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ON THE g-ARY EXPANSIONS
OF MIDDLE BINOMIAL COEFFICIENTS

AND CATALAN NUMBERS

FLORIAN LUCA AND IGOR E. SHPARLINSKI

ABSTRACT. Let

bn =

(
2n

n

)
and cn =

1

n+ 1

(
2n

n

)

be the nth middle binomial coefficient and the nth Catalan
number, respectively. Let g > 1 be an integer. In this note,
we study the base g expansions of the numbers bn and cn and
show that for almost all n each of them has a lot of nonzero
digits.

1. Introduction. For an integer g ≥ 2 and a nonnegative integer m
we write wg(m) for the number of nonzero digits in the g-ary expansion
of m. When g = 2, w2(m) is called the Hamming weight of m.

In this paper, we put

bn =

(
2n

n

)
and cn =

1

n+ 1

(
2n

n

)

for the nth middle binomial coefficient and the nth Catalan number,
respectively, and obtain lower bounds on wg(bn) and wg(cn) which hold
on a set of positive integers n of asymptotic density 1. Our bounds show
that wg(bn) and wg(cn) tend to infinity at a rate which is at least a
power of the logarithm of n for almost all n.

There is an extensive literature addressing g-ary expansions of certain
sequences, such as linear recurrence sequences (see [1, 3, 7, 8, 11] and
references therein). However, it appears that the sequences which we
study in this paper have never been considered in this context.
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2. Notation and preparations. Throughout the paper, we use
the Landau symbols ‘O’ and ‘o’ as well as the Vinogradov symbols ‘�,’
‘�’ and ‘�’ with their usual meanings. We recall that U = O(V ),
U � V and V � U are all three equivalent to the inequality |U | ≤ cV
with some constant c > 0, whereas U = o(V ) means that U/V → 0.
All the implied constants may depend on g.

We use p and q, with or without a subscript, to denote prime numbers
and k, m and n to denote positive integers.

As usual, we use ω(n) to denote the number of distinct prime factors
of an integer n ≥ 1. In particular, ω(1) = 0.

We need the following special case of a result of [10] which in turn
follows from the Chebotarev density theorem.

Lemma 1. Let γ and δ be fixed nonzero rational numbers. Assume
that there exists a sequence (nk)k≥1 of positive real numbers tending to
infinity such that for each k ≥ 0 the exponential congruence γx ≡ δ
(mod p) has an integer solution x for all primes p ∈ [nk, 2nk] with at
most O(1) exceptions. Then γ and δ are multiplicatively dependent.

The following result can be found in the proof of Proposition 1.1 in
[9].

Lemma 2. If for some prime p we have

gp − 1

g − 1
| m,

then wg(m) ≥ k, where k is any positive integer satisfying the inequality

p ≥
⌈
(g − 1)k

log g

⌉
+ 2k + 1.

3. Three nonzero digits. It is clear that neither bn nor cn can
be of the form dgα for some d ∈ {1, . . . , g − 1} when n is large, since
both these numbers are divisible by all primes in [n+2, 2n]. Thus, they
have at least two nonzero digits in base g if n is large. We show, using
Lemma 1, that in fact more is true.
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Theorem 3. Let g > 1 be fixed. Then

wg(bn) ≥ 3 and wg(cn) ≥ 3

hold for all but finitely many positive integers n.

Proof. Let xn be any one of bn and cn. Assume that the equation

(1) xn = d1g
α1 + d2g

α2

has infinitely many integer solutions (n, α1, α2, d1, d2), where n > 0,
0 ≤ α1 < α2, and d1, d2 ∈ {1, . . . , g − 1}. Since the pair (d1, d2)
can take only at most g2 values, it follows that there exists a fixed
pair (d1, d2) such that the relation (1) holds for infinitely many triples
(n, α1, α2). Furthermore, from the remark preceding Theorem 3, we
may assume that d1d2 
= 0.

Since xn is divisible by all primes p ∈ [n + 2, 2n], we infer that for
n > g, the congruence gy ≡ −d2/d1 (mod p) has an integer solution y
(namely, y = α1−α2) for all primes p ∈ [n+2, 2n]. Applying Lemma 1
with γ = g and δ = −d2/d1, we get that g = fu and −d2/d1 = −fv

hold with some integer f ≥ 2 and some coprime integers u and v
with u > 0. Thus, we get the congruence fuα−v ≡ −1 (mod p) for
all p ∈ [n + 2, 2n], where α = α1 − α2. Note that uα − v 
= 0, and
uα− v = O(n).

In particular, 2(uα − v) ≡ 0 (mod �f (p)), where we write �f (p)
for the multiplicative order of f modulo p. A classical result of
Hooley [4] shows that the set P of primes p ∈ [n + 2, 2n] such that
�f (p) < n1/2/ log n has cardinality #P = o(n/ log n) as n → ∞.

Let P (m) denote the largest prime factor of m. A result of Fouvry [2]
shows that if n is large enough, then the set of primes Q ⊂ [n+ 2, 2n]
such that P (p − 1) > p2/3 satisfies #Q � n/ logn. Put R = Q\P.
Thus,

#R ≥ #Q−#P � π(n)

holds for all sufficiently large n. Let

S = {P (p− 1) : p ∈ R}.
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For each q ∈ S, the number of primes p ≤ 2n such that p ≡ 1 (mod q)
is at most 2n/q ≤ 2n1/3. Hence,

#S ≥ #R
2n1/3

� n2/3

log n
.

In particular, the inequality #S > n1/2 holds once n > n0. Since
�f (p) | uα − v for all p ∈ R, and uα − v is a nonzero number of size
O(n), we get that

n � uα− v ≥ lcm [�f (p) : p ∈ R] ≥
∏
q∈S

q ≥ n2#S/3 ≥ n2n1/2/3,

which implies that n � 1. This contradicts the assumption that
equation (1) has infinitely many solutions and concludes the proof of
our theorem.

4. Many nonzero digits.

Theorem 4. Let g > 1 be fixed, and let ε(n) be a function tending
to zero as n → ∞. Then both inequalities

wg(bn) � ε(n)(logn)1/2 and wg(cn) � ε(n)(logn)1/2

hold for all n ≤ X with at most o(X) exceptions as X → ∞.

Proof. As before, we again let xn be any one of the sequences bn and
cn.

We assume that the function ε(t) is decreasing, that ε(t)(log t)1/2 is
increasing, and that ε(t) > (log log t)−1. We let X be a large positive
real number, put Y = ε(X)(logX)1/2 and let p be the smallest prime
with p ≥ Y . Thus, p ∈ [Y, Y + Y/ log Y ] holds for large X, and so
p = (1 + o(1))Y as X → ∞.

It is enough to show that cn is divisible by (gp − 1)/(g − 1) for all
n ∈ [X/ logX,X] with o(X) exceptions as X → ∞, since then, by
Lemma 2 and the fact that cn | xn, we have

wg(xn) � p ≥ Y = ε(X)(logX)1/2 > ε(n)(logn)1/2

for all such values of n.
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Let
gp − 1

g − 1
=

∏
q

qαq

be the factorization in prime powers of (gp−1)/(g−1). We first estimate
the number of n ≤ X such that q | n+ 1 for some q | (gp − 1)/(g − 1).
For a fixed q, the number of such n ≤ X is at most X/q + 1 ≤ 2X/q
for large X, because

q ≤ gp = exp(p log g) ≤ exp(2Y log g) ≤ exp(O(ε(X)(logX)1/2)

= Xo(1)

as X → ∞; therefore, the inequality q < X holds for all sufficiently
large X. We note that q ≡ 1 (mod p) for all q | (gp − 1)/(g− 1) (since
this divisibility means that g is of order p modulo q). We also have

ω(gp − 1) � log(gp − 1)

log log(gp − 1)
� p

log p
.

Therefore, varying q, we get that the number of positive integers n ≤ X
in this category is at most

2X
∑

q|(gp−1)/(g−1)

1

q
≤ 2Xω(gp − 1)

p
� X

log p
� X

log Y
= o(X)

as X → ∞.

From now on, we work only with the positive integers n ≤ X such
that n+ 1 is coprime to (gp − 1)/(g − 1). Let A be the set of such n.

It is a consequence of Kummer’s well-known theorem (see [6]) that
if q is a prime and β is a positive integer then qβ | bn (hence, qβ | cn
also because q is coprime to n+ 1) provided that n has at least β base
q digits which exceed q/2. Thus, (gp − 1)/(g − 1) | cn for all n ∈ A,
except for those n such that there exist q | (gp − 1)/(g − 1) such that
n has less than αq base q digits which exceed q/2. Let B be the set of
such n. We now bound the cardinality #B.
Let q | (gp − 1)/(g − 1) be fixed. Since q ≡ 1 (mod p), we have

q > p ≥ Y . The number of digits of n in base q is log n/ log q� + 1.
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Since n ∈ [X/ logX,X], it follows that the number of digits of n in
base q belongs to the interval

Iq =

[
logX − log logX

log q
,
logX

log q
+ 1

]
.

Let L be an integer in the above interval. Let M < αq be some
nonnegative integer. The number of n ≤ X having L base q digits
of which at most M exceed q/2 is

(2) Nq,L,M ≤
(
L

M

)
qM

(
q − 1

2

)L−M

≤ qL
(
L

M

)
1

2L−M
.

Clearly,
qL � qX.

Furthermore,

M ≤ αq � p

log q
� ε(X)(logX)1/2

log q
= o(L)

as X → ∞. Thus, summing up estimates (2) for all M ≤ αq and all
L ∈ Iq, we get that the number of n ≤ X for which qαq does not divide
cn is at most

(3)

Rq =
∑

M≤αq

L∈Ip

Nq,L,M �
∑
L∈Iq

∑
M≤αq

qL
(
L

M

)
1

2L−M

� qX
∑
L∈Iq

Lαq

αq!

1

2L−αq
.

In the above estimate, we used the fact that for k ≤ M ≤ αq = o(L)
as X → ∞, we have

(
L

k + 1

)
1

2L−(k+1)(
L

k

)
1

2L−k

=
2(L− k)

k + 1
> 2;



g-ARY EXPANSIONS 1297

therefore, in the inner sums over M in (3), the last term dominates the
entire sum.

Now, by the Stirling formula, we obtain

Rq � qX
∑
L∈Iq

(
2eL

αq

)αq 1

2L

≤ qX2−(logX−log logX)/ log q

(
2e

αq

(
logX

log q
+ 1

))αq ∑
L∈Iq

1.

Since ∑
L∈Iq

1 � 1 +
log logX

log q
� 1 +

log logX

log p
� 1,

and
logX

log q
≥ logX

p log g
≥ 1,

provided that X is large enough, we derive

(4)

Rq � qX2− logX/ log q

(
2e

αq

(
logX

log q
+ 1

))αq

≤ qX2− logX/ log q

(
4e logX

αq log q

)αq

.

Since

αq ≤ p log g

log q
= o

(
(logX)1/2

log q

)
,

we obtain that

(5)

(
4e logX

αq log q

)αq

≤ (logX)p log g/ log q = exp

(
p log g

log q
log logX

)

= exp

(
(log g + o(1))

Y

log q
log logX

)

= exp

(
o

(
logX

log q

))
,

which, after substitution in (4), yields that the inequality

Rq ≤ qX2−(1+o(1)) logX/ log q
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holds uniformly over our primes q as X → ∞. Since q ≤ Y , we also
have

q = exp(o(logX/ log q)).

In particular,

Rq � X exp

(
− logX

2 log q

)
.

It remains to bound the sum of the Rq over q | (gp − 1)/(g − 1). In
order to do so, we put

T0 = (ε(X) log g)−1�,

and for i ≥ 1 put Ti = 2iT0. Let Si be the set of distinct prime factors
q of (gp − 1)/(g − 1) such that logX/ log q ∈ Ji = [Ti, 2Ti]. Clearly,

logX > p log g > log(gp − 1) > #Si
logX

2Ti
;

therefore, #Si � Ti. Thus, the cardinality of B is bounded above as

#B ≤
∑
i≥0

∑
q∈Si

Rq �
∑

q|(gp−1)/(g−1)

Xe−Ti/2 � X
∑
i≥0

#Sie
−Ti/2

� X
∑
i≥0

Tie
−Ti/2 � X

∑
t≥T0

te−t/2 = o(X),

as X → ∞, which concludes the proof of this theorem.

5. Remarks. It is easy to see that our results can be extended to
sequences of the form kncn for a wide class of sequences kn (the results
of Theorem 4 correspond to kn = 1 and kn = n+ 1).

Note that the only key ingredient of the proof of Theorem 4 is Kum-
mer’s theorem which tells us what is the exponent of a prime dividing
a binomial coefficient. In particular, results similar to Theorem 4 are
likely to hold for other sequences satisfying Kummer type theorems like
the ones studied by Knuth and Wilf in [5].

We conjecture that both wg(bn) and wg(cn) tend to infinity with n
but we have not been able to prove this. In what follows, we give a
heuristic which backs up this conjecture. Let X be large, let Y be some
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parameter depending on X to be determined later, and again let qαq be
an exact prime power dividing (gp−1)/(g−1), where p < (logX)1/2 is a
prime. The argument from the proof of Theorem 4, based on Kummer’s
theorem, shows that the number of integers n ≤ X such that qαq does
not divide bn is of order

(6)

(logX/ log q�+ 1

αq

)
qαq+1X

2�logX/ log q� � qαq+1(logX)αqX

2�logX/ log q�

� X2− logX/ log q+(αq+1)(log q+log logX)/ log 2.

Clearly, (αq + 1) log q ≤ 2αq log q ≤ 2p log g. Thus, provided that

(7) (2p log g)2 ≤ log 2

3
· logX

log logX
,

we have that the above counting function is of order

X2−(logX)/(3 log q) ≤ X2−c1(logX)/p = X1−c2/p,

where c1 = 1/(3 log g) and c2 = c1 log 2. Summing this up over all the

ω((gp − 1)/(g − 1)) � p < (logX)1/2

possible prime factors q of (gp − 1)/(g − 1), we get that the counting
function of such n ≤ X is of order

X1−c2/p(logX)1/2 < X1−c3/p

once X is sufficiently large with c3 = c2/2. Thus, given n, the
“expectation” that (gp − 1)/(g − 1) does not divide n is O(n−c3/p).
Assume now that these expectations are independent for varying p, and
let p vary between Y and Y c4 , where c4 is a suitable constant. Then
the expectation that bn is not a multiple of any of the (gp − 1)/(g− 1)
for p in this range is of order

∏
Y≤p≤Y c4

n−c3/p = n−c3(log(log(Y
c4 ))−log log Y+o(1)) = n−c3 log c4+o(1),

as Y → ∞, where in the above argument we have applied Mertens’s
estimate ∑

p≤t

1

t
= log log t+A+O

(
1

log t

)
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which holds for all t ≥ 3 with a suitable constant A. Choosing c4 such
that c4 = exp(2/c3), we get that c3 log c4 = 2; therefore, for large n the
expectation that bn is not a multiple of any of the (gp − 1)/(g − 1) for
such p is n−2+o(1). Since the sum of these expectations is a convergent
series, we would expect only finitely many n to have this property.
Condition (7) is now satisfied for large X when p ≤ Y c4 if we take
Y = (logX)c5� with c5 = 1/(2c4) − ε with any fixed ε > 0. Note
also that the inequality Y c4 < (logX)1/2 holds for large X. Thus, the
above heuristics seem to suggest that for all but finitely many n there
should be a prime p � (log n)c5 such that (gp − 1)/(g − 1) divides bn,
and now Lemma 2 shows that wg(bn) � (log n)c5 . Similar heuristics
apply to cn. We do not enter into details.
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