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ON THE mod p7 DETERMINATION OF
(
2p−1
p−1

)
ROMEO MEŠTROVIĆ

ABSTRACT. In this paper we prove that for any prime
p ≥ 11,(2p− 1

p− 1

)
≡ 1− 2p

p−1∑
k=1

1

k
+ 4p2

∑
1≤i<j≤p−1

1

ij
(mod p7)

holds. This is a generalization of the famous Wolstenholme’s

theorem which asserts that
(2p−1
p−1

)
≡ 1 (mod p3) for all

primes p ≥ 5. Our proof is elementary, and it does not
use a standard technique involving the classic formula for
power sums in terms of the Bernoulli numbers. Notice that
the above congruence reduced modulo p6, p5 and p4 yields
related congruences obtained by Tauraso, Zhao and Glaisher,
respectively.

1. Introduction and statement of results. Wolstenholme’s the-
orem (e.g., see [4], [14]) asserts that if p is a prime greater than 3,
then the binomial coefficient

(
2p−1
p−1

)
satisfies the congruence

(1.1)

(
2p− 1

p− 1

)
≡ 1 (mod p3)

for any prime p ≥ 5. It is well known (e.g., see [5, page 89]) that
this theorem is equivalent to the assertion that the numerator of the
fraction

1 +
1

2
+

1

3
+ · · ·+ 1

p− 1

is divisible by p2 for any prime p ≥ 5.
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Further, by a special case of Glaisher’s congruence ([2, page 21], [3,
page 323]; also cf., [10, Theorem 2]), for any prime p ≥ 5 we have

(1.2)

(
2p− 1

p− 1

)
≡ 1− 2p

p−1∑
k=1

1

k
≡ 1− 2p3

3
Bp−3 (mod p4),

whereBk is the kth Bernoulli number. Granville [4] established broader
generalizations of Wolstenholme’s theorem. More recently, Helou and
Terjanian [6] established many Wolstenholme type congruences mod-
ulo pk with a prime p and k ∈ {4, 5, 6}. One of their main re-
sults [6, Proposition 2, pages 488–489] is a congruence of the form(
np
mp

)
≡ f(n,m, p)

(
n
m

)
(mod p6), where p ≥ 3 is a prime number,

m,n,∈ N with 0 ≤ m ≤ n, and f is the function on m,n and p
involving Bernoulli numbers Bk (k ∈ N). In particular, for p ≥ 5,
m = 1 and n = 2, using the fact that

1

2

(
2p

p

)
=

(
2p− 1

p− 1

)
,

this congruence yields [6, Corollary 1]

(1.3)

(
2p− 1

p− 1

)
≡ 1− p3Bp3−p2−2 +

p5

3
Bp−3 −

6p5

5
Bp−5 (mod p6).

Recently, Tauraso [13, Theorem 2.4] proved that for any prime p > 5(
2p− 1

p− 1

)
≡ 1 + 2p

p−1∑
k=1

1

k
+

2p3

3

p−1∑
k=1

1

k3
(mod p6).

In this paper we improve the above congruence as follows.

Theorem 1.1. Let p ≥ 11 be a prime. Then

(1.4)

(
2p− 1

p− 1

)
≡ 1− 2p

p−1∑
k=1

1

k
+ 4p2

∑
1≤i<j≤p−1

1

ij
(mod p7).

Remark 1.2. Note that the congruence (1.4) for p = 3 and p = 5
reduces to the identity, while for p = 7 (1.4) is satisfied modulo 76.
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Applying a technique of Helou and Terjanian [6] based on Kummer
type congruences, the congruence (1.4) may be expressed in terms of
the Bernoulli numbers as follows.

Corollary 1.3. Let p ≥ 11 be a prime. Then(
2p− 1

p− 1

)
≡ 1− p3Bp4−p3−2 + p5

(
1

2
Bp2−p−4 − 2Bp4−p3−4

)
+p6

(
2

9
B2

p−3 −
1

3
Bp−3 −

1

10
Bp−5

)
(mod p7).(1.5)

Note that the congruence (1.3) can easily be deduced from the con-
gruence (1.5) by reducing the moduli and using the Kummer congru-
ences.

Corollary 1.4. (cf., [13, Theorem 2.4]). Let p ≥ 7 be a prime. Then(
2p− 1

p− 1

)
≡ 1− 2p

p−1∑
k=1

1

k
− 2p2

p−1∑
k=1

1

k2

≡ 1 + 2p

p−1∑
k=1

1

k
+

2p3

3

p−1∑
k=1

1

k3
(mod p6).

Corollary 1.5. ([16, Theorem 3.2], [10, p. 385]). Let p ≥ 7 be a
prime. Then(

2p− 1

p− 1

)
≡ 1 + 2p

p−1∑
k=1

1

k
≡ 1− p2

p−1∑
k=1

1

k2
(mod p5).

A prime p is said to be a Wolstenholme prime if it satisfies the
congruence

(
2p−1
p−1

)
≡ 1 (mod p4). By the congruence (1.2) we see

that a prime p is a Wolstenholme prime if and only if p divides the
numerator of Bp−3. The two known such primes are 16843 and 2124679,
and McIntosh and Roettger [11] reported that these primes are the
only two Wolstenholme primes less than 109. However, by using the
argument based on the prime number theorem, McIntosh [10, page
387] conjectured that there are infinitely many Wolstenholme primes,
and that no prime satisfies the congruence

(
2p−1
p−1

)
≡ 1 (mod p5).
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Remark 1.6. In [12, Corollary 1] the author proved that for any
Wolstenholme prime p(

2p− 1

p− 1

)
≡ 1− 2p

p−1∑
k=1

1

k
− 2p2

p−1∑
k=1

1

k2

≡ 1 + 2p

p−1∑
k=1

1

k
+

2p3

3

p−1∑
k=1

1

k3
(mod p7),(1.6)

holds, and he conjectured [12, Remark 1] that any of the previous
congruences for a prime p yields that p is necessarily a Wolstenholme
prime. Note that this conjecture concerning the first above congruence
may be confirmed by using our congruence (1.4). Namely, if a prime p
satisfies the first congruence of (1.6), then by (1.4) it must be(

2p− 1

p− 1

)
≡ 1− 2p

p−1∑
k=1

1

k
− 2p2

p−1∑
k=1

1

k2

≡ 1− 2p

p−1∑
k=1

1

k
+ 4p2

∑
1≤i<j≤p−1

1

ij
(mod p7).(1.7)

Using the identity

2
∑

1≤i<j≤p−1

1

ij
=

( p−1∑
k=1

1

k

)2

−
p−1∑
k=1

1

k2
,

the second congruence in (1.7) immediately reduces to

2p2
( p−1∑

k=1

1

k

)2

≡ 0 (mod p7),

whence it follows that

p−1∑
k=1

1

k
≡ 0 (mod p3).

Finally, substituting this into the first Glaisher’s congruence in (1.2),
we find that (

2p− 1

p− 1

)
≡ 0 (mod p4).
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Hence, p must be a Wolstenholme prime, and so our conjecture is
confirmed related to the first congruence of (1.6).

The situation is more complicated in relation to the conjecture
concerning the second congruence of (1.6). Then, comparing this
congruence and (1.4), as in the previous case, we obtain

2

p−1∑
k=1

1

k
− p

( p−1∑
k=1

1

k

)2

+ p

p−1∑
k=1

1

k2
+

p2

3

p−1∑
k=1

1

k3
≡ 0 (mod p6).

However, from the above congruence we are unable to deduce that p
must be a Wolstenholme prime.

Remark 1.7. It follows from Corollary 1.5 that p3 |
∑p−1

k=1 1/k and

p2 |
∑p−1

k=1 1/k
2 for any Wolstenholme prime p. This argument together

with a technique applied in the proof of Theorem 1.1 suggests the
conjecture that such a prime p satisfies the congruence (1.4) modulo p8.
However, a direct calculation shows that this is not true for the
Wolstenholme prime 16843.

As noticed in Remark 1.2, the congruence (1.4) for p = 3 and p = 5
reduces to the identity. However, our computation via Mathematica

shows that no prime in the range 7 ≤ p < 500000 satisfies the
congruence (1.4) with the modulus p8 instead of p7. Nevertheless, using
the heuristic argument for the “probability” that a prime p satisfies
(1.4) modulo p8 about 1/p, we conjecture that there are infinitely many
primes satisfying (1.4) modulo p8.

2. Proof of Theorem 1.1 and Corollaries 1.4 and 1.5. For the
proof of Theorem 1.1, we will need some elementary auxiliary results.

For a prime p ≥ 3 and a positive integer n ≤ p− 2, we denote

Rn(p) :=

p−1∑
k=1

1

kn
and Hn(p) :=

∑
1≤i1<i2<···<in≤p−1

1

i1i2 · · · in
,

with the convention that H1(p) = R1(p). In the sequel we shall often
write Rn andHn in the proofs instead of Rn(p) andHn(p), respectively.

Observe that, by Wolstenholme’s theorem, p2 | R1(p) for any prime
p ≥ 5, which can be generalized as follows.
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Lemma 2.1. ([1, Theorem 3]; also see [17] or [15, Theorem 1.6]). For
any prime p ≥ 5 and a positive integer n ≤ p− 3, we have

Rn(p) ≡ 0 (mod p2) if 2 - n,

and

Rn(p) ≡ 0 (mod p) if 2 | n.

Lemma 2.2. For any prime p ≥ 7, we have

(2.1) H3(p) ≡
R3(p)

3
− R1(p)R2(p)

2
(mod p6)

and

(2.2) H4(p) ≡ −R4(p)

4
+

(R2(p))
2

8
(mod p4).

In particular, p2 | H3(p), p | H2(p) and p | H4(p).

Proof. Substituting the shuffle relation H2 = (R2
1 − R2)/2 into the

identity 3H3 = R3 − R1R2 + H2R1, we find that H3 = (R3/3) −
(R1R2)/2 + (R3

1/6). This equality together with the fact that p2 | R1

yields the congruence (2.1), and thus p2 | H3.

Similarly, by Newton’s formula [8], we have the identity

4H4 = −R4 +H1R3 −H2R2 +H3R1.

Since by Lemma 2.1, p4 | R1R3 = H1R3, and since p2 | H3, we also
have p4 | H3R1. Substituting this and H2 = (R2

1−R2)/2 into the above
identity, we obtain

4H4 ≡ −R4 −
R2

1R2

2
+

R2
2

2
(mod p4).

Since by Lemma 2.1, p5 | R2
1R2, we can exclude the term R2

1R2/2 in
the above congruence to obtain (2.2), and so p | H4. This completes
the proof. �

Lemma 2.3. For any prime p and any positive integer r, we have

(2.3) 2R1 ≡ −
r∑

i=1

piRi+1 (mod pr+1).
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Proof. Multiplying the identity

1 +
p

i
+ · · ·+ pr−1

ir−1
=

pr − ir

ir−1(p− i)

by −p/i2 (1 ≤ i ≤ p− 1), we obtain

− p

i2

(
1 +

p

i
+ · · ·+ pr−1

ir−1

)
=

−pr+1 + pir

ir+1(p− i)
≡ p

i(p− i)
(mod pr+1).

Therefore,(
1

i
+

1

p− i

)
≡ −

(
p

i2
+

p2

i3
+ · · ·+ pr

ir+1

)
(mod pr+1),

whence, after summation over i = 1, . . . , p− 1, we immediately obtain
(2.3). This concludes the proof. �

Lemma 2.4. For any prime p ≥ 7, we have

2R1(p) ≡ −pR2(p) (mod p4),

and, for any prime p ≥ 11,

2R3(p) ≡ −3pR4(p) (mod p4)

holds.

Proof. Note that, by Lemma 2.3,

2R1 ≡ −pR2 − p2R3 − p3R4 (mod p4).

Since, by Lemma 2.1, p2 | R3 and p | R4 for any prime p ≥ 7, the above
congruence reduces to the first congruence in our lemma.

Since for each 1 ≤ k ≤ p− 1

1

k3
+

1

(p− k)3
=

p3 − 3p2k + 3pk2

k3(p− k)3
,
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it follows that

2R3 =

p−1∑
k=1

(
1

k3
+

1

(p− k)3

)

= p3
p−1∑
k=1

1

k3(p− k)3
− 3p2

p−1∑
k=1

1

k2(p− k)3
(2.4)

+ 3p

p−1∑
k=1

1

k(p− k)3
.

First observe that, applying Lemma 2.1, for each prime p ≥ 11 we have

(2.5)

p−1∑
k=1

1

k3(p− k)3
≡ −

p−1∑
k=1

1

k6
≡ 0 (mod p).

Further, in view of the fact that 1/(p − k) ≡ −(p + k)/k2 (mod p2),
and that for each prime p ≥ 11, p | R6 and p2 | R5 by Lemma 2.1, we
have

p−1∑
k=1

1

k2(p− k)3
=

p−1∑
k=1

1

(p− k)2k3

≡
p−1∑
k=1

(p+ k)2

k7
(mod p2)(2.6)

≡
p−1∑
k=1

2p

k6
+

p−1∑
k=1

1

k5
≡ 0 (mod p2).

Substituting (2.5) and (2.6) into (2.4), we get

(2.7) 2R3 ≡ 3p

p−1∑
k=1

1

k(p− k)3
(mod p4).

Next, from the identity

1

k(p− k)3
+

1

k4
=

p3

k4(p− k)3
− 3p2

k3(p− k)3
+

3p

k2(p− k)3
,
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for k = 1, 2, . . . , p− 1, we obtain

1

k(p− k)3
+

1

k4
≡ 3p2

k6
+

3p

k2(p− k)3
(mod p3).

After summation over k = 1, . . . , p− 1, the above congruence gives

p−1∑
k=1

1

k(p− k)3
+R4 ≡ 3p2R6 + 3p

p−1∑
k=1

1

k2(p− k)3
(mod p3).

Since by Lemma 2.1, p | R6 for any prime p ≥ 11, substituting this and
(2.6) into the above congruence, we obtain

p−1∑
k=1

1

k(p− k)3
≡ −R4 (mod p3).

Substituting this into (2.7), we finally obtain

2R3 ≡ −3pR4 (mod p4).

This completes the proof. �

Proof of Theorem 1.1. For any prime p ≥ 11, we have(
2p− 1

p− 1

)
=

(p+ 1)(p+ 2) · · · (p+ k) · · · (p+ (p− 1))

1 · 2 · · · k · · · p− 1

=

(
p

1
+ 1

)(
p

2
+ 1

)
· · ·

(
p

k
+ 1

)
· · ·

(
p

p− 1
+ 1

)
= 1 +

p−1∑
i=1

p

i
+

∑
1≤i1<i2≤p−1

p2

i1i2
+ · · ·

+
∑

1≤i1<i2<···<ik≤p−1

pk

i1i2 · · · ik
+ · · ·+ pp−1

(p− 1)!

= 1 +

p−1∑
k=1

pkHk = 1 +
6∑

k=1

pkHk +

p−1∑
k=7

pkHk.

By Lemmas 2.1 and 2.2, we have R1 ≡ R3 ≡ R5 ≡ H3 ≡ 0 (mod p2)
and R2 ≡ R4 ≡ R6 ≡ H2 ≡ H4 ≡ 0 (mod p) for any prime

p ≥ 11. Since, by Newton’s formula, 5H5 = R5 +
∑4

i=1(−1)iHiR5−i

and 6H6 = −R6 −
∑5

i=1(−1)iHiR6−i, it follows from the previous
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congruences that p2 | H5 and p | H6. Therefore, p7 |
∑p−1

k=5 p
kHk for

any prime p ≥ 11, and so the above expansion yields

(2.8)

(
2p− 1

p− 1

)
≡ 1 + pH1 + p2H2 + p3H3 + p4H4 (mod p7).

Recall that H1 = R1 and H2 = (R2
1 − R2)/2. The congruences

from Lemma 2.2 yield H3 ≡ (R3/3) − (R1R2/2) (mod p4) and H4 ≡
−(R4/4)+ (R2

2/8) (mod p3). Substituting all the previous expressions
for Hi, i = 1, 2, 3, 4, into (2.8), we find that(

2p− 1

p− 1

)
≡1 + pR1 +

p2

2
(R2

1 −R2)(2.9)

+
p3

6
(2R3 − 3R1R2) +

p4

8
(R2

2 − 2R4) (mod p7).

Further, by Lemma 2.4, we have

2R1 ≡ −pR2 (mod p4)(2.10)

and

2R3 ≡ −3pR4 (mod p4).(2.11)

The congruences (2.10) and (2.11) yield p4R2
2 ≡ −2p3R1R2 (mod p7)

and p4R4 ≡ −(2/3)p3R3 (mod p7), respectively. Substituting these
congruences into the last term on the right hand side of (2.9), we obtain(

2p− 1

p− 1

)
≡1 + pR1 +

p2

2
(R2

1 −R2)(2.12)

− 3p3

4
R1R2 +

p3

2
R3 (mod p7).

It remains to eliminate R3 from (2.12). Note that, by Lemma 2.3,
2R1 ≡ −pR2 − p2R3 − p3R4 − p4R5 − p5R6 (mod p6). Since, by
Lemma 2.2, p2 | R5 and p | R6, the previous congruence reduces to

(2.13) 2R1 ≡ −pR2 − p2R3 − p3R4 (mod p6).

We use again the congruence (2.11) in the form p3R4 ≡ −(2/3)p2R3

(mod p6), which by inserting in (2.13) yields 2R1 ≡ −pR2−(1/3)p2R3

(mod p6). Multipying by 3p, this implies

(2.14) p3R3 ≡ −6pR1 − 3p2R2 (mod p7).
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Substituting this into the last term of (2.12), we immediately get

(2.15)

(
2p− 1

p− 1

)
≡ 1−2pR1−2p2R2+

p2

4
R1(2R1−3pR2) (mod p7).

Now we write (2.10) as

2R1 − 3pR2 ≡ 8R1 (mod p4).

Since p2 | R1, and so p4 | p2R1, multiplying the above congruence by
(1/4)p2R1, we find that

p2

4
R1(2R1 − 3pR2) ≡ 2p2R2

1 (mod p7).

Replacing this into (2.15), we obtain

(2.16)

(
2p− 1

p− 1

)
≡ 1− 2pR1 + 2p2(R2

1 −R2) (mod p7),

which by the identity (R2
1 −R2)/2 = H2 yields the desired congruence.

This completes the proof. �

Proof of Corollary 1.4. The first congruence in Corollary 1.4 for
p ≥ 11 is immediate from (2.16), using the fact that p2 | R1, and
so p6 | p2R2

1. Since from (2.14) we have p2R2 ≡ −2pR1 − (p3/3)R3

(mod p6), inserting this into the first congruence in Corollary 1.4, we
immediately obtain(

2p− 1

p− 1

)
≡ 1 + 2p

p−1∑
k=1

1

k
+

2p3

3

p−1∑
k=1

1

k3
(mod p6),

which is just the second congruence in Corollary 1.4.

A calculation shows that both congruences are also satisfied for
p = 7, and the proof is completed. �

Proof of Corollary 1.5. Let p ≥ 7 be any prime. By Corollary 1.4,
we have

(
2p−1
p−1

)
≡ 1− 2pR1 − 2p2R2 (mod p5). Substituting into this

−pR2 ≡ 2R1 (mod p4) (Lemma 2.4), we obtain(
2p− 1

p− 1

)
≡ 1 + 2p

p−1∑
k=1

1

k
(mod p5),

as desired. �
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3. Proof of Corollary 1.3. As noticed in the Introduction, in the
proof of Corollary 1.3, we will apply a method of Helou and Terjanian
[6] based on Kummer type congruences.

Lemma 3.1. Let p be a prime, and let m be any even positive integer.
Then the denominator dm of the Bernoulli number Bm, written in
reduced form, is given by

dm =
∏

p−1|m

p,

where the product is taken over those primes p such that p−1 divides m.

Proof. The assertion is an immediate consequence of the von Staudt-
Clausen theorem (e.g., see [7, page 233, Theorem 3]) which asserts that
Bm +

∑
p−1|m 1/p is an integer for all even m, where the summation is

over all primes p such that p− 1 divides m. �

For a prime p and a positive integer n, we denote

Rn(p) = Rn =

p−1∑
k=1

1

kn
and Pn(p) = Pn =

p−1∑
k=1

kn.

Lemma 3.2. ([6, p. 8]). Let p be a prime greater than 5, and let n, r
be positive integers. Then

(3.1) Pn(p) ≡
∑

s−ordp(s)≤r

1

s

(
n

s− 1

)
psBn+1−s (mod pr),

where ordp(s) is the largest power of p dividing s, and the summation
is taken over all integers 1 ≤ s ≤ n+ 1 such that s− ordp(s) ≤ r.

The following result is well known as the Kummer congruences.

Lemma 3.3. ([7]). Suppose that p ≥ 3 is a prime and m, n, r are
positive integers such that m and n are even, r ≤ n − 1 ≤ m − 1 and
m ̸≡ 0 (mod p−1). If n ≡ m (mod φ(pr)), where φ(pr) = pr−1(p−1)
is Euler’s totient function, then

(3.2)
Bm

m
≡ Bn

n
(mod pr).
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The following congruences are also due to Kummer.

Lemma 3.4. ([9]; also see [6, p. 20]). Let p ≥ 3 be a prime and let
m, r be positive integers such that m is even, r ≤ m − 1 and m ̸≡ 0
(mod p− 1). Then

(3.3)
r∑

k=0

(−1)k
(
m

k

)
Bm+k(p−1)

m+ k(p− 1)
≡ 0 (mod pr).

Lemma 3.5. For any prime p ≥ 11, we have

(i) R1(p) ≡ −p2

2
Bp4−p3−2 − p4

4
Bp2−p−4 +

p5

6
Bp−3 +

p5

20
Bp−5

(mod p6).

(ii) R2
1(p) ≡

p4

9
B2

p−3 (mod p5).

(iii) R2(p) ≡ pBp4−p3−2 + p3Bp4−p3−4 (mod p5).

Proof. If s is a positive integer such that ordp(s) = e ≥ 1, then for
p ≥ 11, it holds that s−e ≥ pe−e ≥ 10. This shows that the condition
s − ordp(s) ≤ 6 implies that ordp(s) = 0, and thus, for such a s must
be s ≤ 6. Therefore,

(3.4) Pn(p) ≡
6∑

s=1

1

s

(
n

s− 1

)
psBn+1−s (mod p6) for n = 1, 2, . . . .

By Euler’s theorem [5], for 1 ≤ k ≤ p − 1, and positive integers n,
e, we have 1/kφ(pe)−n ≡ kn (mod pe), where φ(pe) = pe−1(p − 1) is
the Euler’s totient function. Hence, Rφ(pe)−n(p) ≡ Pn(p) (mod pe).

In particular, if n = φ(p6) − 1 = p5(p − 1) − 1, then by Lemma 3.1,
p6 | p6Bp5(p−1)−6 for each prime p ≥ 11. Therefore, using the fact that
Bp5(p−1)−1 = Bp5(p−1)−3 = Bp5(p−1)−5 = 0, (3.4) yields

R1(p) ≡ Pp5(p−1)−1(p) ≡
1

2
(p5(p− 1)− 1)p2Bp5(p−1)−2

+
1

4

(p5(p− 1)− 1)(p5(p− 1)− 2)(p5(p− 1)− 3)

6

×p4Bp5(p−1)−4 (mod p6),
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whence we have

(3.5) R1(p) ≡ −p2

2
Bp6−p5−2 −

p4

4
Bp6−p5−4 (mod p6).

By the Kummer congruences (3.2) from Lemma 3.3, we have

Bp6−p5−2 ≡ p6 − p5 − 2

p4 − p3 − 2
Bp4−p3−2 ≡

2Bp4−p3−2

p3 + 2

≡
(
1− p3

2

)
Bp4−p3−2 (mod p4).

Substituting this into (3.5), we obtain

(3.6) R1(p) ≡ −p2

2
Bp4−p3−2+

p5

4
Bp4−p3−2−

p4

4
Bp6−p5−4 (mod p6).

Similarly, we have

Bp4−p3−2 ≡ p4 − p3 − 2

p− 3
Bp−3 ≡ 2

3
Bp−3 (mod p)

and

Bp6−p5−4 ≡ p6 − p5 − 4

p2 − p− 4
Bp2−p−4 ≡

4Bp2−p−4

p+ 4

≡
(
1− p

4

)
Bp2−p−4 (mod p2).

Substituting the above two congruences into (3.6), we get

R1(p) ≡ −p2

2
Bp4−p3−2 +

p5

6
Bp−3 −

p4

4
Bp2−p−4(3.7)

+
p5

16
Bp2−p−4 (mod p6).

Finally, since

Bp2−p−4 ≡ p2 − p− 4

p− 5
Bp−5 ≡ 4

5
Bp−5 (mod p),

the substitution of the above congruence into (3.7) immediately gives
the congruence (i).

Further, (3.7) immediately gives

(3.8) R2
1(p) ≡

p4

4
B2

p4−p3−2 (mod p5).
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Again by the Kummer congruences (3.2) from Lemma 3.3, we have

Bp4−p3−2 ≡ p4 − p3 − 2

p− 3
Bp−3 ≡ 2

3
Bp−3 (mod p).

Substituting this into (3.8), we immediately obtain the congruence (ii).

In order to prove the congruence (iii), note that if n − 3 ̸≡ 0
(mod p − 1), then by Lemma 3.1, for even n ≥ 6, p5 | p5Bn−4 holds,
and we know that Bn−1 = Bn−3 = 0 for such a n. Therefore, reducing
the modulus in (3.4) to p5, and using the same argument as in the
beginning of the proof of (i), for all even n ≥ 2,

(3.9) Pn(p) ≡ pBn +
p3

6
n(n− 1)Bn−2 (mod p5)

holds. In particular, for n = p4−p3−2 and using Pφ(p4)−2(p) ≡ R2(p)

(mod p4), (3.9) reduces to

(3.10) R2(p) ≡ Pp4−p3−2(p) ≡ pBp4−p3−2 + p3Bp4−p3−4 (mod p5).

This completes the proof. �

Proof of Corollary 1.3. The congruence (1.5) of Corollary 1.3 fol-
lows directly by substituting congruences (i), (ii) and (iii) of Lemma 3.5
into the congruence (1.4) of Theorem 1.1. �
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