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GENERALIZED BI-CIRCULAR PROJECTIONS ON (C(Q, X)

FERNANDA BOTELHO AND JAMES E. JAMISON

ABSTRACT. Let Q be a connected compact Hausdorff
space and X a Banach space for which the Strong Banach-
Stone property is valid. We give a complete characterization
of the generalized bi-circular projections on Banach spaces of
vector valued continuous functions. We also observe that gen-
eralized bi-circular projections on C(£2, X) are bi-contractive.

1. Introduction. Let (X,|| -||) be a complex Banach space, and
let P: X — X be a linear projection. A basic problem in Banach
space theory is to determine the structure of the projections on a
given Banach space and provide characterizations of their ranges. The
existence of Hermitian projections on a Banach space and its connection
with the geometric properties of the underlying space was investigated
by Berkson, in [2]. Contractive and bi-contractive projections on
L, spaces and on spaces of continuous functions, as well as circular
projections in a variety of settings, are among the standard problems
addressed in the literature, see for example [3, 6, 16]. Recently, a new
class of projections, namely bi-circular projections, was proposed and
has been a focus of research interest, see [17]. A projection is called
bi-circular if e!*P + e*#(I — P) is an isometry, for all real numbers
a and . These projections were studied in many different settings
by Stacho and Zalar, see [18]. Furthermore, it was shown in [9] that
these projections are norm Hermitian. As a consequence, many results
on bi-circular projections follow from previously established results on
Hermitian operators on Banach spaces. Fosner, Ilisevic and Li, in [6],
have introduced a generalization of bi-circular projections by requiring
P + A\(I — P) to be an isometry, for some modulus 1 complex number
A # 1. They obtained interesting characterizations of these projections
in the finite-dimensional case for both real and complex vector spaces.
It is of interest to characterize these projections for other Banach
spaces.
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In this paper, we investigate the structure of Fosner, Ilisevic and
Li generalized bi-circular projections on the space of vector valued
continuous functions, C(2, X). The characterization in the scalar case
follows as a corollary. Our results are valid for both the real or complex
cases.

2. Generalized bi-circular projections on spaces of vector-
valued functions. We investigate the form of the generalized bi-
circular projections on C(£2, X), with X representing a Banach space
and € a connected compact Hausdorff space. The Banach space
C(9, X)) consists of all continuous functions on Q with values in X,
equipped with || - [|ec, 1.€., ||f|lcc = maxzeq || f(z)]. Our characteri-
zation relies upon the form of surjective isometries of C(€2, X). This
result is well known for C(2, X), with X having the strong Banach
Stone property, see Behrend’s book [1]. In particular, this is the case
if X is smooth or strictly convex, see [1, Theorem 8.10, page 147].

We review the definition of generalized bi-circular projection, cf. [6].

Definition 2.1. The operator Q on C(2, X) is said to be a general-
ized bi-circular projection if and only if Q2 = @, and there exist A € C,
A # 1, and |A| =1 for which @ + A(I — Q) is an isometry of C(£2, X).

If X satisfies the strong Banach stone property, then a surjective

isometry L on C(€2, X) is of the form
L(f)(w) = uw(f o (w)),

where ¢ is a homeomorphism of €2 and w is a continuous function on
Q with values in the space of invertible isometries of X (Isom (X)),
i.e., for every w € Q, u(w) = u, € Isom(X). We observe that in
the scalar case a surjective isometry L on C(2) has the simplified
form L(f)(w) = u(w)f(¢(w)), with ¢ a homeomorphism of Q and u

a modulus 1 continuous function on 2.

The next folklore lemma will be used in the proof of the forthcoming
theorem.

Lemma 2.1. If A # 1, then R is a bounded operator on X satisfying
Ald— (A+1)R+ RoR=0
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if and only if there exist two complementary subspaces of X, X1 and
Xo, such that X = X7 & X3 and orthogonal projections Py and Py onto
X, and X, respectively, so that R = P, + \Ps.

Proof. If R = P, + A\P,, then Ro R = P, + A\?Py; hence, A Id —
(A\+1)R+ RoR = 0. Conversely, if A\Id — (A\+1)R+ Ro R = 0,
then R(Id — R) = A(Id — R) and also R(AId — R) = AId — R. Let
X, ={veX:R(w)=v}and Xo = {v € X : R(v) = l}. We show
that X = Xy + X,. Clearly X; N X5 = {0}. We observe that

(Id— R)o(Id— R) = (1 — A)(Id — R)

and
(AId—R)o(AMId—R) = (A= 1)(AId — R).

On the other hand, given z € X, we have the representation

1 1
r= |z — m(ld —R)(x)| + m(ld — R)(z).
Previous considerations imply that (Id—R)[z—1/(1 — A\)(Id— R)(z)] =
0and (A Id—R)(1/(1 — X))(Id—R)(z) = 0; therefore, [z—(1/(1 — X))(Id—
R)(z)] € X7 and (1/(1 — X))(Id — R)(z) € X3. O

Remark. The lemma above also asserts that if there exists a closed
subspace of X, say X1, and a projection onto that subspace P, : X —
X1, then R = P; + A(Id — P,) satisfies the equation A Id — (A\+1)R +
R o R = 0. Furthermore, if R is an isometry, then for every z € X we
have ||Pi(z) + A(Id — Py)(z)|| = ||z||. Consequently, P; and Id — P; are
generalized bi-circular projections.

Theorem 2.1. If X has the strong Banach stone property, then Q)
is a generalized bi-circular projection on C(2, X) if and only if one of
the following statements holds:

1. There exist a nontrivial homeomorphism ¢ : Q — Q with ¢> = Id
and a continuous function u : @ — Isom (X) with uy, o ug,) = Id so
that

DN | =

Q(f)(w) = 5 (f(w) + uu(f 0 $(w))),

for every w € Q.
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2. There exists a generalized bi-circular projection on X, P, so that

Q(f)(w) = Py(f(w)), for each w € Q.

Proof. Since @ + A\(I — Q) is an isometry, we have that
[Q + A — Q)(f)(w) = uu((f 0 ¢)(w)),

with u,, an invertible isometry and ¢ a homeomorphism. Therefore,

A 1
QW) = ~ 125 J) + Tl 0 6)(w).
Moreover, @ being a projection (Q? = @) implies that

(1) Af(w) = A+ Duw(f 0 9(w)) + uw 0 ) (f © ¢* () = 0,

for every f € C(Q2, X) and w € Q. If there exists an w € Q so that w #
d(w) and w # ¢*(w), then there exists a Urysohn’s function g on Q2 so
that g(w) = 1 and g(p(w)) = g(#(w)) = 0, see [12]. Let f(z) = g(z)o,
for every x € Q and for a given nonzero vector v € X. The equation
(1) reduces to A = 0, contradicting the assumptions on A. Hence,

2 = Id. If we assume that there exists an w € Q such that w # ¢(w),
we select a Urysohn’s function g such that g(w) = 1 and g(¢(w)) = 0.
Letting f(z) = g(z) - v, equation (1) yields A\v + uy © ug)(v) = 0
and thus wu, o ug,) = —AId. Under this constraint, (1) becomes
(A + Duw(f o p(w)) = 0. Therefore, A = —1 and u, o ug) = Id,
for every w € Q. Therefore Q(f)(w) = (1/2)(f(w) + uy (f o #(w))), as

in statement 1.

If ¢ = Id, then for every x € X, we have Az — (A + 1)uy(z) + uy, ©
Uy(xz) = 0. Lemma 2.1 implies that u, = P, + A(Id — P,)) and, since
u,, is an isometry, P, is a generalized bi-circular projection on X. This
case yields the formula in statement 2, i.e., (Q(f))(w) = P,(f(w)). The
remainder of the proof follows from straightforward computations. O

Remark. We state the scalar version as a particular case of The-
orem 2.1, with X = C or R. An operator @ is a generalized bi-
circular projection on C(f2) if and only if there exists a homeomorphism
¢ :Q — Q, with ¢2 = Id and a continuous function u : Q — C, with
|lu(w)] = 1 and u(w) = u(¢p(w)) such that

QU() = 3 [F() + u(@)f(Hw))].
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It also follows that the isometry associated with a generalized bi-
circular projection is an isometric reflection. However, this is not
true without the connectedness condition on 2. For example, we
consider €2 to be the Stone-Cech compactification of the set of positive
integers, hence C(f2) is isometric to [*° (over the complex numbers).
We consider the isometry T'(z1, z2, x3,...) = (21,122, 3,124, ... ), and
the projection P(z1, 2, x3,...) = (z1,0,23,0,...). We have that
P+i(Id-—P)=Tand ToT #1d.

The following corollaries are straightforward consequences of Theo-
rem 2.1.

Corollary 2.1. If @ is a generalized bi-circular projection on
C(Q,X), then both Q and Id — Q have norm 1.

Corollary 2.2. If Q is topologically rigid, then any generalized bi-
circular projection on C(Q, X) is of the form Q(f)(w) = P,(f(w))
where P, is a generalized bi-circular projection of X .

Proof. Rigid spaces have only the trivial homeomorphism, see [8].
If @ is a bi-circular projection, then Q(f)(w) = —(A/(1 —A))f(w) +
(1/(1 = N))uw(f(w)), for every w € Q. Therefore, by Lemma 2.1,
u, = P, + A(I — P,) and P, is a bi-circular projection on X. O

There are conditions on the range space X which ensure the existence
of nontrivial generalized bi-circular projections on X. To this end we
recall the definition of LP projections, cf. [1].

Definition. Let X be a Banach space and R a projection on X with
the property that, for every = € C(Q, X),

[[«][” = | Rz ||” + |(I — R)x||”
for p € [1,00) or
||| = max([| Rz, [[(I — R)=[])

for p = co. Such an operator is called an L? projection on X.
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Remark. LP(u) with 1 < p < oo are standard examples of spaces
admitting nontrivial LP projections.

Corollary 2.3. If X is a Banach space which admits a nontrivial
LP projection R, then the operator Q on C(Q, X) given by (Qf)(w) =
R[f(w)] is a generalized bi-circular projection.

Proof. Given f € C(©,X) and a modulus 1 complex number X\, we
have

[R[f ()] + A(f (@) = R[F(@)D]?
= [[RIf(@I” + AT = R)(F@)P = lIf (@)[".
Consequently, [|Q(f) + A(Id — Q)(/)l =[Ifl. o

Remark. Corollary 2.1 asserts that generalized bi-circular projections
are bi-contractive on C(£2). Our results relate to those of Friedman and
Russo, see [7]. Furthermore, their theorem also implies that every
bi-contractive projection on C(2) is a generalized circular projection.
It would be interesting to know if every bi-contractive projection on
C(Q, X) is a generalized bi-circular projection and to have a character-
ization of the bi-contractive projections on C(2, X).
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