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SOME REMARKS ON SPECIAL SUBORDINATORS

RENMING SONG AND ZORAN VONDRACEK

ABSTRACT. A subordinator is called special if the restric-
tion of its potential measure to (0, 00) has a decreasing density
with respect to the Lebesgue measure. In this note we inves-
tigate what type of measures p on (0,00) can arise as Lévy
measures of special subordinators and what type of functions
u : (0,00) — [0,00) can arise as potential densities of spe-
cial subordinators. As an application of the main result, we
give examples of potential densities of subordinators which are
constant to the right of a positive number.

1. Introduction. A function ¢ : (0,00) — (0,00) is called a
Bernstein function if it admits a representation

(1.1) d(A) =a+bA+ /000(1 — ™) p(dx),

where a > 0 is the killing term, b > 0 the drift and p a measure on
(0, 00) satisfying [, (z A 1) p(dz) < oo, called the Lévy measure. By
defining p({o0}) = a, the measure p is extended to a measure on (0, oo].
The function fi(x) := u((z, 00]) on (0,00) is called the tail of the Lévy
measure. Using integration by parts, formula (1.1) becomes

(1.2) d(\) = bA+ A /0oo e () de.

The function ¢ is called a special Bernstein function if the function
¥ 1 (0,00) — (0,00) defined by ¥(X) := A/@(N) is again a Bernstein
function. Let

(1.3) PY(N) =a+bx+ /000(1 — e ) y(dz)
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be the corresponding representation. It is shown in [16] that

E:{O b>0
1/(a 0,00 b=0,
(1.4) 0/( + 1((0,00))) -

- { 1/(b+ [y tpu(dt)) a=0;

here we are using the convention that 1/c0 = 0.

Bernstein functions are closely related to subordinators. Let S = (S :
t > 0) be a (killed) subordinator, that is, an increasing Lévy process
starting from zero, possibly killed at an exponential time. Then

E(exp —\S;) = exp(—top(N)),

where ¢ is a Bernstein function. The potential measure U of the
subordinator S is defined by

U(A):E/ l{StEA} dt, AC [0,00)
0

It is well known that LU(X) = 1/¢(\), where £ denotes the Laplace
transform. Similarly, for a > 0, one defines the a-potential measure U®
of the subordinator S by

U(A) = E/ eiatl{gteA} dt, A cC]0,00).
0

Let ¢ and ¥ be a pair of special Bernstein functions such that
d(M)Y(A) = Aforall A > 0,andlet S = (S;:t >0)and T = (T} : t > 0)
be the corresponding (killed) subordinators with potential measures U
and V. By Theorem 2.1 in [16] (see also [2, Corollaries 1, 2] for an
earlier account), ¢ is special if and only if U)oy has a decreasing
density u : (0,00) — [0,00). In this case

U(dt) = béo(dt) + u(t) dt,

where &y denotes the Dirac measure at 0. Similarly, V' (d¢) = bdo(dt) +
v(t) dt for a decreasing function v : (0,00) — [0, 00). Moreover, we have
v(t) = @(¢), the tail of the Lévy measure of ¢.
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In this note we are going to investigate what type of measures p on
(0,00) can arise as Lévy measures of special subordinators and what
type of functions u : (0,00) — [0, 00) can arise as potential densities of
special subordinators. More precisely, we would like to know whether
the potential density of a special subordinator is necessarily continuous,
and whether it can be constant near the origin or constant to the right
of a positive number (or equivalently, whether the Lévy measure of a
special subordinator can be supported away from the origin or can have
bounded support). Our main tool is an extended version of Hawkes’
Theorem 2.1 from [6] which essentially says that nonincreasing log-
convex functions are tails of Lévy measures of subordinators. Besides
providing a proof of an extended version of Hawkes’ theorem, we also
describe two alternative approaches known from the literature. As
an application of the main result, we give examples showing that the
potential density of a special subordinator can be constant to the right
of a positive number, a fact that is quite surprising to many people in
potential theory and certainly surprising to the authors. At the end of
this note we also give an application to delayed subordinators studied
in [17].

Throughout the paper we use the above introduced notation.

2. Hawkes’ result revisited. In this section we will give an
extended version of Theorem 2.1 in [6]. We begin with a well-known
result and sketch a proof following [14].

Lemma 2.1. Let (v, : n > 0) be a sequence satisfying vo = 1 and
0<wv, <1,n>1. Assume that (v, : n > 0) is a Kaluza sequence,
that is, vfl < Up_1Vn41 for allm > 1. Then there exists a nonincreasing
sequence (ry, : n > 0) such that r, > 0 for all n, and

n

(2.1) 1= Z’I‘j Un—j for all n > 0.

Jj=0

Proof. Note that the inequality v2 < Upn_1Un+1 1S equivalent to

Un/Un-1 < Upt1/vn. Therefore, the sequence (v,/vn,—1 :n > 1) is
increasing.
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Define f; := vy, and inductively
n—1
(2.2) fn = Up — Z fj ’Un,j.
j=1

It is shown in [14] that f,, > 0 for every n > 0, and that Y .~ | fr < 1.

Define the sequence (r, : n > 0) by ro:=1and r,, :=1— Z?:l I
n > 1. Clearly, (r, : n > 0) is a nonincreasing sequence of nonnegative
numbers. Note that r,_y — 7, = f, for all m > 1. Hence, for all n > 1,

n

n
va =D fivn—y =D (rjm1 —75) v
j=1

=1

n n

=D T Y TV
i=1 =1
n

n—1
= E rjvn_l_jf E Tj'Un—j-
=0

j=1

This implies that Z?:o T Un_j = Z;:(]l TjUn—1—; for all n > 1. But
for n = 1 we have that 27;01 7jUn—1—j = rovg = 1. This proves that
Z?:o 7 Up_j = 1 for all n. > 0. O

Remark 2.2. The above lemma appears also in [6] with a proof having
a minor gap (namely, it works only for the case Z;’il f; = 1). This
is why a proof of Lemma 2.1 is included. We note that a sequence
(vn : m > 0) satisfying v2 < v, 10,41 for all n > 1 is also called a
log-convex sequence. The conclusion of the lemma, equation (2.1), is a
discrete version of Chung’s equation (see [3]).

The following result is one of those folkloric results whose proofs are
difficult to locate. When the subordinator has no killing, it is basically
contained in [3, page 63 and pages 89-91]. In the compound Poisson
case, it is contained in [15, Remark 27.3] and [5, page 278].

Lemma 2.3. Suppose that x — T(z) is absolutely continuous on
(0,00). If u((0,00)) = o0 or b > 0, then the potential measure U is



SOME REMARKS ON SPECIAL SUBORDINATORS 325

absolutely continuous. If u((0,00)) < oo and b = 0, then Ujo,x0) 18
absolutely continuous.

Proof. Assume first that the killing term « = 0. If b > 0,
then it is well known that U is absolutely continuous. Assume that
w1((0,00)) = co. Since f(x) is absolutely continuous, by [15, Theorem
27.7] the transition probabilities of S are absolutely continuous and
therefore U is absolutely continuous.

If the killing term a > 0, then the potential measure of the killed
subordinator is equal to the a-potential measure of the (nonkilled)
subordinator, hence again absolutely continuous (see, e.g., [15, Remark
41.12)).

Assume now that p((0,00)) < co and b = 0. Since z — fu(z) =
p((z, 00)) is absolutely continuous, so u(dz) = p(z)dz, where u
by abuse of notation denotes the density of the measure p. Let
¢ = p((0,00)). The transition operator at time ¢ of the nonkilled
subordinator is given by

Therefore, the potential operator of the killed subordinator is equal to

U= / eiatPt dt
0

o0 o0 tk
— e—at ( €tc—’u,*k> dt
L (e

k=0

oo *k ee}
_ Z #k' / e (ato)tik gy
k=0 =~ YO

1 1 oo " xk
= 1) .
a+c 0+a+cz<a+c>

k=1

This shows that Uj(g, o) is absolutely continuous with the density

(2.3) u(z) = aic fjl (aic)*k(m). .
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The following result is an extended version of Theorem 2.1 of [6]. It
extends Theorem 2.1 of [6] in the following three directions: (1) the
drift b may be positive; (2) the killing term a may be positive; (3) the
Lévy measure may be finite or equivalently the subordinator may be
a compound Poisson process. The proof is a slight modification of the
original proof in [6].

Theorem 2.4. Suppose that x — f(z) is log-convex on (0,00).
If p((0,00)) = o0 or b > 0, then the potential measure U has a
nonincreasing density w. If p((0,00)) < oo and b = 0, then the
restriction U)o 00) has a nonincreasing density u.

Proof. The log-convexity of fi(z) implies that 7(x) is absolutely
continuous on (0, c0), hence by Lemma 2.3, we know that in both cases
densities do exist. We choose the version of u such that

(2.4) lim sup Ullz,z + 1)

5 = u(z), for all z > 0.
h—0

Note that the log-convexity of @ implies that it is strictly positive
everywhere. This excludes the case where a + p((z,00)) = 0 for some
z > 0. Fix ¢ > 0 and define a sequence (v, (c) : n > 0) by

Cberme) o Fero
Toferm@ 0 O T et "2

Then clearly 0 < v,(c) < 1 for all n > 0. Moreover, v,(c)? <
Un—1(c)vpt1(c) for all n > 1. Indeed, for n > 2, this is equivalent
to (nc+¢)? < m((n — 1)c+ e)i((n + 1)c + ¢), which is a consequence
of the log-convexity of @. For n = 1, we have 1(2¢) < (e)p(3c) <
(b/c + p(c))n(3c)-

By Lemma 2.1, there exists a nonincreasing sequence (r,,(c) : n > 0)
such that

vo(c)

(2.5) ri(c)vn_;(c) =1 for all n > 0.

n
Jj=0

Define
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By rewriting (2.5) we get that, for all n > 0,

(26) D@ + Y w0~ et ¢) = 1.

=0

By multiplying (2.6) by cAe™(**t1)¢* and summing over all n > 0, we
obtain

oo n

bA Z e~ (MDA (e) + Z Z e~y (OE((n — f)e + ¢)
n=0 n=0 j=0
— Z C)\e—(n—i-l)ck.
n=0

This can be simplified to

(2.7)
b)\e_C)‘ Z e—ncA un(c) + < Z e—nc)\un (C)) (C)\ Z e_nc)\ﬁ(nc)>
n=0 n=0 n=l
_ e
T 1—emcN

Define a measure U, on (0,00) by Ue := > ° un(c)pe. Then (2.7)
reads

/00 e M dU(t) ) [ bAe™* + i ce " Mi(ne) ) = M

0 ¢ — 1 —ecr’

Let ¢ | 0. The righthand side converges to 1, while

lim <bAe—cA +> c)\e_"C)‘ﬁ(nc)> =bA + / e N(t) dt = p(N).
0

0
ok n=1

Therefore,

o0 1 o0
lim e M dU.(t) = — :/ e MdU(t).
cl0 Jo (¥ o(N) 0 Q
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Hence, U, converges vaguely to U. Since U is absolutely continuous,
this implies that, for all z > 0 and all A > 0,

la Ue((2, 2 + 1)) = / )t

T

Now suppose that 0 < x < y, and choose h > 0 such that z < z+h < y.
Moreover, let ¢ be such that none of the endpoints x, x + h, y, y + h is
a multiple of ¢. By the monotonicity of (u,(c) : n > 0), it follows that

Ue((y,y + 1)) < Uc((@,2 + h)).

Let ¢ go to zero along values such that the endpoints x, z+ h, y, y+ h
are not multiples of c. It follows that

U((y,y +h)) <U((z,z + h)).

Now from (2.4) it follows that u(y) < u(z). u]

Corollary 2.5. Suppose that v : (0,00) — (0,00) is decreasing,
log-conver and satisfies fol v(t)dt < oo. Then there exists a special
subordinator T = (T : t > 0) with potential measure V' such that v is
a density of V.

Proof. Put a := v(4+00) and define a measure p on (0,00) by
p((z,00)) := v(xz) — a. Then p is a Lévy measure and fi(z) = v(z)
is log-convex.

Define ¢()) := a+ [ (1—e~*) u(dt). By Theorem 2.4, the restriction
Ul(0,00) to (0, 00) of the potential measure of U has a decreasing density
u. Therefore, ¢ is a special Bernstein function. Let ¢(\) := A/@(N)
with corresponding special subordinator T = (T3 : ¢ > 0). Since the
drift b of ¢ is zero, the potential measure V of T has a density equal
to z — a + u((z,00)). But this is precisely wv. mi

Remark 2.6. If we defined ¢(\) := a+bA+ [;~ (1 — e=*) u(dt), with
b > 0, then the same argument would show that v is the density of

Vi(0,00)-
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Corollary 2.5 is basically Corollary 14.9 in [1], a result originally due
to [7, 8, 9]. We now give another approach to proving Corollary 2.5.
This approach comes from [4] and is based on random covering. Let A
denote the Lebesgue measure on [0, 0), and let 7 be a o-finite measure
on (0,00]. Let N be a Poisson random measure on [0, c0) X (0, co] with
the characteristic measure A X 7, and by abuse of notation we denote
the set of random points in [0,00) x (0, 00] also by N. For (s,t) € N,
the interval (s, s+ t) is called a covering interval. Let

R =10,00)\ U (s,5+1)

(s,t)EN

be the subset of [0, 00) of uncovered points. It is proved in [4, Theorem
1], that R is a regenerative set. Since every regenerative set is the
closure of the image of a subordinator (see [12]), one can speak about
the potential measure V of the regenerative set R. The second part of
Theorem 1 from [4] states that if

/01 exp{/:ﬂ((S,oo])ds}dm < o0,

then the potential measure V has a density v given by the formula

(2.8) o(z) = exp { /: ﬁ((s,oo])ds}, 2> 0.

The function v is clearly decreasing and log-convex. In particular,
the regenerative set R is special (in the sense that the corresponding
subordinator is special).

Assume now that v satisfies the assumptions of Corollary 2.5. With-
out loss of generality, we may assume that v(1) = 1. The function
w(z) := logv(z) is convex so we can define a measure 7 on (0, o0] by
m((z,00]) = —w'(z+), the righthand side derivative of w. Let R be
the regenerative set of uncovered points corresponding to the Poisson
random measure with the characteristic measure A x 7. Since

/Olexp{/;?r((s,oo])ds}d:p _ /Olv(a:)dac < o0,
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the potential measure of R has a density given by
1
exp { / m((s,00]) ds} = v(z).

3. Examples. We recall that a Bernstein function is a complete
Bernstein function if its Lévy measure has a completely monotone
density. A great deal of literature exists which is devoted to complete
Bernstein functions (see, e.g.,[10, 13]), and the Laplace exponents of
most of the subordinators one encounters are in fact complete Bernstein
functions. It is known that complete Bernstein functions are special,
and the corresponding potential densities are completely monotone
functions. One of the goals of this section is to provide examples of
subordinators that are special, but not complete Bernstein.

Example 3.1. Define

v(x)‘_{a:_“ 0<z<l,
' z P 1<z< .

Assume that 0 < 8 < a < 1. Then v is decreasing, log-convex and
satisfies fo t)dt < oco. By Corollary 2.5, v is the potential density
of a special subordlnator. Since v is not completely monotone (it is
clearly not C*°), the corresponding Laplace exponent is not a complete
Bernstein function.

Proposition 3.2. Suppose that S = (S; : t > 0) is a subordinator
with Laplace exponent ¢(A) = bA+ [~ (1—e™ ) u(dt). If u has bounded
support, then S cannot be special.

Proof. Assume that S is special and p((zg,00)) = 0. Let ¥(\) :=
A/¢(N) with corresponding subordinator T' = (I3 : ¢t > 0). Let
V' be the potential measure of 7', v the density of V|q,)- Then
v(z) = p((x,00)) = 0 for all > xy. But this implies V((zg,00)) = 0,
which is impossible. o

The following two examples show that a special subordinator may
have a Lévy measure with bounded support provided the killing term is
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strictly positive. Thus, we have examples of special Bernstein functions
¢(x) =a+ [;°(1—e ) p(dt) for which  — [;°(1—e ) p(dt) is not
a special Bernstein function. This is in contrast to the case of complete
Bernstein functions since a Bernstein function is a complete Bernstein
function if and only if its Lévy measure has a completely monotone
density, and this has nothing to do with the drift term nor the killing
term.

Example 3.3. For 0 < a < 1, define

{w‘”‘ O<ze<l,
v(z) =
1 1<z < .

Again, v is decreasing, log-convex and satisfies fol v(t) dt < oo. Hence,
there exists a special subordinator T = (T; : t > 0) with potential
measure V such that v is the density of V. Let i be the Laplace
exponent of T, and define ¢(\) := A/(X). Then ¢p(A) =1+ [7°(1 —
e~ ) p(dt) with the Lévy measure u(dz) = pu(z) dz, where

(2) i= {oz:t:“l 0<z <1,
. ' 0 1<z < .

The following example is similar to the previous one but with a finite
Lévy measure .

Example 3.4.

o() = {elm 0<z<l1,
ol 1<z < oo.

Again, v is decreasing, log-convex and satisfies fol v(t) dt < co. Hence,
there exists a special subordinator 7' = (7} : ¢ > 0) with potential
measure V such that v is the density of V. Let 3 be the Laplace
exponent of T, and define ¢(X) := A/(X). Then ¢p(X) =1+ [7°(1 —
e~) p(dt) with the Lévy measure u(dz) = u(z) dz, where

{elz 0<z<1,

T) =
H@) 0 1<z < 0.
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Remark 3.5. In the last example, the density of the Lévy measure
p(z) is discontinuous at x = 1. Put

e® <<l
)=
/(@) {0 1<z < .

It is easy to see that

e * O<x<l,
fPla)y=q@2-xe® 1<z<2,
0 2<z < o0,

and that all convolutions f*™,

n > 2, are continuous everywhere. It is
easy to check that, for z € (0,1),

xk:fl

5 (z) = mef””, kE>1.

Using the above formula, one can check that for z € [1, (5/4)),

5/1\F3
k)<= = - > 3.
f (a:)_8<2> e ®, k>3

Using the above two displays, we can easily see that the series
1 - *k
. Z (=)
k=1

is uniformly convergent for z € (0, (5/4)). By formula (2.3), we get that
u(z) is discontinuous at z = 1. But u(z) = a+v((x, 00)), implying that
z — v((z,00)) has a discontinuity at « = 1. Hence, v has an atom at 1.
This shows that the Lévy measure of a special subordinator may have
atoms. As a consequence, the tail is not log-convex. In particular, this
shows that the family of special Bernstein functions is larger than the
family of Bernstein functions with Lévy measure having a log-convex
tail.

Note that potential densities similar to those given in Examples 3.3
and 3.4 can also be constructed from formula (2.8) by choosing the
measure 7 so that 7((1, c0]) = 0.
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We end this section by showing that a special subordinator with no
drift cannot have its Lévy measure supported away from zero.

Proposition 3.6. Suppose that ¢(A) = a+ [;° (1 — e™*) u(dt) and
that the Lévy measure p is nontrivial and that u((0,to]) = 0 for ty > 0.
Then ¢ is not special.

Proof. Suppose, on the contrary, that ¢ is special. Let P(A) =
Ad(A) = @+ bA+ [;°(1 — e*®)v(dz). The potential density of
the corresponding subordinator 7' is given by the formula v(t) =
a + p((t,00)). In particular, v(t) = a + p((tg,00)) =: v for 0 < ¢ < to,
and V(t) := V([0,t]) = ~t. It follows from (1.4) that b = 1/y > 0.
Choose z < tog. Then V(z) = vz = x/b. Suppose that v # 0. Let 7
be an exponential random variable with parameter @ independent of T’
when @ > 0 and let 7 = 400 when @ = 0. Then

V(I) = E/) 1(5t+20<5<t AT, <z) dt.

Since P (3 g <; ATs > 0) > 0, it follows that

V(I) = E‘/O l{gt+20<s<t AT, <z} dt

T T
<E/0 1{5t<w}dt:E[7/\Z] <

S 8

This contradicts the fact V(z) = z/b. If v = 0 and @ > 0, then
T x x
VJJZE/1~ dt:E|:'r/\:]<r.
(z) o tbe<a) ; ;

The above display again gives a contradiction. Hence, v = 0 and a = 0,
implying that ¥)(A) = b\, and hence ¢(\) = 1/b. This is a contradiction
with p #£ 0. o

4. Delayed subordinators. Assume that 7" is a subordinator with
no killing such that the restriction V‘(O,oo) of its potential measure V'
has a decreasing density v satisfying v(z) = a for all z > 1. Examples
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3.3 and 3.4 show that this is possible. Note that for any interval
(z,y) C (1,00), V((2,y)) = a(y — =) holds. This means that V| ) is
proportional to the Lebesgue measure. The Laplace transform of V is

1 00 1
LV (A) = / e NV (dx) +/ e Madr = / e MV (dx) + %e_)‘.
0 1 0

Since e *V([0,1]) < fol eV (dz) < V([0,1]), we have that

1 1 1
W0, 1) L ae > = ALV = 2V ([0, 1]) - ae ™

Since ¥(A)/A = 1/(ALV (X)), by letting A — 0 we obtain that

¢'(0+) = lim v() =1

A0\ a

Therefore, the subordinator T' has finite expectation and ET; = 1/a.

Define the first passage time 7, := inf{¢ > 0 : T; > z}. The Laplace
transform of 17, is given by the formula

(4.1) Ele= ] = p()) / e~ V(dz)

(z,00)

(see for example [11, Exercise 5.5]). Therefore, the Laplace transform
of the overshoot distribution for 7" with the above potential density is
for all x > 1 given by

(4.2) Ele™ T =2)] = A7q()) / e Mu(2)dz = a 1/}()\)

(z,00)

Proposition 4.1. Suppose that T = (Ty : t > 0) is a subordinator
with Laplace exponent 1 and potential measure V' such that

(4.3) E[ef)‘(TTw 7“”)] a @

for x =g > 0. Then V(z,,00)(dz) = adz, and moreover, (4.3) is valid
for all x > xp.



SOME REMARKS ON SPECIAL SUBORDINATORS 335

Proof. From (4.1) and the assumption it follows that
2 oo / e M V(dz)
A (20,00)

_ / e G0 (s — ) V(d2)
(0,50)

= / ef)‘szo (dz),
(0,00)

where V,,,(dz) is the image of V(dz) under the map z — z — z. By
uniqueness of the Laplace transform, V,,(dz) = adz. This implies that
Vi(zo,00)(d2) = a dz. The last statement now follows from the discussion
preceding the proposition (with 1 replaced by z). O

Let X = (X¢:t > 0) be a subordinator with Laplace exponent ®, no
killing, drift d > 0, Lévy measure II and finite mean equal to 1/a. The
limiting overshoot distribution of X as x — oo is given by

F(y)= lim P(X,, —z<y)= a<d+/0UH(t, o) dt),

see, for example, [17]. The Laplace transform of F is equal to
(4.4)

/0c>o e A F(dx) = a(/ooo e d 5y (d) +/0°° T, 00) dx)

- a<d + /000 e TI(z, 00) dm))

In [17] van Harn and Steutel discussed delayed subordinators. Let Y
be a random variable independent of the subordinator X. The process
X = (X :t > 0) defined by

Yt ::Y+Xt

is called a delayed subordinator. Let H(z) = E [° 1%, <) and let

W () be the overshoot distribution of X over the level z. It is shown
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in [17] that the following properties are equivalent: (1) the distribution
of Y is equal to F, (2) H(z) = ax for all z > 0, and (3) W(z) has
distribution F' for all z > 0. In particular, in this case, the delayed
subordinator X is stationary in the sense that the expected occupation

time is proportional to Lebesgue measure.

Going back to the subordinator T, formula (4.4) compared with (4.2)
shows that the overshoot distribution of I°., —z for all # > 1 is constant
and equal to the limiting overshoot distribution F' of the subordinator
T. This suggests that T is “close” to the delayed subordinator. To
make this precise, consider the following decomposition:

T71+t -1= (T71+t - TT1) + (TTI - 1)'

The process (Tr,+¢+ — Ty, : t > 0) is a copy of the subordinator T,
independent of the random variable T°-, — 1. The distribution of 17, —1
is equal to F. Hence the process (T, 4+ — 1 : ¢ > 0) with state space
[0,00) can be considered as a delayed subordinator T' with the delay
distributed as 7, — 1.
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