic Sudoku gnomons. We call the gnomon in Figure 7 the standard
gnomon.

0 4 8 7 2 3 5 6 1

5 6 1 0 4 8 7 2 3

7 2 3 5 6 1 0 4 8

8 0 4

1 5 6

3 7 2 b

4 8 0 a

6 1 5

2 3 7

Figure 7. A semi-magic Sudoku board.

The gnomon-preserving physical symmetries are generated by trans-
pose, any row swap within a band or column swap within a pillar, and
swapping pillars two and three or swapping bands two and three. We
denote the group generated by these symmetries HΓ. Following the
method used in [1, Section 6], we partition the set of modular-magic
Sudoku boards into HΓ-nests, where two semi-magic Sudoku boards
are in the same nest if and only if one can be obtained from the other
by a sequence of physical symmetries from HΓ. The following theorem
describes a unique representative for each HΓ-nest:
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Theorem 3.2. Using gnomon-preserving physical symmetries from
HΓ, any semi-magic Sudoku board can be transformed so that its
gnomon is the standard gnomon. There are 16 HΓ-nests, uniquely
represented by a board of the form [a, b] as shown in Figure 7.

Proof. We can easily take a semi-magic Sudoku board and set the
standard gnomon using transpose, row, column and 2-3-band and pillar
swaps. Once the standard gnomon has been set, the board is completely
determined by the entries in the (7,6) and (6,7) position in the 9×9 grid.
The possible entries in the (7,6) position are {4, 5, 6, 0} and {1, 2, 3, 6} in
the (6,7) position. Therefore, there are 16 distinct semi-magic Sudoku
boards with the standard gnomon. �

We call these 16 representatives the standard semi-magic Sudoku
boards and denote them by [a, b], as in Figure 7. For example, the
semi-magic Sudoku board in Figure 6 is denoted [7,1]. We have now
determined that there are 723 · 16 = 5,971,968 distinct semi-magic
Sudoku boards.

All of the physical Sudoku symmetries from [1], denoted H9, are
valid semi-magic Sudoku symmetries. On the other hand, the group
Ssm of semi-magic Sudoku relabeling symmetries is far smaller than
the group of sudoku relabelings. One can show that Ssm is isomorphic
to the group of physical symmetries preserving semi-magic squares;
meanwhile, Lemma 3.1 indicates that this group of physical symmetries
is isomorphic to (S3×S3)oZ2, generated by row permutations, column
permutation and transpose. Therefore, Ssm

∼= (S3 × S3) o Z2, and so
the full group of semi-magic Sudoku symmetries, Gsm = H9 × Ssm,
has order 3, 359, 232 · 72 = 241, 864, 704. As with modular magic
Sudoku and Shidoku, the size of this group is large compared with
the set of semi-magic Sudoku boards that it is acting upon. In the
next section, we use the techniques of [1] to find a minimal, complete
group of symmetries for semi-magic Sudoku.

3.2. Orbits and HΓ-Nests for semi-magic Sudoku. As described
in the previous section, the 16 boards denoted [a, b] are representatives
of the HΓ-nests. Clearly, each nest sits inside a Gsm orbit. We need to
determine which nests are in the same orbits. Applying additional non-
gnomon-preserving physical symmetries to these boards, we find the
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[2, 1] /7// [5, 6]
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bbEEEEEEEE

[6, 4]dl
// [6, 6]

ow

bbEEEEEEEE

Figure 8. Action of ⟨u, v, µ⟩ on HΓ-nests.

four orbits shown below. In the diagram in Figure 8, the single arrow
is the symmetry, u, swapping bands 1 and 2 and the double arrow, v, is
the symmetry swapping pillars 1 and 2. Adding just a single relabeling,
µ = (12)(45)(78), connects the middle two connected components in
the diagram with the dashed line, giving us three distinct semi-magic
Sudoku components, denoted, top to bottom, O1, O2 and O3.

The diagram shows that there are at most three Gsm orbits. A brute
force computation can confirm that there are no fewer. However, a more
elegant argument uses the notion of Keedwell boards and linearity
from [5]. In general, a Sudoku board is Keedwell if any subsquare can
be obtained by permuting the rows and/or columns of the upper-left
subsquare. More precisely, we have the following definition from [3]:

Definition 3.3. Let α be the operator on subsquares that acts by
cycling down one mini-row, and let β be the operator on subsquares
that acts by cycling right one mini-column. A Sudoku board B with
upper-left subsquare K is Keedwell if there exist matrices {cij} and
{dij} such that
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• c00 = 1 and d00 = 1, and
• the (i, j)th subsquare of B is αcijβdijK.

For example, the Sudoku board [7, 1] shown in Figure 6 and in set

O2 of Figure 8 is Keedwell; its upper-left block is K =
[
0 4 8
5 6 1
7 2 3

]
, and

with respect to this block, board [7, 1] is of the form

[7, 1] =
K αK α2K

βK α2βK αβK
β2K αβ2K α2β2K

.

Interestingly, all 16 of the standard semi-magic Sudoku boards shown
in Figure 8 are Keedwell. For example, board [7, 8] from set O1 of
Figure 8 and board [7, 6] from set O3 have the same upper-left block
K as [7, 1] and are of the form

[7, 8] =
K αK α2K

βK αβK α2βK
β2K αβ2K α2β2K

and [7, 6] =
K αK α2K

βK α2βK αβ2K
β2K αβ2K α2βK

.

We will show that each of the three collections of HΓ-nests shown
in Figure 8 can be distinguished by the following notion of linearity
degree:

Definition 3.4. A matrix {mij} is quasi-linear if mij = mi0 + m0j .
Suppose B is a Keedwell Sudoku board with upper-left block K and
exponent matrices {cij} and {dij} for the cycles α and β. Then the
linearity degree of B is equal to the number of its exponent matrices
that are quasi-linear.

For example, board [7, 8] from orbit O1 has linearity degree 2, board
[7, 1] from orbit O2 has linearity degree 1 and board [7, 6] from orbit O3

has linearity degree 0. As we will soon see, the collections Oi shown in
Figure 8 are in fact completely characterized by linearity degree, and
this fact will enable us to prove that these three collections are in fact
distinct orbits of Gsm.

Now let Gk be the set of Keedwell-preserving symmetries, that is, the
largest subgroup of the full Sudoku symmetry group whose elements
preserve the set of Keedwell boards. It is easy to see that all relabeling
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symmetries in S9 are Keedwell-preserving, as well as compositions
of transpose, pillar swaps, band swaps, 3-cycle permutations of rows
within a band and 3-cycle permutations of columns within a pillar. The
final group of Keedwell-preserving transformations is the set of triple-
transpositions of rows (or columns) consisting of one row transposition
in each of the three bands (or one column transposition in each of the
three pillars). Note that triple-transpositions reverse the “orientation”
of all three bands (or pillars) in the sense that the order of the mini-
rows (or mini-columns) of each band (or pillar) changes by a odd-
degree permutation. It is the fact that triple-transpositions reverse the
orientation of all bands (or pillars) simultaneously that makes triple-
transpositions Keedwell-preserving. In fact, Gk consists precisely of
the symmetries that either preserve orientation in all the pillars/bands
or reverse the orientation in all pillars/bands. As a result of this, we
have the following lemma.

Lemma 3.5. Let B1 be a Keedwell board and g an element of the full
Sudoku symmetry group. If g · B1 = B2 and B2 is Keedwell, then
g ∈ Gk.

Now we can relate linearity degree to Keedwell-preserving symme-
tries.

Lemma 3.6. Linearity degree is invariant under Gk.

Proof. Clearly, linearity degree is preserved by relabelings, trans-
pose, pillar and band swaps, and 3-cycle permutations of rows within a
band or columns within a pillar. The only non-trivial case is to prove
that triple-transpositions preserve linearity degree. We will prove this
case for pillars; the case for bands is similar.

Suppose we transform a Keedwell Sudoku board B by a triple-
transposition g given by transpositions τ1 in the first pillar, τ2 in the
second pillar and τ3 in the third pillar. If the original board B is given
by

B =

K αc01βd01K αc02βd02K
αc10βd10K αc11βd11K αc12βd12K
αc20βd20K αc21βd21K αc22βd22K

,
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then gB is the Keedwell Sudoku board given by

gB =

τ1K τ2α
c01βd01K τ3α

c02βd02K
τ1α

c10βd10K τ2α
c11βd11K τ3α

c12βd12K
τ1α

c20βd20K τ2α
c21βd21K τ3α

c22βd22K
.

For each k, we have τkα = ατk and τkβ = β2τk, so for all i, j, k we have

τkα
cijβcijK = αcijτkτ1β

2dij (τ1K).

Since τkτ1 is a 3-cycle for each k, we have τ2τ1β
2di1 = β2di1+r and

τ3τ1β
2di2 = β2di2+s. Therefore, gB can be written

gB =

τ1K αc01β2d01+r(τ1K) αc02β2d02+s(τ1K)
αc10β2d10(τ1K) αc11β2d11+r(τ1K) αc12β2d12+s(τ1K)
αc20β2d20(τ1K) αc21β2d21+r(τ1K) αc22β2d22+s(τ1K)

,

which clearly has the same linearity degree as B. �

With the two previous lemmas we are now able to show that the
three connected components O1, O2 and O3 of HΓ-nests from Figure 8
are in fact precisely the orbits of the semi-magic Sudoku boards under
the action of Gsm.

Theorem 3.7. There are exactly three Gsm-orbits on the set of semi-
magic Sudoku boards.

Proof. We have already produced three sets of semi-magic Sudoku
boards, O1, O2 and O3 shown in Figure 8, that are connected by
elements of Gsm. Suppose, for example, that O1 and O2 were not
distinct Gsm-orbits. Then there exists a g ∈ Gsm such that g · [7, 8] =
[5, 8]. By Lemma 3.5, g ∈ Gk. But Lemma 3.6 states that [7,8] and [5,8]
have the same linearity degree. This is a contradiction to the fact that
[7,8] has linearity degree 2 and [5,8] has linearity degree 1. Therefore,
there are exactly three Gsm-orbits of semi-magic Sudoku boards �

3.3. A minimal complete semi-magic Sudoku symmetry group.
Since each standard semi-magic Sudoku board represents 723 distinct
semi-magic Sudoku boards, the three orbits described in Section 3.2
have order 723, 6 · 723 and 9 · 723. The order of each orbit must di-
vide the order of any semi-magic Sudoku symmetry group. Therefore,
a minimal semi-magic Sudoku symmetry group must be a multiple
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of lcm (723, 6 · 723, 9 · 723) = 18 · 723. The group used in produc-
ing the three orbits in Figure 8 consists of all of the Sudoku physical
symmetries and the relabeling symmetry, (12)(45)(78). This group,
G = H9 × ⟨(12)(45)(78)⟩, has order 18 · 723, so is, in fact, a minimal
complete semi-magic Sudoku symmetry group.

4. A minimal complete Sudoku symmetry group. A natural
question to ask is whether the techniques we used in this paper to inves-
tigate modular-magic Sudoku and semi-magic Sudoku can be applied
to standard 9 × 9 Sudoku to reduce the size of the Sudoku symmetry
group. The full physical Sudoku symmetry group H9 contains all possi-
ble band, pillar, row and column swaps, as well as all of the symmetries
of the square. This group has order 3,359,232 and, as all 9! elements of
S9 are valid relabelings, the full Sudoku symmetry group G9 = H9×S9

has order 1,218,998,108,160. In fact, this group is already minimal be-
cause there exist Sudoku boards that are not fixed by any non-identity
element of G9 so the size of the largest orbit is |G9|.

To see this, consider that there are 6,670,903,752,021,072,936,960
possible Sudoku boards and N =5,472,730,538 orbits under the action
of G9 [2]. Therefore, the average size of an orbit is 1,218,935,174,261.
Suppose, for a contradiction, that every Sudoku board is fixed by at
least one non-identity element ofG9. If theN orbits have corresponding
stabilizer groups K1, . . . ,KN , then

Average orbit size =

|G9|
|K1| + · · ·+ |G9|

|KN |

N
≤

|G9|
2 + · · ·+ |G9|

2

N
=

1

2
|G9|,

which is clearly far less than the actual average orbit size stated above.
Therefore, at least one Sudoku board is not fixed by any non-identity
element of G9.

Since the full Sudoku symmetry group is already minimal, the tech-
niques in this paper cannot be used to reduce it. However, these tech-
niques should be helpful in analyzing other types of puzzles, including
Sudoku variants. As seen in [1], reduction of the symmetry group can
be of great practical use towards the goal of analyzing Sudoku-style
puzzles from a theoretical perspective.
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