GENERALIZED BI-CIRCULAR PROJECTIONS ON $C(\Omega, X)$

FERNANDA BOTELHO AND JAMES E. JAMISON

ABSTRACT. Let Ω be a connected compact Hausdorff space and X a Banach space for which the Strong Banach-Stone property is valid. We give a complete characterization of the generalized bi-circular projections on Banach spaces of vector valued continuous functions. We also observe that generalized bi-circular projections on $\mathcal{C}(\Omega,X)$ are bi-contractive.

1. Introduction. Let $(X, \|\cdot\|)$ be a complex Banach space, and let $P:X\to X$ be a linear projection. A basic problem in Banach space theory is to determine the structure of the projections on a given Banach space and provide characterizations of their ranges. The existence of Hermitian projections on a Banach space and its connection with the geometric properties of the underlying space was investigated by Berkson, in [2]. Contractive and bi-contractive projections on L_p spaces and on spaces of continuous functions, as well as circular projections in a variety of settings, are among the standard problems addressed in the literature, see for example [3, 6, 16]. Recently, a new class of projections, namely bi-circular projections, was proposed and has been a focus of research interest, see [17]. A projection is called bi-circular if $e^{i\alpha}P + e^{i\beta}(I-P)$ is an isometry, for all real numbers α and β . These projections were studied in many different settings by Stacho and Zalar, see [18]. Furthermore, it was shown in [9] that these projections are norm Hermitian. As a consequence, many results on bi-circular projections follow from previously established results on Hermitian operators on Banach spaces. Fosner, Ilisevic and Li, in [6], have introduced a generalization of bi-circular projections by requiring $P + \lambda(I - P)$ to be an isometry, for some modulus 1 complex number $\lambda \neq 1$. They obtained interesting characterizations of these projections in the finite-dimensional case for both real and complex vector spaces. It is of interest to characterize these projections for other Banach

²⁰¹⁰ AMS $\it Mathematics$ $\it subject$ $\it classification.$ Primary 47A65, Secondary 47B15, 47B37.

Keywords and phrases. Isometry, circular projections, Banach spaces. Received by the editors on May 9, 2007, and in revised form on September 19, 2007.

 $DOI:10.1216/RMJ-2010-40-1-77 \\ Copyright © 2010 Rocky Mountain Mathematics Consortium \\ Copyright (Consortium Mathematics Consortium Ma$

In this paper, we investigate the structure of Fosner, Ilisevic and Li generalized bi-circular projections on the space of vector valued continuous functions, $C(\Omega, X)$. The characterization in the scalar case follows as a corollary. Our results are valid for both the real or complex cases.

2. Generalized bi-circular projections on spaces of vector-valued functions. We investigate the form of the generalized bi-circular projections on $\mathcal{C}(\Omega,X)$, with X representing a Banach space and Ω a connected compact Hausdorff space. The Banach space $\mathcal{C}(\Omega,X)$ consists of all continuous functions on Ω with values in X, equipped with $\|\cdot\|_{\infty}$, i.e., $\|f\|_{\infty} = \max_{x \in \Omega} \|f(x)\|$. Our characterization relies upon the form of surjective isometries of $\mathcal{C}(\Omega,X)$. This result is well known for $\mathcal{C}(\Omega,X)$, with X having the strong Banach Stone property, see Behrend's book [1]. In particular, this is the case if X is smooth or strictly convex, see [1, Theorem 8.10, page 147].

We review the definition of generalized bi-circular projection, cf. [6].

Definition 2.1. The operator Q on $\mathcal{C}(\Omega, X)$ is said to be a generalized bi-circular projection if and only if $Q^2 = Q$, and there exist $\lambda \in C$, $\lambda \neq 1$, and $|\lambda| = 1$ for which $Q + \lambda(I - Q)$ is an isometry of $\mathcal{C}(\Omega, X)$.

If X satisfies the strong Banach stone property, then a surjective isometry L on $\mathcal{C}(\Omega, X)$ is of the form

$$L(f)(\omega) = u_{\omega}(f \circ \phi(\omega)),$$

where ϕ is a homeomorphism of Ω and u is a continuous function on Ω with values in the space of invertible isometries of X (Isom (X)), i.e., for every $\omega \in \Omega$, $u(\omega) = u_{\omega} \in \text{Isom}(X)$. We observe that in the scalar case a surjective isometry L on $\mathcal{C}(\Omega)$ has the simplified form $L(f)(\omega) = u(\omega)f(\phi(\omega))$, with ϕ a homeomorphism of Ω and u a modulus 1 continuous function on Ω .

The next folklore lemma will be used in the proof of the forthcoming theorem.

Lemma 2.1. If $\lambda \neq 1$, then R is a bounded operator on X satisfying $\lambda \operatorname{Id} - (\lambda + 1)R + R \circ R = 0$

if and only if there exist two complementary subspaces of X, X_1 and X_2 , such that $X = X_1 \oplus X_2$ and orthogonal projections P_1 and P_2 onto X_1 and X_2 , respectively, so that $R = P_1 + \lambda P_2$.

Proof. If $R = P_1 + \lambda P_2$, then $R \circ R = P_1 + \lambda^2 P_2$; hence, λ Id $-(\lambda + 1)R + R \circ R = 0$. Conversely, if λ Id $-(\lambda + 1)R + R \circ R = 0$, then $R(\text{Id} - R) = \lambda(\text{Id} - R)$ and also $R(\lambda \text{Id} - R) = \lambda \text{Id} - R$. Let $X_1 = \{v \in X : R(v) = v\}$ and $X_2 = \{v \in X : R(v) = \lambda v\}$. We show that $X = X_1 + X_2$. Clearly $X_1 \cap X_2 = \{0\}$. We observe that

$$(\mathrm{Id} - R) \circ (\mathrm{Id} - R) = (1 - \lambda)(\mathrm{Id} - R)$$

and

$$(\lambda \operatorname{Id} - R) \circ (\lambda \operatorname{Id} - R) = (\lambda - 1)(\lambda \operatorname{Id} - R).$$

On the other hand, given $x \in X$, we have the representation

$$x = \left[x - rac{1}{1-\lambda}(\operatorname{Id} - R)(x)
ight] + rac{1}{1-\lambda}(\operatorname{Id} - R)(x).$$

Previous considerations imply that $(\operatorname{Id}-R)[x-1/(1-\lambda)(\operatorname{Id}-R)(x)] = 0$ and $(\lambda \operatorname{Id}-R)(1/(1-\lambda))(\operatorname{Id}-R)(x) = 0$; therefore, $[x-(1/(1-\lambda))(\operatorname{Id}-R)(x)] \in X_1$ and $(1/(1-\lambda))(\operatorname{Id}-R)(x) \in X_2$. \square

Remark. The lemma above also asserts that if there exists a closed subspace of X, say X_1 , and a projection onto that subspace $P_1: X \to X_1$, then $R = P_1 + \lambda(\operatorname{Id} - P_1)$ satisfies the equation $\lambda \operatorname{Id} - (\lambda + 1)R + R \circ R = 0$. Furthermore, if R is an isometry, then for every $x \in X$ we have $\|P_1(x) + \lambda(\operatorname{Id} - P_1)(x)\| = \|x\|$. Consequently, P_1 and $\operatorname{Id} - P_1$ are generalized bi-circular projections.

Theorem 2.1. If X has the strong Banach stone property, then Q is a generalized bi-circular projection on $C(\Omega, X)$ if and only if one of the following statements holds:

1. There exist a nontrivial homeomorphism $\phi: \Omega \to \Omega$ with $\phi^2 = \operatorname{Id}$ and a continuous function $u: \Omega \to \operatorname{Isom}(X)$ with $u_{\omega} \circ u_{\phi(\omega)} = \operatorname{Id}$ so that

$$Q(f)(\omega) = \frac{1}{2} \left(f(\omega) + u_{\omega} (f \circ \phi(\omega)) \right),\,$$

for every $\omega \in \Omega$.

2. There exists a generalized bi-circular projection on X, P_{ω} , so that $Q(f)(\omega) = P_{\omega}(f(\omega))$, for each $\omega \in \Omega$.

Proof. Since $Q + \lambda(I - Q)$ is an isometry, we have that

$$[Q + \lambda(I - Q)](f)(\omega) = u_{\omega}((f \circ \phi)(\omega)),$$

with u_{ω} an invertible isometry and ϕ a homeomorphism. Therefore,

$$Q(f)(\omega) = -\frac{\lambda}{1-\lambda}f(\omega) + \frac{1}{1-\lambda}u_{\omega}((f \circ \phi)(\omega)).$$

Moreover, Q being a projection $(Q^2 = Q)$ implies that

(1)
$$\lambda f(\omega) - (\lambda + 1)u_{\omega}(f \circ \phi(\omega)) + u_{\omega} \circ u_{\phi(\omega)}(f \circ \phi^{2}(\omega)) = 0,$$

for every $f \in \mathcal{C}(\Omega, X)$ and $\omega \in \Omega$. If there exists an $\omega \in \Omega$ so that $\omega \neq \phi(\omega)$ and $\omega \neq \phi^2(\omega)$, then there exists a Urysohn's function g on Ω so that $g(\omega) = 1$ and $g(\phi(\omega)) = g(\phi^2(\omega)) = 0$, see [12]. Let f(x) = g(x)v, for every $x \in \Omega$ and for a given nonzero vector $v \in X$. The equation (1) reduces to $\lambda = 0$, contradicting the assumptions on λ . Hence, $\phi^2 = \text{Id}$. If we assume that there exists an $\omega \in \Omega$ such that $\omega \neq \phi(\omega)$, we select a Urysohn's function g such that $g(\omega) = 1$ and $g(\phi(\omega)) = 0$. Letting $f(x) = g(x) \cdot v$, equation (1) yields $\lambda v + u_\omega \circ u_{\phi(\omega)}(v) = 0$ and thus $u_\omega \circ u_{\phi(\omega)} = -\lambda$ Id. Under this constraint, (1) becomes $(\lambda + 1)u_\omega(f \circ \phi(\omega)) = 0$. Therefore, $\lambda = -1$ and $u_\omega \circ u_{\phi(\omega)} = \text{Id}$, for every $\omega \in \Omega$. Therefore $Q(f)(\omega) = (1/2)(f(\omega) + u_\omega(f \circ \phi(\omega)))$, as in statement 1.

If $\phi = \operatorname{Id}$, then for every $x \in X$, we have $\lambda x - (\lambda + 1)u_{\omega}(x) + u_{\omega} \circ u_{\omega}(x) = 0$. Lemma 2.1 implies that $u_{\omega} = P_{\omega} + \lambda(\operatorname{Id} - P_{\omega})$ and, since u_{ω} is an isometry, P_{ω} is a generalized bi-circular projection on X. This case yields the formula in statement 2, i.e., $(Q(f))(\omega) = P_{\omega}(f(\omega))$. The remainder of the proof follows from straightforward computations. \square

Remark. We state the scalar version as a particular case of Theorem 2.1, with $X = \mathbf{C}$ or \mathbf{R} . An operator Q is a generalized bicircular projection on $\mathcal{C}(\Omega)$ if and only if there exists a homeomorphism $\phi: \Omega \to \Omega$, with $\phi^2 = \underline{\mathrm{Id}}$ and a continuous function $u: \Omega \to C$, with $|u(\omega)| = 1$ and $u(\omega) = \overline{u(\phi(\omega))}$ such that

$$Q(f)(\omega) = \frac{1}{2} \left[f(\omega) + u(\omega) f(\phi(\omega)) \right].$$

It also follows that the isometry associated with a generalized bicircular projection is an isometric reflection. However, this is not true without the connectedness condition on Ω . For example, we consider Ω to be the Stone-Cech compactification of the set of positive integers, hence $C(\Omega)$ is isometric to l^{∞} (over the complex numbers). We consider the isometry $T(x_1, x_2, x_3, \ldots) = (x_1, ix_2, x_3, ix_4, \ldots)$, and the projection $P(x_1, x_2, x_3, \ldots) = (x_1, 0, x_3, 0, \ldots)$. We have that $P + i(\operatorname{Id} - P) = T$ and $T \circ T \neq \operatorname{Id}$.

The following corollaries are straightforward consequences of Theorem 2.1.

Corollary 2.1. If Q is a generalized bi-circular projection on $C(\Omega, X)$, then both Q and $\mathrm{Id} - Q$ have norm 1.

Corollary 2.2. If Ω is topologically rigid, then any generalized bicircular projection on $\mathcal{C}(\Omega, X)$ is of the form $Q(f)(\omega) = P_{\omega}(f(\omega))$ where P_{ω} is a generalized bi-circular projection of X.

Proof. Rigid spaces have only the trivial homeomorphism, see [8]. If Q is a bi-circular projection, then $Q(f)(\omega) = -(\lambda/(1-\lambda))f(\omega) + (1/(1-\lambda))u_{\omega}(f(\omega))$, for every $\omega \in \Omega$. Therefore, by Lemma 2.1, $u_{\omega} = P_{\omega} + \lambda(I - P_{\omega})$ and P_{ω} is a bi-circular projection on X.

There are conditions on the range space X which ensure the existence of nontrivial generalized bi-circular projections on X. To this end we recall the definition of L^p projections, cf. [1].

Definition. Let X be a Banach space and R a projection on X with the property that, for every $x \in \mathcal{C}(\Omega, X)$,

$$||x||^p = ||Rx||^p + ||(I - R)x||^p$$

for $p \in [1, \infty)$ or

$$||x|| = \max(||Rx||, ||(I - R)x||)$$

for $p = \infty$. Such an operator is called an L^p projection on X.

Remark. $L^p(\mu)$ with $1 \leq p \leq \infty$ are standard examples of spaces admitting nontrivial L^p projections.

Corollary 2.3. If X is a Banach space which admits a nontrivial L^p projection R, then the operator Q on $C(\Omega, X)$ given by $(Qf)(\omega) = R[f(\omega)]$ is a generalized bi-circular projection.

Proof. Given $f \in C(\Omega, X)$ and a modulus 1 complex number λ , we have

$$\begin{split} \|R[f(\omega)] + \lambda(f(\omega) - R[f(\omega)])\|^p \\ &= \|R[f(\omega)]\|^p + \|\lambda(\operatorname{Id} - R)(f(\omega))\|^p = \|f(\omega)\|^p. \end{split}$$
 Consequently, $\|Q(f) + \lambda(\operatorname{Id} - Q)(f)\| = \|f\|.$

Remark. Corollary 2.1 asserts that generalized bi-circular projections are bi-contractive on $\mathcal{C}(\Omega)$. Our results relate to those of Friedman and Russo, see [7]. Furthermore, their theorem also implies that every bi-contractive projection on $\mathcal{C}(\Omega)$ is a generalized circular projection. It would be interesting to know if every bi-contractive projection on $\mathcal{C}(\Omega, X)$ is a generalized bi-circular projection and to have a characterization of the bi-contractive projections on $\mathcal{C}(\Omega, X)$.

Acknowledgments. The authors are grateful to an anonymous referee for suggestions that substantially improved this manuscript.

REFERENCES

- 1. E. Behrends, *M-structure and the Banach-Stone theorem*, Lect. Notes Math. **736** Springer-Verlag, 1979.
- 2. E. Berkson, Hermitian projections and orthogonality in Banach spaces, Proc. London Math. Soc. 24 (1972), 101–118.
- **3.** S. Bernau and H. Lacey, Bicontractive projections and reordering of L_p -spaces, Pacific J. Math. **69** (1977), 291–302.
- 4. R. Fleming and J. Jamison, *Isometries on Banach spaces*, Chapman & Hall, Boca Raton, Florida, 2003.
- **5.** C. Fong and A. Sourour, On the operator identity $\sum A_k X B_k = 0$, Canad. J. Math. **31** (1979), 845–857.
- ${\bf 6.}$ M. Fosner, D. Ilisevic and C. Li, $G\mbox{-}invariant$ norms and bicircular projections, preprint, 2006.

- **7.** Y. Friedman and B. Russo, Contractive projections on $C_0(K)$, Trans. Amer. Math. Soc. **273** (1982), 57–73.
- 8. J. Groot and R. Wille, Rigid continua and topological group-Pictures, Arch. Math. 9 (1958), 441-446.
- 9. J. Jamison, Bicircular projections on some Banach spaces, Linear Algebra Appl., to appear, 2006.
- 10. J. Lindenstrauss and L. Tzafriri, Classical Banach spaces I, Springer Verlag, New York, 1977.
- ${\bf 11.}$ W. Massey, $Algebraic\ topology:\ An\ introduction,\ Springer\ Verlag,\ New York, 1977.$
 - 12. J. Munkres, Topology, Prentice Hall, Upper Saddle River, New Jersey, 2000.
- 13. B. Randrianantoanina, Norm-one projections in Banach spaces, Taiwanese J. Math. 5 (2001), 35–95.
- 14. R. Shatten, Norm ideals of completely continuous operators, Springer-Verlag, Berlin, 1970.
- 15. A. Sourour, Isometries of norm ideals of compact operators, J. Functional Anal. 43 (1981), 69-77.
 - 16. P. Spain, Ultrahermitian projections on Banach spaces, preprint, 2006.
- 17. L. Stacho and B. Zalar, Bicircular projections on some matrix and operator spaces, Linear Algebra Appl. 384 (2004), 9-20.
- 18. ——, Bicircular projections and characterization of Hilbert spaces, Proc. Amer. Math. Soc. 132 (2004), 3019–3025.
- 19. A. Taylor, Introduction to functional analysis, John Wiley & Sons, Inc., New York, 1957.
- 20. G. Wood, Maximal symmetry in Banach spaces, Proc. Royal Irish Acad. Sci. 82 (1982), 177–186.

Department of Mathematical Sciences, University of Memphis, Memphis, TN 38152

Email address: mbotelho@memphis.edu

DEPARTMENT OF MATHEMATICAL SCIENCES, UNIVERSITY OF MEMPHIS, MEMPHIS, TN 38152

Email address: jjamison@memphis.edu