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NON-AUTONOMOUS PARABOLIC PROBLEMS
WITH SINGULAR INITIAL DATA
IN WEIGHTED SPACES

XIAOJUN LI

ABSTRACT. In this paper, we investigate the well-posedness
of non-autonomous parabolic equations in weighted space
Lg(m)(Q), where §(z) is the distance to the boundary. We

first establish regularity properties of the extension Dirichlet
heat semigroup in Lg(x)(ﬂ) and then, under some assump-

tions, we obtain the existence, uniqueness and regularity of
the positive solutions of parabolic equations with critical and
subcritical nonlinearity term in those spaces.

1. Introduction. The purpose of this paper is to investigate the
following nonlinear parabolic equation

ur — Au = a(z)u? + f(z,u) + g(x,t) t>71,2€Q,
(1.1) u=0 t>71,2€0Q,
u(T) = ur TeR, 2 €Q,

where Q is a bounded domain in RY with smooth C? boundary 9%,
0 < g <1, and a(x), f(z,u) satisfy some conditions which will be
stated bellow.

There has been a great deal of study on problem (1.1) with au-
tonomous cases, i.e., g(x,t) = 0. Since the pioneering work of Weissler
[16, 17], Ni and Sacks [9], Brezis and Cazenave in [3] studied au-
tonomous problem

ug — Au=|ulP~lu t>0,z€Q,
(1.2) u=0 t>0,z €09,
u(0) = uo x €Q,
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where p > 1 and Q € R" is a bounded domain, and obtained that
if r > (N/2)(p — 1), up € L"(Q), there exists a unique solution
u e C([0,T],L"(2)) N L. ((0,T), L>(R)). Further studies have been
made by Arrita and Carvalho. More precisely, they considered the
abstract parabolic problem # = Az + f(t,x), t > to with initial
data z(tg) = zo € X!, and obtained existence of a unique solution
z € CO([to, 7], X1) N C((to, 7], X'T¢), which is also called an e-regular
solution, where X (a > 0) is the fractional power space associated to
the linear operator A and f satisfies the locally Lipschitz condition
on some suitable spaces, see details in [1]. These abstract results
were applied to autonomous problem (1.2) and autonomous parabolic
problems with nonlinear boundary conditions, see details in [1, 2].
Recently, Loayza in [8] considered autonomous problem (1.1) with
flz,u) = b(x)u?, p > 1. When 0 < ¢ < 1, the nonlinearity
lacks the Lipschitz condition. To overcome this obstacle, under some
assumptions, Loayza obtained that, if ug € L"(f), there exists a
unique positive solution v € C([0,T],L"(Q)) N L. ((0,T), L>(1)).
In addition, autonomous nonlinear evolution equations with singular
initial conditions have been studied by other authors, see [6, 12, 14,
15].

Investigation of elliptic and parabolic problems in weighted spaces
Lg(gﬂ)(Q) (see the definition in Section 2) has drawn much attention. In

[12], Quittner and Souplet presented a priori estimates for the solution
of the following equation

(1.3) { —Au= f(z,u,Vu) z€Q,

u=20 x € 09,

where Q is a smoothly bounded domain of RY and f : QxR xRN —
R is continuous. Under some assumptions on nonlinearity f, they first
established the L};(r)—estimate for the very weak solution u of (1.3):

(1.4) Il < C.

5(x)

Let 1 < ko < (n+1)/(n—1), k; = kop*, i = 0,1,..., p > 1. Using

(1.4), the estimates |u[| x; < C were obtained, and then, by a finite
5(z)

number of steps and using 4regularity of the Dirichlet Laplacian in the
scale of Lf;(m)—spaces, they obtained that u € L>*(Q) and |luljr~ < C.
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Similarly, this Lg(gﬂ) bootstrap method was used in [11] to establish
the L*°-estimates and existence of positive solutions for the following
systems:

—Au = f(z,u,v) x €,
(1.5) —Av =g(z,u,v) z€Q,
u=v=0 x € 01,

where Q is a smoothly bounded domain of R™. It is pointed out in
[11] that growth assumptions for systems (1.5) are optimal, that is, the
results in [4] on establishing the L*-estimates and existence by using
the method of Hardy-Sobolev inequalities required stronger conditions
than those in [11]. In [5], Fila, Souplet and Weissler studied universal
bounds for global nonnegative solutions of (1.2). For ug(x) € Lg(z)(ﬂ)
with ¢ > ¢. = [(N+1)/2](p — 1), using the optimal Lg(ﬁ)-Lg(r)
estimates for the heat semigroup, they proved that there exists a unique
classical solution u of (1.2) satisfying

(1.6)

we C(O.T L) (@), ue CO0.T): Ly (@), g <r < oc,
(1.7)

t[(N+1)/2][(1/q)7(1/T)]Hu(t)HLg(m)(Q) <K, 0<t<T, ¢g<r<oo.

By (1.7), they obtained that, if up € L>*(Q), 1 <p < (N +1)/(N —1)
and 7 > 0, then all nonnegative global classical solutions u of (1.2)
satisfy

(1.8) sup u(t,-) < C(Q,p,7), fort>r.
Q

In contrast to the previous results in [10] on boundedness of global
solutions of (1.2), (1.8) shows that the a priori bound is universal, that
is, independent of ug. After that, Quittner, Souplet and Winkler in
[13] established a universal upper bound on the initial blow-up rate for
all positive classical solutions of the following Dirichlet problem

(1.9) {ut—Au=|u|p_1u 0<t<T,zeq,
’ u=0 0<t<T,zedN.
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Applying (1.7), they proved that, if 1 < p < (N +3)/(N +1) and
T € (0,00), all nonnegative classical solutions of (1.9) satisfy

T
Jult, )|z < C(p, Q,T)t"NHD/2 0 <t < oL

where the exponent —(N + 1)/2, in contrast to the previous result, is
optimal. At this point, we notice that it is important to study the
elliptic and parabolic problems in weighted spaces Lg(z) Q).

In this paper, we consider non-autonomous problem (1.1) in weighted
space L, (€2). Since the nonlinearity a(z)u? + f(x,u) and external
force g(x,t) of (1.1) depend upon z, and g(z,t) belongs to L}, (R; X)
(see (Ps3) in Section 2), which is equipped with the local v-power mean
convergence topology different from the topology Lg(w)(ﬂ) upon which
the heat semigroup is acting, the results in [8] cannot be extended to
(1.1) directly. On the other hand, since L"(2) C Lj,(€), in contrast
to the results in [8], we obtain the existence and uniqueness of the
positive solution for non-autonomous system (1.1) in weak topology
spaces. We first establish regularity properties of extension Dirichlet
heat semigroup from L"(£2) to Lg(m)(Q). For 0 < g < 1, the nonlinearity
of (1.1) lacks a Lipschitz condition. Motivated by the idea in [8],
using regularity properties of the extension semigroup in Lj r)(Q) and
the weighted Hardy’s inequality, we obtain the existence 0% a unique
positive solution u € C([0, T; L, () N L. ((0,T); L>(2)) of (1.1).
The regularity of the solution is also studied, that is, the solution
satisfies (t — T)[(N+1)/2][(1/r)—(1/8)]Hu,(t)HLg(m)(Q) < Cforr <s < o0,

and (t — 7)IVFD/20 g (1) — T(t)uTHWolvg:)l < C for N > 1. For q =1,

we show that there exists a unique solution of (1.1), which does not
need to be positive. By the regularity of solutions proved in Theorem
3.1 and 3.3, as in [12, 13], we can obtain optimal results on universal
bounds for all global positive solutions and the initial blow-up rate for
all positive solutions of (1.1), which are subjects for future study.

This paper is organized as follows. In the next section, we establish
the regularity properties of a Dirichlet heat semigroup in Lg(w) (Q) and
give some lemmas which will be used later. In Section 3, we prove our
main results.

2. Preliminaries. We first make some assumptions on nonlinearity

fz,u):
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(P1) There exists a C' > 0 such that
|f@,u) = f(@,0)] < Clb(a)||u — vl (jul~" + o]~ + 1),

where p > 1.
(P2) f(z,u)u >0, f(x,0) = 0 almost everywhere in Q.

Let 6(z) = dist (z,00) for all z € . When Q has a smooth C?
boundary, it is well known that there exist C; and Cs such that

(2.1) Cigr(z) < 0(z) < Capr(x),

where ¢1(z) > 0 is the first eigenfunction associated to the first
cigenvalue A\; of —A in H{(f2), normalized by [,¢1(z) = 1. The
weighted Lebesgue spaces Lg(w)(Q) are defined as follows. For 1 < p <
00,

LY = Lg(z)(Q) = LP(Q;6(x) dz).

For 1 <p < o0, Lg(z)(Q) is endowed with the norm

anz(émmmmﬁui

Since d(z) is a bounded function on §2, it is clear that LP(Q) C
Lg’(r)(Q). Analogously, define weighted Sobolev space Wé’(’; (), 1 a
positive integer and p > 1 as the space in which D'u € Lf () for
|i| < I. Denote by Wézﬁ(r)(ﬂ), p > 1, the closure of C}(f2) in the
weighted Sobolev space Wé’& )(Q), which is equipped with the norm

(Zmzl ||Diu||i§)1/p-
We also make the assumption on g(z,t) of (1.1):
(P3) g(z,t) € LY (R; X), i.e.,

ta
/ lg(z, s)|I'xds < oo, for all [t1,t2] C R,
t1

where X = LE(I)(Q)ﬁL“’(Q)7 1<v,r<oo,and 1/v < min{(1/2),1—
(1/p)}-
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We know from [5] that, if Q is a C? smooth bounded domain in
R” the Dirichlet heat semigroup {7'(¢)};>0 admits a unique, densely
defined, extension to L;l (2)(€2)- The extension semigroup that restricts
on Lg(w)(Q), 1 <r < o0, yields a Cp semigroup on Lg(gﬂ)(ﬂ), which will
still be denoted by {T'(t)}+>0. From now on, we assume that Q is C?
smooth. To investigate (1.1), we will use the following smoothing effect
of the semigroup {T'(¢)}:>o0-

Lemma 2.1 [5]. Let 1 < g <r <oo and a = [(N+1)/2][(1/q) —
(1/7)]. There exists a C = C(2) > 0 such that, for all up € Lg(I)(Q),
the following holds

(2.2) IT()uollz; < Ct|uol[rg, ¢>0.

Remark 2.2. Lemma 2.1 shows that, for all ug € Lg(gﬂ)(Q), it
holds that ||T(t)ugllpe < C||u0||L§( - If1 <r < g < oo, then

5(x)

Lg(r)(Q) C Lj(,)(£2), the semigroup can be uniquely extended from

L3y (9) to L) (©). and [T(tuollr; < Clluollz; < Clluollus,
Therefore, for 1 <r,q < 00, ug € Lg(w)(Q), the following holds
(2.3)

IIT(t)uOIILg < Ot~ (N+1)/2 max{(l/q)f(l/r),o}||uO||L§7 t>0. o

By Lemma 2.1, we also have the following regularity properties for
the semigroup {7T'(t)}¢>0 defined on the weighted space Lg(gﬂ)(Q).

Lemma 2.3. Let 1 < p<qg< o0, 0<r<s<oo, rands are
nonnegative integers. T(t) : Wor’gj(gﬂ)(ﬂ) — Wos’g(gﬂ)(ﬂ) fort > 0. Then
there exists a constant C > 0 such that

(2.4) ||T(t)u()||w;;;(z) < Ot INHD/2HA/P) = DI+ =5)/2 30| o

0,5(x)’

for allt >0 and uy € Wg’g(z)(Q),
Proof. The mapping T'(t) : Wor’gj(gﬂ)(ﬂ) — Wos’g(w)(Q) can be decom-
posed into
T(t) : Wo'siay () — Wi, () — Wi,y (@), fort > 0.
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Therefore, by Lemma 2.1, we have

1T (t)uol|w=-a

0,5(z)
— IT(1)(A)* ug | 1

< Ot~ IWNFD/21A/P) = /D) 7 (8) (A)S 2 | v
- )

= Ot~ IWVHD2IA/P) = DL (A2 (1) (A) Pug | v
)

< Ct*[(NJrl)/?][(1/p)7(1/q)]+(r78)/2||(A)r/2uO||Lp
- )

Ol =D 2y for i >0, D
5(x)

In order to obtain a uniform time for the existence of the solution,
we will need the following results.

Lemma 2.4. Given a compact K C Lg(r)(Q) and g < r < oo, there
exists a function y(t) : (0,1] = (0,00) with lim;_,oy(¢t) = 0, such that

tNAD2AA/ D= T () ug || e < (8)
5 — )

for allt € (0,1) and all ug € K.

Proof. By using the smoothing effect of Lemma 2.1, the proof is
similar to the one of Lemma 8 in [3]. 0

We will also use the following generalized Gronwall’s inequality.

Lemma 2.5 [3]. Let T >0, A>0,«>0,0< g,v<1. Consider
p € L*(0,T) to be a nonnegative function such that

t
o(t) <A+ ta/ (t —7) P Vp(t)dr almost everywhere in (0,T).
0

If 14+a > B+, then there exists a positive constant C = C(T, «, B, v) >
0 such that

o(t) < CA almost everywhere in (0,T).
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When 0 < ¢ < 1, the nonlinearity of (1.1) does not satisfy the
Lipschitz condition. In order to obtain the existence, uniqueness and
regularity of the solution of (1.1), we will use the weighted Hardy
inequality, that is, for bounded Lipschitz domains € in RV, if 1 <
p < 00, then for all 8 € [0,p — 1), there exists a C' > 0 such that, for
all u € C§° (),

(2.5) /Q|u(x)|p5(x)*p+ﬁdxSC/Q|VU(;E)|’)§(x)Bd:r,

where 0(z) := dist (x,09). See details in [7].

We will need the following technical results.

Lemma 2.6. Let 0 < ¢ < 1 < p < o0, a, 8,7 > 1 with
a > (N+1)/(g+1) and (1/a) + (¢/r) < ¢+ [1—q)/(N+1)] +
2¢/(N +1)pl.  Let (1/B) + [(p—1)/r] < [2/(N+1)] or (1/8) +
[(p—=1)/r] = [2/(N+1)] with r > 1. Then there exists an n > r
such that

(i) (1/a) + (¢/n) <q+[(1 —q)/(N+1)],
(i) (1/8) + (p/n) <1,

(i) (1/8) + [(p = 1)/n] < [2/(N +1)],
(iv) p[(N +1)/2)[(1/r) = (1/m)] < L.

Proof. From the assumptions, we have 1/r — [2/(N+1)p] < 1+
[(1—q)/(N+1)q] = (1/ag) and (1/8) + (p/r) < (1/r) + (2/N +1) <
14(2/N + 1) which implies that (1/7)—[2/(N + 1)p] < (1/p)[1—(1/8)].
This allows us to choose n > r such that

1 2 1

j— 7<_
r (N+Lp 7

e )
T B)’ (N+1)g ag’'p—1\N+1 3))

The proof is completed. O

Remark 2.7. From the proof of Lemma 2.6, we find that, if N > 2,
there exists an n such that n > max{r, [2(N +1)/(N —1)]}, and all
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results of Lemma 2.6 hold; if N = 1, we can choose 19 > 0 small
enough such that

1 1- 1+ 1
dcgr =2 omg=—"2-mg,  Z4s<i-m o
a 2 2 no B

Define m(n) by

1 _{(1/n)+[1/(N+1)] n>max{r, [2(N+1)/(N—-1)]}, N>2,

m(n) L (1/2) —no 7o is small enough, N = 1.

The definition of m(n) implies that m(n) > 2. Moreover, by Remark 2.7
and direct computations, we have the following results.

Lemma 2.8. Let the assumptions of Lemma 2.6 hold, and let n be
giwen by Lemma 2.6. Then

(i) (1/a) + (¢/n) + [(1 = q)/m(n)] <1,

(i) (1/e) + (a/n) = [g/m(n)] < [1/(N +1)],

(iii) [1/m(n)] < (1/n) + [1/(1 = @I[(2/N +1) = (1/a)],
(iv) (p/n) + (1/8) = [1/(N + 1)} < [1/m(n)].

We will use the following lemma.

Lemma 2.9. Let Q be a C? bounded domain in RN and f €
LY((0,T),L 5@)(Q)). Fort e (0,7), let ¢(t) = fo (t — s)f(s)ds.
)f()

If, for some 1 < r < oo, ¢() € L, () and VT (t — -
L((0,1), 5(95)(9))’ then ¢(t) € ng(m)( ) for every t € (0,T).

S

(-

Proof. Using Lemma 2.3, the proof is similar to the one of Lemma 2.3
in [8]. O

3. Main results. By a solution u € C([r,T], L, (22)) N

Oo)(( T),L>°(Q)) of (1.1), we mean that

{ u(t) = T(t =7 )u(r') + [}, T(t = s)[au(s) + f(z,u(s)) + g, 5)] ds,
( /

u(r') — ur in Lj ) (Q) as 7’ — 7T,
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Now, for 0 < ¢ < 1, we give our main results.

Theorem 3.1. Suppose that (P1)—(P3) hold. Let a(x) € Lg‘(gﬂ)(Q),
b(x) € Lf(z)(Q) with 1 < o, 8 < +00 and a(x) > 0 almost everywhere
inQ. Letl <r<+400,0<qg<1l a>(N+1)/(¢g+1), (1/a)+
(a/r) < a+[(1— )/ (N + D]+ 26/ (N + 1)p] and (1/8)+[(p — 1)/r] <
[2/(N +1)] (respectively, (1/8) + [(p—1)/r] = [2/(N+1)], r > 1).
Assume that u, € Lg(w)(Q), g(xz,t) > 0 almost everywhere in Q, and
there exists a ko > 0 such that u, > kod(x) almost everywhere in .
Then there exist T = T (u,) > 7 and k > 0 such that there is a unique
positive solution u € C([r,T], Ly, (2)) of (1.1) satisfying u(t) = ké(x)
for allt € (7,T).

Moreover, there exists a C > 0 such that
(3.2)
u(t) € C((r, T),Lf;(r)(ﬂ)), r<s < +oo,

(3.3)
(t — )VHD/2AA/)=Q/)] g (1)

LgSC, T<t<T, r<s<+4oo,
and, if N > 2, then

(t — T)(N+1)/(2r)||u(t) —T(t)uo||yyr.v+1 < C.

0.6(2)
This solution is unique in the class
C([r. T, L) () N Lige((7, T), L>=(42)).
Furthermore, for any bounded set (respectively, compact set) K in

Lg(r)(Q)), there is a (uniform) time T = T(K) such that, for any
ur € K, the positive solution of (1.1) exists on [1,T].

Proof. To study problem (1.1) with singular initial data, we formally
define

D (u)(t) =T{)u, + / T(t — s)lau(s)? + f(x,u(s)) + g(x, s)] ds.

The proof of the theorem can be divided into three parts.
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Part one: Existence of solution. We will apply the contraction
mapping principle to ® in some complete metric space. Now consider
two situations.

Case a: Subcritical nonlinearity term (1/38) + [(p—1)/r] <
[2/(N +1)]. Let n be given by Lemma 2.6, and let m(n) be defined by
(2.6). Now, fix ||uTHL§(m) < M and define

E = C((r,T), Ly () () C(. T), Wy 5 (),
X={uEE-U()ZF»5(x), (t =) u@®)lln < M +1,

(t =)V (t) = T(ur)| o <1, for t € (,T)},

where 0 < T —7 < 1, @ = [(N+1)/2[1/r) — A/n), B =
—[(N+1)/2m(n)] + (1/2) + [(N + 1)/2r], and & is a positive constant
which will be given later. Equip X with the distance

(34) d(u,v) = rnax{ sup (t —7)%u(t) — v(t)||Lg ,

T<t<T

sup, (¢ = 1) I9u(t) = o(0) g0 |

Tt<T

then (X, d) is a nonempty complete metric space.

From now on, we denote by C' a variable positive constant whose
value may vary from line to line or even in the same line.
From Lemma 2.6, we get that (1/a) + [(¢—1)/7] < (1/a) <

2/(N+1), (1/8) + [(p=1)/n] < 2/(N+1)], (1/a) + (¢/n) < 1,
(1/B) + (p/n) < 1 and ag < 1. Let (1/G1) = (1/a) + (q/n),
(1/G2) = (1/8) + (p/n). Thus, by assumptions (P1)—(P3), Lemma 2.
and Remark 2.2,

(3.5) i
(=) @) @)Ly < (¢t =) T )urllLy

+(t— 7)5‘/ IT(t = s)lau?(s) + f(z, u(s)) + g(x, s)][[ L7 ds

<M+ (t— 7')5‘/ Tt — s)auq(s)HLgds
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+C(t—7)° / 1T (¢ = $)b(|u(s)]” + Dl Lz ds

=) [T - )9l 1ds
<M+Ct—1)°

t
></(t_S)—[(N+1)/2]max{(l/oz)+[(q—1)/17],0}||auq(s)||LG1dS
T )

t
+ Ot —7)% / (t — 5)*[(N+1)/2][(1/ﬁ)+(p71/n)] 1b(|u(s)]” + )| c2ds
)

T

t
n (t_T)a/ (t — )" HD/20/D =0/ gz, 5| 1 ds
<M +CllalLe t—71)°

t
X/T(t_S)—[(N+1)/2]max{(l/a)+[(q—1)/n],0}||u(s)||%gds

t
+C||b||L[s(t—T)d/ (t—s)*[(N“)/Q][(1/6)“(“1)/””(||u(s)||in+1)ds
) T )

1/v'

t
F(t— ) (/ (t— S)—[(N+1)/2][(1/T)—(1/n)]u’)

t 1/v
< [ late sz )
T ) q )
< M+ Cllalzg ( sup (t—ﬂ“nu(t)uLg) (t -7
T<t<T

t
» / (t — 5)~[(N+1)/2 max{(1/e)+{(a=1)/n] 0} (5 _ r)=agg

+ 0l - )% [ (sup, 6= utolsg)

Tt<T

t
» / (t — 5)~[(N+D/2(/B)+=1)/al) (5 _ 1) =dr s
t
n / (t — )~ +D/AA/B)+(-D/all gg

+C(t =) |lg(a, )|y

Loc

([, THLF(2))
<M+C(M+ 1)t - T)*[(NJrl)/?] max{(1/c)+[(¢—1)/n],0}+14+a(1—q)
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4 O(M + 1) (t — ) LD/ /B)+ (=) /41
+ Ot — 1) IV /28 =) N ) /200 /)= (1 /)

+C(t =) (g, t)lley,

loc

([mTHLE ()

where (1/¢') + (1/v) = 1. Similarly, by Lemma 2.8, we get that
(1/2) + (N +1)/2][(1/e) + (g¢/n) — (1/m(n))] < 1 and (1/2) +
[(N+1)/2][(1/8)+(p/n)—(1/m(n))] < 1. Furthermore, we can assume
that [1/m(n)] < (p/n) + (1/8). Using Lemma 2.3, we have

(36)

(t = )NV (@@)(t) = T()ur)l ,min

<(t-71)° / IVIT(t = s)(au’(s) + f (@, u(s)) + g(z, 8))][| pmm ds

T

<= [ 19 oD g ds
# 0= 77 [ IV~ ) + 1) s
# =7 [ 19T gt g
< Cllallzg (¢ — 7)°
» /t(t — )2 AP mat 10 a1 LY ) 4,
+ Cllell st~ 7)°

t
> / (t — 8)7(1/2)7[(N+1)/2][(1/6)+(p/77)7[1/m(n)]](||u(s)||lzg +1)ds

et
+ (t — 7.)/3 / (t — S)—(1/2)—[(N+1)/2] max{(l/r)—(l/m),O}Hg(x, S)HL; ds

<C(M+ 1Y
+C(M 4+ 1)°(t — 7)1*[(N+1)/2][(1/ﬁ)+[(P*1)/T]]
+C(t — 7—)1*[(N+1)/2][(1/:3)+(P/77)*(1/T)]

t— 7-)(1/2)+B*[(N+1)/2] max{(1/a)+(q¢/n)—[1/m(n)],0}—aq

4 Ot — 7)W= (/2= [(N+1) /2] max{(1/r) = (1/m) 01+
< N9, )lley,

loc

T T] Ly (T)(Q))
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From Lemmas 2.6 and 2.8, by direct computations, we find that
—[(N +1)/2] max{(1/a) + [(q— 1)/n],0} + 1 + (1 — ) > 0, (1/2) +
B—[(N +1)/2 max{(L/a) + (¢/n) — [1/m(n)], 0} —&q > 0. Thus, from
(3.5) and (3.6), we can choose 0 < T — 7 < 1 such that

(3.7) (t=7)%e)t)ly < M+1,

(t — )PV (@(u)(t) — T(E)ur)||, men <1, for all t € (r,T).

s

Since a > 0, f(x,u)u > 0 and g(x,t) > 0, we get that, if u € X, then
®(u)(t) > T(t)u, > kd(x), where k = rC1Cy te .

Next, we show that ®(X) C X. Proceeding as in the derivation of
(3.5),

(3.8)
(t =7 [ Tl =9)laut(s) + Fa.uls) + gl ) dsl g

< (=) [ 17 - au ()] pends
€t =17 [ 7= 9(us)? + 1) oo s

. t
+@_Tﬁ/ﬁw@—QMa@hym

< CllallLg (¢ —7)°

t
X/T (t_S)*[(NH)/Z]max{(l/a)Jr(q/n)f[1/(m(n))]70}||u(8)||ngdS

+ Cloll (= )7
t
> / (t— 8)7[(N+1)/2][(1/6)+(p/77)f[l/m(n)]](||u(s)||/z:57 +1)ds

ot
+ (t — 7.)/3 / (t — S)—[(N+1)/2] max{(l/r)—(l/m),O}Hg(x, 8)||Lg ds

<C(M+1)4(t — 7-)1+B*[(N+1)/2] max{(1/a)+(q/n)—[1/m(n)],0}—aq
+C(M +1)P(t — 7-)(3/2)*[(N+1)/2][(1/ﬁ)+[P*1]/T]
+C(t - 7-)(3/2)*[(N+1)/2][(1/ﬁ)+(P/77)*(1/T)]
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+C(t - )5—[(N+1)/2]max{(l/f’)—(l/m),o}-*—l/u'

< N9 Olley (rries,, @)

With (3.7) and (3.8), by Lemma 2.9 we get that ®(u)(t) — T'(t)ur €
W&’%ﬂ). Proceeding as in the derivation of (3.5) and (3.6), for 7 < t; <

(3.9)
t
| [ = saur(s) + so.uts) + gt )] ds
t1 L:;]
< Clall (M + 1)1
t
X / (t — 8)_[(N+1)/2] max{(1/a)+[(¢g—1)/n],0} (S . T)&qu
t1
OBl (0 + 1)
t
X / (t — ) (VD218 H-V/l (5 — ydngs
t1
t
+C[lbll / (1 — ) (V42079 +H-1/all g
s Sy
Ot — ) /) IND/2G/0-(1 /)
< Ng(@, Olley, (rriey, @) — 0, ast— tf,
(3.10)

H /t: T(t — s)[aul(s) + f(z,u(s)) + g(z, s)] ds

1,m(n)
Wo,a(m)

< Cllallzg (M + 1)

t
« / (t — 5)~ (/2= [V+1) /2] max{ (/) (a/m) = [L/m(m] 0} (5 _ 1)

t1

+ Cbll (M + 1)

t
« / (t — )~ /=N D /2108 /=1 mn)l) (5 _ 7)drgg

t1

t
+ Ollbll s / (t — 5)~ (/D= (N+D/20/8) +o/m) =11 /mm)]] g
5 Jiy
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+C(t - 751)1/1/*(1/2)*[(N+1)/2] max{(l/r)*(l/m)’o}”

x gz, t)llzy

loc [

T,T]§L§(z)(9)) — 0, ast— ti’_,

which imply that ®(u)(t) € C((0,T), L, ()NC((0, T), Wy st ().
Therefore, (X) C X.

In the following, we show that ®(u)(t) is a strict contraction mapping.
Let u,v € X,

Let .
L(t) = / T(t — s)a[ul(s) — vi(s)] ds,
B(0) = [ (=) uls) - Je o)) ds

Since u,v > kd(z) for t € (1,T), we get that |u? — v?| < Clu — v|9[ju —
v|/§(x)]' 7%, By Lemma 2.8 (i) we have (1/a)+(q/n)+[(1 — q)/m] < 1.
Let (1/G1) = (1/a) + (a/n) + [(1 = ¢)/m(n)],

(3.12)
t
1 (8)]] Lo S/ IT(t — s)a[u?(s) — v?(s)]l| nds
t
<C / (t — 5) "LV ED /2] max{ (/) (a=1)/nl+(1-0) /m(n)].0}

Gy ds
5

X [la(u?(s) —v9(s))ll

< Cllallrg

t
></ (t_S)*[(NJrl)/?]max{(l/a)Jr[(qf1)/77]+[(1*¢Z)/m(77)]’0}

x Jlu(s) = o(s))II7,

“(/

|u(s) — v(s

5 ds.

) ‘m(n)a(x) dz

) [(1—g)/m(m)]
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The definition of m(n) implies that m(n) > 2. Since C§°(£2) is dense
in W&’;?é;’), we get that (2.5) holds for u € W&’;?é;’). From (3.12), we
have
(3.13)

[L(#®)l[r < CllalLg

t
></ (t_S)*[(NJrl)/?]max{(l/a)Jr[(q*1)/77]+[(1*¢Z)/m(77)]70}

x [lu(s) = v(s)IZy

< [ us) = v(s)) ], ds.

Lemma 2.8 (iii) shows that (1/a) + [(¢ —1)/n] + [(1 — q)/m(n)] <
[2/(N +1)], together with the fact ag + (1 — ¢)8 < 1, from (3.13)
we have

(3.14) )
(t =) 0@y < Cllalles( sup (€= 7)%u(t) = v@)lly)*

T<

< (L £ IV o)l g ) =

T<t<T

t
x/ (t_S)—[(N+1)/2]max{(1/a)+[(q—l)/n]+[(1—q)/7n(n)]70}

(s — T)fo?q*(lfq)ﬁds
< Cllal|lLg d(u, v)

x (t — 7-)1—[(1\7+1)/2] max{(1/a)+[(q—l)/n]+[(1—Q)/Tﬂ(n)],0}+(1—q)(d—/§).

Similarly, by Lemma 2.8 (ii), (1/«) + (¢/n) — [¢/m(n)] < [1/(N + 1)],
we get that

(3.15)
(t = )71 (t)

min < (t—7)°
lwzmen < (¢ = 7)

t
X / ||T(t — S)a[uq(s) — vq(s)]HWOL:(L(;]) ds

< Clallzg(t —7)°
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t
« / (1 — 5)= (/2= [(N+1)/2] mas{(1/0) +(a/n)~la/m(n)}.0}

x [lu(s) = v(s)lIFalluls) = v(s)II - ds
s 0,6(z)
< CllallLg,,, d(u,v)

x (# — 7)U/D =[N +1)/2] max{(1/a) +(a/n) ~la/m(m).0}-+a(B &)

By Lemma 2.6 (iii) and Lemma 2.8 (iv), we get that (1/8)+[(p — 1)/n] <

(2/(N +1)], and (1/8) + (p/n) — [1/m(n)] < [1/(N +1)]. Thus, pro-
ceeding as in the above derivation,

(3.16)  (t —7)%|[L2(t)] Ly
< Il (¢ = 7)°
t
» / (t — ) (DA o=0/1 () — ()| 1

< (lu(s)17," + ()7, +1ds

< bl (s (0= D) = o0y ) (- 7)°

y [(M +1)et / (t — 5) [NFD/2AA/B+Ho=1/m) (5 _ ry=dn g

t
+ / (t — S)*[(NH)/?][(1/ﬁ)+[(p*1)/77]](S _ T)fdds
< p=1lry  N\1=[(N+1)/2][(1/B)+[(p—1)/7]
< Clbll g d(u, ) [(M+1)P7"(t =)
+ (t— 7-)1—[(N+1)/2][(1/ﬁ)+[(p—1)/17]]]7
(3.17) i i
(t — T)B”IQ(t)HWOlY’{;" < CHbHLf: (t— T)B
t
x/ (t_S)*(1/2)*[(N+1)/2][(1/6)+(P/77)*[1/m(77)]]

x [lu(s)=v(s)lly(lu(s) 17, +lo)N17," +1) ds

< C|b]l pod(u, v)

X [(M + 1)P=1 (¢ — 7)1 [NHD/21[0/8)+[(o=1) /7]
+ (t = ) IV /2A/B) o1 /),
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Using Lemma 2.8, by direct computations, we get that 1—[(N + 1)/2] x

max{(1/a) + [(¢ —1)/n] + [(1 —q)/m(n)],0} + (1 — g)(@ = B) > 0,
(1/2) = [(N + 1) /2| max{(1/) + (¢/n) — [¢/m(n)],0} + ¢(B — &) > 0.
Since (1/8) + [(p—1)/r] < 1, by (3.14)—(3.17) we can choose 0 <
T — 7 < 1 such that

(3.18)  (t = 7)%[|@(u)(t) — @(v)(t)]l;
< C{llafl po (=)~ 1O /2 max{(/@)+(a=1)/nl+(1-0) /()] O (1-) (@)
- )

F CIBl LM + 1)~ (1 — ) DB+ 1))
)
+ (t — ) IVHD/2A/B (=0 /] gy, )

< —d(u,v),

1
2

(8.19) (t=7)[2)(t) = 2@)(D)llwppe
Sc{”a”L?( )(t — ) I/2D-lN+1)/2) max{(1/e)+(a/n)~(a/m),0} —a(a—p)
p=1(p _ ) L=I(N+1)/2][(1/8)+[(p=1)/7]]
+ [bll o [(M + 17 (¢ = 7)
+ (t— T)l—[(N+1)/2][(1/ﬁ)+[(p—1)/n]]]} d(u,v)

< —d(u,v).

N =

Equations (3.18)—(3.19) show that d(®(u), ®(v)) < (1/2)d(u,v), that
is, @ is a strict contraction mapping on X; thus, ® has a unique fixed
point in X.

We now prove that u € C(]r, T],Lg(w)(Q)). First note that u € X,
n > r. This implies that u € C((r, T}, Lg’(gﬂ)(ﬂ)) C C((7, T, L, (2))-
It remains to show that w is continuous at ¢ = 7 in the norm
Ly Note that o > [(N+1)/(g+1)] implies (1/a) + (¢/n) —
(1/r) < [2/(N+1)], and (1/8) + [(p—1)/n] < [2/(N +1)] implies
(1/B8) + (p/n) — (1/r) < [2/(N +1)]. By direct computations, we
get that 1 — [(N +1)/2]max{(1/«a) + (¢/n) — (1/r),0} — aqg > 0,
1 —[(N+1)/2max{(1/8) + (p/n) — (1/r),0} — ap > 0. Thus, by
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Lemma 2.1 and Remark 2.2,
[u(t) = T()ur|ly < CllalLg

t
—[(N+1)/2] max{(1l/« —(1/r),0
X/T(t_s) () 2 max{ )6/ =0/ ) |4, dis

t
+C||b||L§/(t_s)f[(NJrl)/?]max{(l/ﬁ)Jr(p/n)f(l/r),O}(||u( N[ n+1)

t
+ / lg(, 9)l|z; ds

< Ot — 7) - IWVHD)/2 max{ A /a)+(a/m)—(1/r).0}—aq
+ C(t — 7)1 IVHD /2 max{(1/B)+(p/m) = (1/7),0}=ap
+ C(t — 1) (VD2 max{(A/B)+(p/m)=(1/7),0}

t
"‘/ lg(z,s)||rr ds — 0, ast— 7.
-

Case b: Critical nonlinearity term (1/8) + [(p—1)/r] =
[2/(N+1)],r>1. The proof of this case is essentially the same as the

previous case. Let 1, a, B be the same as previously, and define
E ={C(r,T), L}, (Q): lim(t-7) = 0} C(7 T), Wy e (),
X ={ueFE:ut)>rdz), (t— T)a||u(t)||Ln < o,
(t =) IV (u(t) = T(@ur)l| g < 1, forall £ € (7,T)},
where 0 < 0 < 1. Equip X with the distance
du,v) =max { sup (£ =7)%u(t) = o)y,

T<t<T
sup (¢ — )%V (u(t) = v(0)]] ymen };
Tt<T 5

then (X, d) is a nonempty complete metric space.

Here, we only show that ®(X) C X, and @ is a strict contraction
mapping on X, the regularity and continuous parts following as in
the previous case. As the arguments of the previous case show,



NON-AUTONOMOUS PARABOLIC PROBLEMS 1235

B(u)(t) > T(tyuo > ko(x), (u)(t) — T()uo € Wys (). Proceeding
as in the derivation of (3.5) and (3.6),

(3.20)
(t =)@ (u)(®) L
< (t = 1) T()ur Ly
+(t—7)" / 1T(t = s)[au’(s) + f(z,u(s)) + g(z, s)]|| L ds
< (t =) T )urllr + Cllallpe (¢ —7)°

t
X / (t — s)"[(N+D/2] max{(l/a)Jr[(qfl)/nLO}||u(8)||%nd8 +O|b|| .5
T ) )

t
X (t — T)oz/ (t — s)_[(NH)/Q]Kl/B)H(”_l)/’m(||u(s)||ig +1)ds

+Ct—7)" 9@ Oy . TIL,,, ()
< (t =) Tl
+ Cllal| oo (t — T)1+d(1fq)f[(N+1)/2] max{(1/a)+[(g—1)/n],0}

+ C||b||Laa” + C(t — ) INVHD/2A1A/B)+(p/m) = (/7))

+C(t =) g, )y

v T TIL Q)

6(7: (

(3.21)
(t = 7)2 IV (@(u)(t) = T()uo)ll men

< CllalLa(t —7)°

t
></(t_5)—(1/2)—[(N+1)/2]max{(l/a)+(q/n)—[1/m(77)],0}||u(8)||%gags

+Clblle (t—7)
5(x)
t
~ /T (t— 5)—(1/2)—[(N+1)/2][(1/B)+(p/n)—[1/m(n)]](Hu(s)”/zg +1)ds
+ C(t — 7)W=/ [(N+1)/2] max{(1/r)—(1/m),0}+5

X lg(z, )y

loc

([TvT]v (;(T)(Q))
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< Cllal|ge(t — T)(1/2)+B—[(N+1)/2] max{(1/a)+(q/m)—[1/m(n)],0}-éq ;q
- )
+ C||b||L§Up + C||b||L?(t _ 7.)1—[(N+1)/2][(1//3)+(p/77)—(1/f’)]
+C(t— T)(l/u’)—(1/2)—[(N+1)/2] max{(1/r)—(1/m),0}+5
X Ng(@ Olley roiey,,, @)

Letting u,v € X, similar to the derivation of (3.18) and (3.19),

(3.22)
(= 7)) (1) — ) O)]y,,
< Cllallz

5(z)

x (t—7) = [(N+D)/2 max{(l/a)Jr[(qfl)/n]+[(17q)/m(n)],O}Jr(lfq)(de)d(uw)
+C|bl| .5 (0P~ + (t — T)lf[(NJrl)/Z][(1/B)+[(p71)/n]]] d(u,v),
5(x)

(t =V 18O = 2W)Olly2co
< Clalzg,,

x (t — 7)1/A=((N+1)/2] max{(l/a)Jr(q/n)f[q/m(n)LO}fq(de)d(u’ v)
p—1 _ AN +1L)/21[(1/8)+(p—1) /n]]
+Clblle ot + (=) | ).
Now, we can choose ¢ small enough and 0 < T — 7 < 1 such that
(t =) @)Ly <o,
(3.23) (t = 7)P IV (@(u)(t) — T(tuo) ||y < 1,
forallt € (7, T).

Therefore, ®(X) C X. By Lemma 2.4, the choice of T depends only
upon the compact set K C Lj ) (Q) which contains u... Moreover, from

(3.22) and (3.23), we can shrink o in the above if necessary such that
d(®(u), ®(v)) < (1/2)d(u,v). Therefore, ® has a unique fixed point in
X.

Part two: Regularity of solution. Here, we use the idea as in
[1, 5, 8, 12]. From the proof of the existence of the solution, we know
that

(3.24) (t — 7)(N+D/2[A /)= /)] ||U(t)||Lg <,
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for all ¢ € (7,T), where 7 is same as in Part one.

Let u be the solution obtained above, and write

oy 0T
+f T(t — s)[au(s) + f(z,u(s)) + g(x, )] ds.

T+[(t-7)/2]

The assumption of « shows that (1/a) + [(¢—1)/n] < (1/a) <
[2/(N + 1)], which implies that (1/a) + (¢/n) — [2/(N +1)] < (1/n).
Furthermore, by Lemma 2.6 (iii), (1/8) + (p/n) — [2/(N + 1)] < (1/n).
Therefore, there exists an ' > 1 such that (1/a)+(g¢/n)—[2/(N + 1)]
(/1) < (1fa) + (afn) < 1, (1/8) + (o) — 2/(N + 1)) < (1/n)
(1/8) + (p/n) <1, and [(1/n) — (1/n")]v" < [2/(N +1)]. Using (3.24),
similar to the derivation of (3.5), from (3.25) we get that

\_/\_/

(3.26)
(t — 7)[+D/2A/M) =/ |y (1)

/
[P
in

< Ot — )N+ -/ ) ||u<

.
(%

+ C(t — 7)IV+D/2A1A /)= /'’ )]||a||L?
t

« / (1 — ) LD/ m= /oy ()|, ds
+[(t—7)/2] 5

+C(t— )(N+1)/2][(1/T) a/n )]||b|| ;
t

« / (t — ) (VDB @m=C/ON (7)1, + 1) ds

H(t-7)/2) s

+ (t— 7-)[(1\“r1)/2][(1/T)*(1/77')]

t
« / (t — )LD D=/ g3 )| ol
T+(t-7)/2] ’
<C+ C(t _ ,7_)17[(N+1)/2a]+[(N+1)(17q)]/2r”a”La
- S5

1
x/ (1_8)7[(N+1)/2][(l/a)+(q/n)7(1/n’)]S*[(N+1)/2][(1/r)7(1/n)]qd7
1/2
+ C(t — )t [NFD/2AA/B)+[(p=1)/7]] I[b]] 6

)
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1
« / (1 — )~ VED /2B /m)= (/)] = [N+ 1) /21(/r) =/l g
1/2
Ot — ) T INHD/2A/B) o/ =Dl
s

1
“ / (1 — )~ IN+D/2W/B)+0/m)~(1/)] g
1/2

+ C(t — ) HNFD 2/ =/ g (2, )] 1

foc (1T L2 () -

By Lemma 2.8 (ii), we get that (1/a) + [(¢ — 1)/n] + [(1 — ¢)/m(n)] <
[1/(N +1)] = (1/n) + [1/m(n)], which implies 1 — [(N 4+ 1)/2][(1/«) +
[(g—1)/n] >0, and then 1 — [(N +1)/2a] + [(N 4+ 1)(1 — ¢)]/2r > 0.
Thus, (3.24) holds for some 1’ > 1. We can bootstrap in a finite number
steps to get that there exists a constant C' > 0 such that

(3.27) (t — ) NHD27 |y (1) e < C.

Since ||u(t)||- =~ < M + 1, using interpolation, we obtain that

S(x) —
(3.28)
(t — 7)(NFD/2A1/M) =/ (1))

s <C, r<s<oo, T<t<T.
)

Similarly, from the proof of the existence of the solution, we get that
(3.29)
(t — 7)VHD/2AA D)/ (NFDI= [ mOI 7 (4(8) — T ur)|| mon < 1,

I,

T<t<T.

From (3.25), we get
(3.30)

u(t) = T(#)us :T(t;T> MT+ t;T) —T<T+ “TT)UT}

+/ T(t — s)[au(s) + f (&, u(s))+9(z, 5)] ds.

+(t—7)/2]

For N > 1, by Lemma 2.8, choose ' > 7 such that (1/a) +
(¢/n) = [1/m(n)] < [1/(N +1)] and 0 < (1/8) + (p/n) — [1/m(n)] <
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[1/(N +1)]. Since m(n’) > m(n), from (3.30) we get
(3.31) (t_T)[(N+1)/2][(1/r (1/n’ ]||v( (t) — T(t)ur)lle(nf>
S§(x)

<C(t— 7-)[(N+1)/2][(1/T)—(1/77’)—[1/7“'“L(17)]+[1/m(77’)]]

t—T t—T
X ||V<u(7+ T) —T<T+ )UT)HL?@)

[(N+1)/2][(1/r)—(1

+C(t— ) )2l /m)—/n ]||a||L3
t

% / (t — 5)7(1/2)7[(N+1)/2][(1/a)+(q/n)f[1/m(n’)]]
T+[(t-7)/2]

x [[u(s) |4, ds

+ Ot — )(N+1)/2][(1/T) (1/q' )]||b|| ;

t

x / (t — &)~ W/D=IN+D/210/ )+ o/ m =1 /m(n)]
TH(t-7)/2]

X ([u()lILy + 1) ds + Cllg(w, )|y,

loc

(In, T L>=(2)
<C+ c||a||m (t — 7) N ED/2)=( o)+ —a) /7]
- 5
- O|fbl] o (t — ) IV DD/ < ¢
S

Thus, (3.29) holds for some 1’ > 1. We can bootstrap in a finite number
steps to get that there exists a constant C' > 0 such that

(3.32) (¢ = )NFVEAT (u(t) = T()ur)ll yes < C.

Part three: Uniqueness of solution. We first show that the
solution generated by the variation of constants formula is unique.

Proposition 3.2. Suppose the assumptions of Theorem 3.1 hold,
and let n be the same as in Lemma 2.6. Then there exists a unique
solution of problem

(3.33) w(t) =T{t)ur + / T(t — s)lau(T)? + f(z,u(s)) + g(x, s)] ds
in the class

(3.34) L((7, T), L]y () () Lise (7, T), W 57 (€2))



1240 XIAOJUN LI

such that

(3.35) supess (t — 7)M/DHNHD/20]=[(N+1)/2m(m)]
te(r,T)

X ||U(t) - T(t)uTHWOlv(’S"(L