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FACTORIZATIONS AND REPRESENTATIONS
OF BINARY POLYNOMIAL RECURRENCES
BY MATRIX METHODS

EMRAH KILIC AND PANTELIMON STANICA

ABSTRACT. In this paper we derive factorizations and rep-
resentations of a polynomial analogue of an arbitrary binary
sequence by matrix methods. It generalizes various results on
Fibonacci, Lucas, Chebyshev and Morgan-Voyce polynomials.

1. Introduction. In [10], the divisibility properties of the Fibonacci
polynomial sequence {f,(x)} was studied. The Fibonacci polynomial
sequence is defined by the recursion

frny2 (@) = fng1 () + fn (2) 5 fo(z) =0, fi(z) =1

Five years later, Hoggatt and Long [2] considered the general Fibonacci
type polynomial sequence {u,(z,y)} of two variables. This sequence is
defined by

(1.1) Unt2 (2,Y) = Tunt1 (T,y) + yuy (z,9)

where uy(z,y) =0 and u;(z,y) = 1.

The authors of [2, 10] found the roots of these polynomials and then
obtained the factorizations of their polynomials. In [2], the authors
found that

n—1
Up, (z,y) =y /2 H (% — 2i cos kﬂ—”) )
k=1

Further, in [1], the authors use the relationships between the deter-
minants of certain tridiagonal matrices and the Fibonacci and Lucas

2010 AMS Mathematics subject classification. Primary 11B37, 11C20.
Keywords and phrases. Second order recurrences, factorization, Chebyshev

polynomials, tridiagonal matrix, matrix methods.
Received by the editors on January 31, 2008, and in revised form on December 17,

2008.
DOI:10.1216/RMJ-2011-41-4-1247 Copyright ©2011 Rocky Mountain Mathematics Consortium

1247



1248 EMRAH KILIC AND PANTELIMON STANICA

numbers, and then by matrix methods, they obtained the factorizations
and representations of these sequences. The factorization of Fibonacci
numbers was initially proposed in [6], and the factorization of Lucas
numbers was obtained in [11].

The (companion) generalized Lucas polynomial sequence v, (z,y) is
defined by

Un+2 (LE, y) = TUn+1 (LE, y) + yun (xa y)

where vy (z,y) =2 and vy (z,y) = 1.

Recently, in [5], the binary sequential analogues of the generalized
Fibonacci and Lucas polynomial sequences was considered and factor-
izations and representations of these sequences was obtained. These
sequences are defined by

Un+1 = AUn + BU,_1
Vn+1 = AVn +BV,_1

where Uy = 0,U; = 1 and V) = 2,V; = A, respectively. Also, in
[4], we gave the more general factorizations of second order linear
recurrences {U,} and {V,,} with indices in arithmetic progressions.
Furthermore, we obtained the factorization of these general sequences
by the matrix methods considering how these recurrences are related
to the determinants of certain tridiagonal matrices.

As can be seen from the above-mentioned results, the most general
cases of these polynomial and binary sequences have not been studied.
Consequently, we define {4, (a,b;p,q)(x)} (we shall often drop the
argument (a,b;p,q) and simply write {A,(z)}) to be a polynomial
sequence satisfying

Ant1(2) = p(2)An(2) + q(2) Ap 1 (),

and initial conditions Ay = a(x), 41 = b(z), where a,b,p,q are
polynomials of an indeterminate x with real coefficients. For easy
notation, we shall sometimes write A,,p,q,a,b for A,(z), p(z), q(z),
a(z) and b(z), respectively. We display some special cases of the
sequence {A,} in the following table.
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TABLE 1.
p(z) | g(z) | a(z) | b(z) | An(a,b;p,q)(x) | Polynomial Type
2z -1 1 T Tn(z) 1st kind Chebyshev
2z -1 1 2z Un (z) 2nd kind Chebyshev
z+1| —1 1 z+1 br () Morgan-Voyce
T y 0 1 Un (z,Y) generalized Fibonacci
z y 2 1 vn(z,y) generalized Lucas
2z -1 1 2x + 1 Wh(z) 4th kind Chebyshev
2z -1 1 |[2z—-1 V() 3rd kind Chebyshev

In Section 2 we present a recurrence, and define a tridiagonal matrix
whose determinant is precisely A, (a, b;p, ¢(z), with n in an arithmetic
progression, n = ¢ (mod k). In our main Section 3 we derive the
factorization and representations of the sequence {4, (a, b;p, ¢)} (under
some assumptions), by matrix methods, thus generalizing some results
of [1-5] and others. As a consequence, we obtain the factorizations for
the Chebyshev’s and generalized Lucas polynomials, among others.

2. A recurrence for A,(a,b;p,q)(z), where n = ¢ (mod k).
We start this section with the Binet formulas of both positively and
negatively indexed terms of the sequence {4, }, namely

(2.1) A = (b_a'8>ai"+ <aa_b>,8i"

a—p a—p
where
_p+VPP+4e  , p—PPt+4g
(2.2) a—f’ B—f.

First, we prove the following lemma.

Lemma 1. For k > 0, n > 0, the sequence {A,} satisfies the
following recursion

(2.3) Apnt1,4k,c) = Ytk Apn,+k,e) — 22k Ap(n—1,+k,c)

where yip, = aTF+BEF | 24p = ¢** and p(n, k, c) = nk+c (c constant).
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Proof. From the definition of the sequence A, }, considering the case
Ay =2 and A; = p, we write

yir = Ak (2,050, q) = o*F + gEF

where a and (3 are given by (2.2). Further, for the positive case, we
note that
vk = Ak (2,p;p,q) = o* + "

Since the positively and negatively indexed terms cases are similar, we
only consider the positively indexed terms case. By the Binet formula
of the sequence {A,} and since z;, = ¢* = (af),

ykAp(n,k:,c) - zkAp(n—l,k,c)
= (ak +,8k) |:<ba_ag>akn+c + (rz;:;) /Bkn+0:|
k b—af k(n—1)+c aa—b k(n—1)+c
(o [(58) e ()0
= 215((b - aB) a* VT 4 (aq — b) gECHD e
+ (b— aﬁ) akn-{—ch + (aa _ b) Bkn+cak
~ (b= aB) a*"*B* — (aa — b) B H<k)

_ (ﬁg) QFnt)+e (Za:ﬁb) ghn+1)te

= Ap(n+1,k,c)7

which proves the lemma. O

Now we present a relationship between the terms Ap 4 (n41)k,c) and
the determinant of a certain tridiagonal matrix.

Define the n x n tridiagonal matrix M, ; as shown:

(2.4)
Ap(l,ik,c) Ap(O,ik,c)\/Z:tk
V 7tk Ytk 2tk

M, +1 = 2tk Y+k

T 3tk
VZ3Ek Ytk
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Theorem 1. For n > 1, we have

det My, + = Ap(n,+k,c)-

Proof. As before, we only consider the positively indexed terms. The
other case can be similarly derived. Expanding det M,, ; using the
cofactor expansion of a determinant with respect to the last column,
we obtain

det Mn,k = yk,det Mn—l,k: — deet Mn—Z,k-

Replacing n = 1 in equation (2.3), we obtain Ap k) = YrAp(1,k,c) —
ZkAp(O,k,c) and det M27k = ykAp(l,k,c) - ZkAp(O,k,c)) and SO, detillas
at la Contendre Mz r = Ap k). Obviously, det My = Ay k,c)-
Since the recurrence relations (and initial conditions) of det M, ; and
the sequence {Ap(n,k,c)} are the same, the conclusion follows from
Lemma 1. O

3. Factorizations for A,(a,b;p,q)(z). Now we investigate all
possible cases of our main general considerations and then we give
their factorizations and representations. However, a few special cases
could be treated separately. For compactness, we do not consider all
these cases, but we shall point out whenever appropriate some hints in
treating those cases.

First, we consider the case A, +x.c) = Y+r and Apore) = 1.
Under these assumptions, we label the matrix M,, +; and the sequence
Ap(4n,k,c) by Mfllik and A;Lik’c), respectively. By Theorem 1, the
matrix M r(:lk takes the following form:

Y+k  /R+Ek
M(llk: VZEEk 2Lk

- vV 2tk
Atk Y+k
and we have that

L 40
(3.1) det M, %y = Api igo)-



1252 EMRAH KILIC AND PANTELIMON STANICA

Let @, be the following (n x n) tridiagonal Toeplitz matrix

The characteristic equation of the matrix ) satisfies the following
recursion, for n > 2

fn ()‘) = _)‘fnfl ()‘) - fnf2 ()‘) )

where f1(A) = =X and fo(\) = A% — 1.

Taking A = —2z, the family {f,(\)} is reduced to the family {U, (z)}
(Chebyshev polynomial of the second kind). From [7-9], the zeros of
the Chebyshev polynomials are known, and so, the eigenvalues of Q1
are of the form:

r
n+1

(3.2) A = —2cos , r=12,...,n.

We can also write Mrslik = yirl, + /Z1rQ1, where I, is the n x n
unit matrix.

Theorem 2. Let Api +ke) = Y+k and Apo +r,e) = 1. Then for
n>1,

n

(1) _ B mr
Ap(n,ik,c) = H (y:tk 2,/z1r cos -y 1)_

r=1

Proof. Assume that the A.’s are eigenvalues of the matrix @y with
respect to the eigenvectors w,. Since

Mr(:)ikwr = (yuln + 221Q1) wy
= y:l:kInwr + VvV Z:I:lewr
= (y=r + VZzrAr) Wy,



BINARY POLYNOMIAL RECURRENCES 1253

the (y+r + +/ZxrA)’s are the eigenvalues of the matrix Mél)ik with
respect to the eigenvectors w,. Thus, by (3.1) and (3.2), we have the
conclusion:

det Mv(::)!:k = Ag(;l(Zz,ik,c) = H (yik + vzik)‘?‘)
r=1

n
= H (yik — 24/z+ CcOS n"—ﬁ) . a
r=1

Corollary 1. Forn > 1,

n/2
2 2 T . -
Ytk H1 (yik — 424, cos n’fH) if n is even,
=

(1) _
p(n,tk,c) (n—1)/2

(yik — 424y cos? n”—_ﬁ) if n is odd.

r=1

Proof. Since cos(kw/n) = —cos((n — k)w/n) for 1 < k < n/2, the
conclusion follows from Theorem 2. O

Now we give some applications of Theorem 2 in the following corol-
laries.

Corollary 2. Let U,, be the nth Chebyshev polynomial of the second
kind. For n,k > 1, then

(3-3) Uttniyk—1 = 2"Usp—1 H (T:tk — cos nﬁ—fl> .

r=1
where T,, is the nth Chebyshev polynomial of the first kind.

Proof. When p = 2z, ¢ = —1, then the first coefficient y1, = 274k,
where T}, is the kth Chebyshev polynomial of the first kind (see Table 1).

According to the first case, to satisfy A&)Likﬁ) = yir = 2Ty and
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A;l(z) ihe) = 1, we shall choose a = 1 and b = 2z. We see that for
c=—1,
Utor—1
AW = 2T
p(1,+k,—1) U:tkfl £k
and
(1) _ Uipa
Apo, 4k, -1) Uspor 1
and in general,
e _ Vi@
p(nyik771) Uj:k;f]_ :

Then by Theorem 2, we get for y, = 21} and 2z =1

U B n
(1) ~ Ut(nt)k—1 _ mr
(3.4) Apneie) = (s = 11 (2Tik 2c08 = 1).

r=1

The required equation (3.3) follows immediately. O

Corollary 3. For n,k > 1, then

Utk(nt1)-1
(n—1)/2
2" Wk 1 ] [Tik — cos? (n:fl)} if n is odd,

r=1

n/2
2"Usi—1 |1 [Tik — cos? (nTlﬂ if n is even.
r=1

Proof. The proof follows from Corollary 1 and equation (3.4). o

Corollary 4. Let u,(z,t) be the generalized Fibonacci polynomial.
Forn>1andk >0,

(3.5)  Ut(ninyk (z,1)

n

= uyy (z,t) H (vik (z,t)—2 (—t)ik cos nTl)

r=1
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Proof. When p = z, ¢ = t, then the first coefficient y1r = vig(z,t)
where vy, is the kth term of the generalized Lucas polynomial sequence
(see Table 1). For our first case, to satisfy A;()g,ik,c) = Yir = vir(a,t)

and Al(zl(ZJ,:tk,c) =1, we let a =0 and b = 1. For ¢ = 0, we get

t)
A(1) _ Usok (z, _ "
p(1,£k,0) Utk (:U, t) Utk (l'a )
and
1) _ Uk (z,t) -1
p(0,+k,0) Utk (.’E, t)
and in general
(1) _ Ustk(n+1)
p(n7:|:k70) uik :

Then by Theorem 2, we obtain for yi; = vi(z,t) and z;, = (—t)¥,

n

1) _ Ykt Dk _ _pEk T
(3:6) A o) = ™ —H(Uik 2¢/(—t) C05n+1>

r=1
and so, we have the required equation (3.5). a

Indeed, when k = 1, then by the above corollary, we get that u; = 1,
v = x and so

n—1
Uy (z,t) = tM=1/2 H (\% — 2icos T—W)
n

which is given in [2]. Thus it can be seen that our result generalizes
earlier work.

r=1

Corollary 5. Forn > 1 and k > 0,

n/2
ug [] (v,% — 44 cos? n’zl) if n is even,
r=1
U(nt1)k = (n—1)/2
uge  |] (v,% — 4y cos? n’fﬁ) if n is odd.

r=1
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Proof. Since ug, = u,vy, by Corollary 1 and equation (3.6), we have
the conclusion. u]

Next, we consider both binary and polynomial sequences satisfying

Ap(1,+k,e) = Y+k and Apo,+k,c) = 2. In this case, we label the matrix

(2)

M, +1 and the general sequence Ay, 1k,c) by Mr(f)ik and Ap(n,:tk,c)’

respectively.

Theorem 1 implies the following facts. For

Y+k  2\/Z%k
VZEk Ytk A 7tk

Mffik = VZitk Ytk J
VZEk Ytk
we have
2 _ 422
(3.7) det M, "%, = Ap(n,ik,c)'

The (n x n) tridiagonal matrix Q2 as shown:
0 2
1 0 1
Q2 = 1 0
. N
1 0
The characteristic polynomial of matrix (), satisfies the following
recurrence relation: for n > 2

tn (8) = —0tn_1 (6) — tn—2(0)

where tl(é) = 7(5, tg((S) = (52 — 2.

Taking § = —2z, the family {¢,(0) : n = 1,2,...} is reduced to
the family of Chebyshev polynomials of the first kind {27, (z) : n =
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1,2,...}. From [7-9], since the zeros of Chebyshev polynomials of the
first kind are known, we obtain

(3.8) dr = —2cos

We can also write (?,)c = yr I, + /2kQ2, where I, is the unit matrix
of order n.

Theorem 3. Let Ap1 +r,c) = Y+ and Apo +k.e) = 2. Forn > 1,
k>0,

° r—1

nyth,c) H [yik — 2\/%Z4} COS ———— 2 )7

Proof. If the eigenvalues of Q5 are §,’s with respect to the eigenvectors
w,., then

M&lwr = (gL + V2R Q2) wy = Yruw, + 2 Qow,

Thus the eigenvalues of M M 3: are the yir + +/z+r0,’s with respect to
the eigenvectors w,. By (3 8),

@2r—-1)nw

r=

det M,f)ik = H (Yk + /22k6r) = H [y:tk — 2y/zxp cos
r=1 1
By (3.7), the theorem is proven. o

Corollary 6. Forn>1, k>0,

(n—1)/2 .
| [y,% — 4z, cos® (%)} if n is odd,
(2) _ r=1
Ap(’n,,k:,c) - n/2
I1 [ylg — 4z, cos® (W” if n is even.
r=1

Now we give some applications of the above results for some well-
known sequences.
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Corollary 7. Let v,(xz,t) be the generalized Lucas polynomial
sequence. Then forn > 1, k> 0,

Vi ( ﬁ( —24/(— t)ikcos%)

Proof. When p = z, ¢ = t, then the ﬁrst coefficient y1x = vy (z,t).

For our second case and satisfying A :tk o) — Yik = Uik and
AS(?) the) = 2, letting a = 2 and b = z, we see that for c =0
(2) _ (2) .
Ap(l,ik,o) =v4r and Ap(0 ik0) = T

and in general A;(?(zz +k,) = Utkn: By Theorem 3, we have the conclu-

sion: for yi; = vig and z4p = (—t)ik,

2
AZ()(’)rL,:tk,O) = VU4kn (ac t)

H(m — 2/ (- )ikcos%) O

Corollary 8. Let v,(x,t) be the generalized Lucas polynomial
sequence. Then forn > 1, k>0,

Vikn (2, 1)
(n—1)/2
var (z,8) 1 [vik (2,8)2— 4 (—t)Fcos? (—@7‘2;1)")} if n is odd,
r=1
B n/2
[1 [Uﬁ:k (z, t)2*4 (*t)ikcosz (W)] if n is even.
r=1

For the Chebyshev polynomial of the first kind, if we consider
v (22, —1) in the above two corollaries, then we see that v, (2z, —1) =
2T, so

n

o —1
2Tikn = vakn (22,—1) = [ | <2Tik — 2cos %)

r=1
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and clearly

X 2r — 1
T:tk:n = 2”71 H (T:tk — COS %) .

r=1

In this third case, we let Ap(1 +x,.c) — y+x = —1 and Ay 4x,c) = 1.
Further, we label the matrix M, +; and the sequence Ay +k.c) by
Mf’)ik and A;E;?Ezz,ik,c)’ respectively.

Theorem 1 implies the following facts. For the n x n tridiagonal

matrix M (3)

n,k:
Yy — 1 /Zxk
VZ+k Y+k 2tk
M'r(z,:)l:k = VZEk Ytk ,
' C Zxk
VZE+k Ytk
by Theorem 1, we have for n > 1
(B) _ 4B
(3.9) det MY, =A% .

Define the (n x n) tridiagonal matrix Q3 as shown:

-1 1
1 0 1
Q3 = 1 0
1
1 0

Thus the characteristic polynomial of the matrix ()3 satisfies the fol-
lowing recurrence relation (for n > 2)

In (1) = —pgn-1 (1) — gn—2 (1) ,

where g1 (u) = —p — 1, ga (u) = p* +p— L.

If we take § = —2z, then the family {g,(u) : n = 1,2,...} is
reduced to the family of Chebyshev polynomials of the third kind
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{Va(z) :n=1,2,...}. From [7-9], the zeros of Chebyshev polynomials
of the third kind are known; then we obtain

_ (k—Q/2)m . _
(310) ﬂk——2COSW, k—1,2, , .

We can also write M( lk = yirl, + /21 Q3-

Theorem 4. Let Ay +r,c) — Y+k = —1 and Ay tp,c) = 1. For
n>1 k>0,

(3) (2k—1)m
Ap(n tkye) H (y:tk — 2./Z1) COS ——— 1)

r=1

Proof. Let the eigenvalues of the matrix Q3 be u, with respect to the
eigenvectors w,., and write

My(zg)ikwr = (yarln + V221Q3) Wr = (Yik + v/Zxkftr) Wy

Thus the eigenvalues of M( lk are (Y4r ++/Z1kir). By equations (3.9)
and (3.10), we have

® _ - (2k—1)m
det M,y = A nikc 1_[1<yik—2\/zikcos mrl )

r=

Thus the theorem is proven. ]

The following corollary follows directly from Theorem 4 since, for
1 < k < n/2, we have cos(EX) = — cos(((n — k) /) /n).

Corollary 9. Forn > 1,k >0,

(n 272 2 2 [ (2k—1)m . .
3) yere 11 (yik — 424y cos ( Il )) if n is odd,
— r=1
p(n,tk,c) — n/2
[I (yik — 424 cos® (—(Qan;ll)w» if n is even.

r=1
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A particular case of the previous corollary can be found in the
literature.

Corollary 10. Forn > 1,

- (2k — )7
11 Tanso = 2"T: Ty — e I
(3.11) 4n+2 zkl:[l< 4 — COS 1

Proof. For k = 2, p = 2z, ¢ = —1, the first coeflicient is y4, = 27T},
(Chebyshev polynomial of the first kind). Also under the conditions

a =1 and b = 2z, we obtain A;()S()l,4,72) =y4 = 2T, and A;EJ?E);‘L*Z) =1,
3) _Ts _ ) _B_
a2~ — a1 and Ajg, o= =1

and in general,

(3) _ Tynyr1y—2
p(ny4772) - T2 :
Then by Theorem 4, we get for y4s = 274 and z4 =1
T _ L 2k — 1)~
(3) _ a1 B
(812)  Ajpan= 7 = TH:1 <2T4 2c08°5 —=— )
and so equation (3.11) is obtained. O
By Corollary 9 and the above result, we have
(n—-1)/2 (2k—1)
2Ty T ]:[1 (T42 — cos? ( 2n+1ﬂ>) if n is odd,
Tyny2 = n/2 -
n k—1)mw . .
2T, ]:[1 (T42 — cos? <%)) if n is even.
Further, we consider our final case Ay +xc) — yxx = 1 and
Ap(o,+k,c) = 1. In this case, we label the matrix M, 1, and the se-

quence Ay, +,c) by M, r(:,llk and Agtzl, L) respectively. By Theorem 1,
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we have
Y+ + 1 /Zxg
NEED Y+k  /FEk
M,(fik = VEEE Ytk )
' . 7k
VEtk Ytk

and forn > 1
(3.13) det My, =A%) L, .

We also define the (n x n) matrix Q4 as follows:

11
10
1

—_ o =

1

1 0

Thus the characteristic polynomial of Q4 satisfies the recurrence
hnt1 (W) = —why, (W) — hy—1 (W)

where h;(w) =1 —w and ho(w) = w? +w + 1.

Taking w = —2z, the family {h,(w)} is converted into the family
of Chebyshev polynomials of the fourth kind {W,(z) : n = 1,2,...}.
By [7-9], the zeros of Chebyshev polynomials of the fourth kind are
known, namely

(k=1

3.14 = -2
(3.14) W cos il

The matrix Mr(:l)ik can be expressed as yiil, + /241xQ4-

Theorem 5. Let Ap(l,:i:k,c) —yir =1 and Ap(O,:I:k,c) =1. Forn > 1,
k>0,

5 2(r—1m
ntkc) H <yik — 24/z4 COS ——— 1 .
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Proof. If w,’s are the eigenvalues of Mr(f)i & according to the eigenvec-
tors w,., then

MT(:)L)i]gwr = (yarln + 22k Q) wp = Yk + /2wy

Thus the eigenvalues of Mr(:l)ik are (y+r++/Ztrwr) and by (3.13), (3.14),
we obtain the conclusion:

@ T 2(r—1)m
det Mn,:l:k = TEII <y:|:k: — 2\/Z4 cos W .

As a consequence of Theorem 5, we have the following corollary.

Corollary 11. Forn > 1, k > 0,

(n /2 2 2 (2(r—1)m . .
(@) Ytk H (y:tk — 424y, cos (W)) if n is odd,
_ r=1
p(n,k,c) — n S
Yy — 4z4p cos” | = if n s even.
=1 L4 ’ (Zrn_+1)7r ifn i
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