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BANACH-STEINHAUS TYPE THEOREMS
FOR STATISTICAL AND Z-CONVERGENCE
WITH APPLICATIONS TO MATRIX MAPS

ENNO KOLK

ABSTRACT. Let (An) be a sequence of bounded linear
operators from a Banach space X into a Banach space Y.
It is proved that if X has a countable fundamental set ®
and the ideal Z of subsets of N has property (APO), then
(Anz) is boundedly Z-convergent for each z € X if and
only if sup,, ||An|| < oo and (An¢) is Z-convergent for any
¢ € ®. This result is applied to characterize some sequence-
to-sequence transformations defined by infinite matrices of
bounded linear operators.

1. Introduction and auxiliary results. Let N = {1,2,...}, and
let X, Y be two Banach spaces over the field K of real or complex
numbers. A subset ® of X is called fundamental if the linear span of ®
is dense in X. By B(X,Y) we denote the space of all bounded linear
operators from X into Y. We write sup,,, limy,, >, U, and N,, instead

of sup,,en, My oo, 2 oneq, U2 and NS4, respectively.

Let A, € B(X,Y), n € N. A well-known principle of uniform
boundedness asserts that if sup,, ||A,z|| < oo for every € X, then
there exists a constant M > 0 such that

(1.1) |4, < M, neN.

By investigation of the convergence of various linear processes the
following corollary from this principle is useful (see, for example, [4,
page 248] or [9, page 173]).

Theorem 1 (Banach-Steinhaus). Let ® C X be a fundamental set.
The limit lim, A,z exists for any x € X if and only if (1.1) holds
and lim,, A,¢ exists for every ¢ € ®. Moreover, the limit operator
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A, Az = lim, A,z, is bounded and linear, i.e., A € B(X,Y), and
Al < M.

Let w(X) be the linear space of all X-valued sequences r = (xg).
It is well known that the sets £oo(X), ¢(X) and co(X) of bounded,
convergent and convergent to zero element § X-valued sequences are
Banach spaces with the norm [|t||cc = supy ||zx||, and £,(X) = {r €
w(X) : Y, lzx|P < oo} (1 < p < o0)is a Banach space with the norm
Izl = (4 lzx][P)}/P. In the case X = K we write w, ¢, co, £ and £,
instead of w(K), ¢(K), co(K), ¢1(K) and ¢,(K), respectively.

Now let A(X) be a subspace of w(X), u(Y) a subspace of w(Y) and
A = (A,k) an infinite matrix of operators A, € B(X,Y) (n,k € N).
We say that 2 maps A\(X) into u(Y'), and write A € (A(X), u(Y")), if for
all t = (z1) € A(X) the series 2, r = >, Aprxi (n € N) converge and
the sequence 2 = () belongs to p(Y). If Y = X and the subspaces
AMX), u(X) C w(X) are equipped with the limits A-lim and p-lim,
respectively, then we write A € (A(X), #(X))reg (and read: A maps
A(X) into p(X) regularly) if 2 € (AM(X), #(X)) and p-lim, A,r = A-
limy, . for all ¢ = (zx) € A(X).

Using Theorem 1, Zeller [13] (see also [11]) and Kangro [5] described
the matrix classes (¢(X),c(Y)) and (¢41(X),c(Y)) as follows.

Theorem 2. Let A = (A,x) be an infinite matric with A,y €
B(X,Y). Then:

(1) A € (e(X),c(Y)) if and only if there exists a constant M > 0 such
that

(1.2) sup ZAnkack <M (n,reN),
leell<1ll ;25
(1.3) Jlim A,z (ke N, z € X),
(1.4) Z Az converge for eachn € N and z € X,
k

EllimZAnkw (x € X);
k
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(2) A € (01(X),c(Y)) if and only if (1.3) is satisfied and there exists
a constant M > 0 such that

(1.5) |Apell €M (n,k € N).

Statistical convergence of number sequences was introduced by Fast
[2] and investigated in a number of papers (for references see [1]). This
notion has been extended in different ways. For instance, Maddox
[12] and Kolk [6] considered the statistical convergence of sequences
taking values in a locally convex space or a Banach space, respectively.
Another extension of statistical convergence is related to generalized
densities.

Let T = (tnk) be a regular scalar matrix (i.e., T € (c, ¢)reg) With the
elements ¢, > 0 (n,k € N). A set K C N is said to have T-density
§7(K) if the limit

6T(K) = lim Z tnk
" kek
exists (cf. [3]). A sequence r = (zx) € w(X) is called T'-statistically
convergent to a point [ € X, briefly stp-limxy = [, if

Sr({k: [lzx =1 = €}) =0

for every € > 0 (see [6]). If T is the identity matrix, then T-statistical
convergence is just the ordinary convergence in X and if 7" is the Cesaro
matrix Cy, then T-statistical convergence is statistical convergence as
defined by Fast.

A further extension of statistical convergence is given in [8]. Recall
that a subfamily Z of the family 2N of all subsets of N is called an ideal
if for each K,L € Z we have K UL € T and for each K € T and each
L C K we have L € Z. An ideal 7 is called non-trivial if T # @ and
N ¢ Z. A non-trivial ideal Z is called admissible if Z contains all finite
subsets of N.

Now let Z C 2N be a non-trivial ideal. A sequence r = (z) € w(X)
is said to be Z-convergent to | € X, briefly Z-lim z; = [, if for each
e > 0 the set {k € N : ||z — ]| > ¢} belongs to Z.
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The following subsequence characterization of Z-convergence is im-
portant for us. An admissible ideal Z C 2N is said to have property
(APO) if for every countable family of mutually disjoint sets K, K, . ..
from 7 there exist sets L1, Lo, ... from 2N such that the symmetric dif-
ference K;AL; is a finite set for every ¢ € N and L = U;L; € Z. By an
index set we mean any infinite set {k;} C N with k; < k;y; for each
1€ N.

Proposition 1 [8, Theorem 3.2]. Let Z C 2N be an admissible ideal.
If the ideal T has property (APO), then Z-lim zy, =l in a Banach space
X if and only if there exists an index set M = {m;} such that N\M € T
and lim; £, =1 in X.

The fact that Z-convergent sequences may be unbounded justifies the
following definition.

Definition. An X-valued sequence r = (zj) is called boundedly
Z-convergent (boundedly T-statistically convergent) to I € X if ¢ is
bounded and Z-lim zy, = (str-limzy, = 1).

By bez(X) (bstr(X)) we denote the set of all boundedly Z-convergent
(boundedly T-statistically convergent) X-valued sequences. For X =
K we write ber and bstr instead of bez(K) and bstr(K), respectively.

Based on Proposition 1 and Theorem 1, we prove Banach-Steinhaus
type theorems for bounded Z-convergence and bounded T-statistical
convergence. As applications of these results, we characterize matrix
classes (A(X), u(Y)), where A € {c, co, ¢1} and p € {bez, bstr}. Some
special matrix transformations are also considered.

2. Banach-Steinhaus type theorems and matrix maps. In
the following let X, Y be two Banach spaces, 4, € B(X,Y) (n € N),
T c 2N anon-trivial admissible ideal and T = (¢,) a regular matrix of
non-negative scalars. We start with a Banach-Steinhaus type theorem
for Z-convergence.
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Theorem 3. Suppose that X has a countable fundamental set ®. If
the ideal T has property (APQO), then the sequence (A,x) is boundedly
T-convergent for any x € X if and only if (1.1) holds and (An¢) is
ZI-convergent for every ¢ € ®. Thereby, the limit operator A, Az = T-
lim A, z, is bounded and linear, and ||Al| < M.

Proof. If (Apz) € beg(X) for any x € X, then Z-lim A,,¢ exists for
every ¢ € ®. Moreover, since (A,z) € loo(X) for any z € X, (1.1) is
satisfied by the principle of uniform boundedness.

Conversely, assume that (1.1) holds and Z-lim A, ¢; exists for every
j € N, where ® = {¢;}. Since Z has property (APO), by Proposition 1
there exist index sets M; = {m;(j)} (j € N) such that

(2.1) Alim A (¢5 (7€ N)

and M; = N\ M; € T for any j € N. Defining K; = M and
Ky =M, \Uf;:lM,'C (7 € N), we get a countable family of mutually
disjoint sets KJ’ € Z. By property (APO) we can find the sets L; g€ 2N
(j € N) such that |K;AL}| < oo and U;L} € T. Letting N} = Uj_, Lj,
it is easily seen that [NJAM]| < oo and U;N; = U; L.

Thus we are constructing sets Nj € 2N (j € N) such that the
symmetric differences N;AM; are finite and U; N € Z. Now, defining
N;j = N\ N} and N = N;Nj, we have, in view of N;AM; = N;AM;
and N\ N = U;N], that [N;AM;| < co and N is an index set with
N\ N € Z. Consequently, denoting N = {n;}, from (2.1) it follows

limA,,¢; (j€N)
which together with (1.1) gives

Jlim A,z (z € X)
because of Theorem 1. But this is equivalent to
(Apz) € bez(X) (z € X)

by Proposition 1 and (1.1).
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Finally, since the limit operator A is determined by Az = lim; A4,,«
(x € X) and sup; ||A,,|| < M by (1.1), A must be in B(X,Y) and
|A|l < M on the grounds of Theorem 1. o

It is known that Zr = {K C N : §r(K) = 0} is a non-trivial
admissible ideal (see [8, page 671]) with the property (APO) (see [3,
Proposition 3.2]). Since Zp-convergence coincides with T-statistical
convergence, from Theorem 3 we immediately get the following Banach-
Steinhaus type theorem for T-statistical convergence.

Theorem 4. Suppose that X has a countable fundamental set ®.
Then (Anz) is boundedly T-statistically convergent for all z € X if and
only if (1.1) holds and str-lim A, ¢ exzists for any ¢ € ®. In this case
the limit operator A, Ax = stp-lim A,z (z € X), belongs to B(X,Y)
and ||A]| < M.

Let 2 = (Ank), where A, € B(X,Y) (n,k € N). Based on
Theorems 3 and 4 we describe matrix transformations 2 from ¢(X),
¢o(X) and £(X) into bez(Y') and bstr(Y') under some restrictions on X
and Z.

For z € X and n € N let ¢(z) = (x,2,...) be a constant sequence,
and let ¢ (z) = (e¥(z)) be the sequence with ef(z) = z if j = k and
el (x) = 0 otherwise. It is not difficult to see that if ® is a (countable)
fundamental set in X, then &(®) = {¢*(¢) : k € N, ¢ € @} is a
(countable) fundamental set in Banach spaces ¢o(X) and ¢(X), and
Eo(P)UEL(P) with £1(P) = {e(d) : ¢ € P} is a (countable) fundamental

set in Banach space ¢(X).

We begin with a simple lemma.

Lemma. Let ® be a fundamental set in X. The following is true:
(1) If (1.2) holds and

(2.2) Z Apkd converge for each n € N and ¢ € P,
k

then, for any n € N and ¢ = (xx) € c(X), the series Unr =Y, ApiTr
converge, U, € B(c(X),Y) and there exists a constant M > 0 such
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(2.3) |20, < M (n e N);

(2) If (1.2) holds, then, for any n € N and ¢ = (zx) € co(X),
the series Anr = Y, Ankxr converge, A, € B(co(X),Y) and (2.3)
is satisfied,

(3) If (1.5) is satisfied, then, for any n € N and ¢ = () € £(X),
the series A,r = Y ) Anrxy converge, A, € B(U(X),Y) and (2.3) is
satisfied.

Proof. To prove the first statement we fix arbitrarily index n and
consider the operators 2., : ¢(X) — Y, Aty = Y7 | Appag, r € N
Obviously, A" € B(c(X),Y) for each » € N and sup, ||AL|| < M by
(1.2). Moreover, lim, Al v automatically exists for all ¢ € &(®) and
the limits lim, AT ¢, ¢ € & (P), exist by (2.2). So, applying Theorem 1
to the sequence of bounded linear operators (A”).cn, we have that
lim, >}, Apixy exists for each ¢ € ¢(X), A, € B(c(X),Y) and
I20,]] < M for any n € N.

The proofs of (2) and (3) are quite similar if we observe that in the
case of £(X), [|Un|| = supy, ||Ank|| (n € N) (see [5, page 113]). O

Proposition 2. Suppose that X has a countable fundamental set ®
and the ideal T C 2N has property (APO). Then:

(1) A € (e(X),bez(Y)) if and only if (1.2) and (1.4) hold,

(2.4) IZ-lim Az (k €N, z € X),
(2.5) IZ-Um Y " Az (z € X);
k
(2) A € (co(X),bez(Y)) if and only if (1.2) and (2.4) are satisfied,

(3) A € (U(X),bez(Y)) if and only if (1.5) and (2.4) are satisfied.

Proof. If A € (¢(X),bez(Y)), then A € (¢(X),2(Y)) and, by the
principle of uniform boundedness, (2.3) must hold. But this yields (1.2)
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since any sequence ("l = (z1,zs,... ,2,,0,0,...) belongs to ¢(X) and
oo < 1if Jzg]] < 1 (k= 1,2,...,7). Conditions (2.4)—(2.5) are
obviously satisfied.

Conversely, if A = (A,x) satisfies (1.2) and (1.4), then, by state-
ment (1) of the lemma the series 2,r = ), Anrxr converge, A, €
B((¢(X),Y) and (2.3) holds. Moreover, conditions (2.4) and (2.5) show
that Z-lim 2,,¢ exists for any sequence ¢ from the countable fundamen-
tal set £y(P) U &L (P) of ¢(X). So, applying Theorem 3 to the sequence
of operators (2,,), we get A € (¢(X),bez(Y)).

Analogously, using statements (2) and (3) of the lemma, Theorem 3
and the fact that £ (®) is a countable fundamental set in c¢o(X) and
£(X), we can prove our statements (2) and (3). o

Similarly to Proposition 2, using only Theorem 4 instead of Theo-
rem 3, we get

Proposition 3. Suppose that X has a countable fundamental set.
Then:

(1) A € (e(X),bstr(Y)) if and only if (1.2) and (1.4) hold,

(2.6) Istp-lim Az (k€N, z € X),

Istp- limZAnka: (z € X);
k

—

2) A € (co(X),bstr(Y)) if and only if (1.2) and (2.6) are satisfied,
3) A € (L(X),bstr(Y)) if and only if (1.5) and (2.6) are satisfied.

—

Propositions 2 and 3 lead us to the characterizations of matrix classes
(e(X),bcz(X))reg and (¢(X), bstr(X))reg as follows.

Proposition 4. Suppose that X has a countable fundamental set.
(1) If the ideal Z C 2N has property (APO), then A € (¢(X), bez(X))reg
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if and only if (1.2) and (1.4) hold,
I-lim Az =6 (keN, z e X),

Z- limZAnk:v =z (zeX)
k

(2) A € (e(X),bstr(X))reg if and only if (1.2) and (1.4) hold,
str-lim Az =60 (k€ N, z € X),

stT—limZAnkx =z (z€X).
k

Now we consider a matrix transformation 2 in the case ¥ = K.
Then B(X,Y) is the topological dual X’ of X and the elements of
matrix 2 = (A,) are bounded linear functionals on X, i.e., A, € X'
(n,k € N). Let 1 < p < oo and 1/p+1/g = 1. It is known that if
the series A, = ), Anrxy converge for every r = (x3) € £,(X), then
(Ank)ken € £y(X") and consequently, |2, | = (3, || Ank[|?)1/9 (see, for
example, [10, page 247]). Moreover, if X has a countable fundamental
set ®, then ¢,(X) has countable fundamental set £ (®). So, using the
same arguments as in the proofs of Propositions 2 and 3, we get

Proposition 5. Let 1 <p < oo and 1/p+1/q = 1. Suppose that X
has a countable fundamental set.

(1) If Z has property (APO), then A € ((,(X),bez) if and only if
(2.4) holds and

(2.7) sup 3 [| 4|9 < oo;
"ok

(2) A € (£,(X),bstr) if and only if (2.6) and (2.7) are satisfied.

Remark. Kangro [5] proved that for Y = K we have

= 3l Auell
k=1

r

sup
llzkll<1

Anrxi
k=1
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Thus, if Y = K, then condition (1.2) may be replaced with

sup g | Ankll < oo
n
2

and (2.2) may be omitted in the lemma. Consequently, (1.4) is
superfluous in Propositions 2—4 in the case Y = K.

Finally, if X = Y = K, then the matrix map 2 : \(X) — p(Y)
reduces to the transformation A : A — p defined by an infinite scalar
matrix A = (ank). So, taking into account also the remark, from
Propositions 2—-5 we deduce

Proposition 6. Let A = (ank) be an infinite scalar matriz, 1 < p <
oo and 1/p+1/q=1. If T has property (APO), then:

(1) A € (e, bex) if and only if

(2.8) supZ lank| < oo,
"ok
(2.9) AZ-liman, = ar (kK € N),
(2.10) IZ-1m ) " an = a;
k

(2) A € (c,bc)reg if and only if (2.8)—(2.10) hold with a =0 (k € N)
and a = 1;

(3) A € (co,ber) if and only if (2.8) and (2.9) are satisfied;
(4) A € (¢,bcz) if and only if (2.9) holds and

sup |ank| < o0;

n,k

(5) A € (p,ber) if and only if (2.9) holds and

supz lank]? < oo.
"ok
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If Z = Zy, then Proposition 6 gives known characterizations of matrix
classes (c, bstr), (c,bstr)reg, (¢,bstr) and (£,, bstr) (see [7, Corollaries
3-6]).

REFERENCES

1. J. Connor, A topological and functional analytic approach to statistical conver-
gence, in Analysis of divergence, Appl. Numer. Harmon. Anal., Birkhduser Boston,
Boston, MA, 1999.

2. J. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951), 241-244.

3. A.R. Freedman and J.J. Sember, Densities and summability, Pacific J. Math.
95 (1981), 293-305.

4. H. Heuser, Funktionalanalysis, B.G. Teubner, Stuttgart, 1986.

5. G. Kangro, On matriz transformations of sequences in Banach spaces, 1zv.
Akad. Nauk Eston. SSR. Ser. Tehn. Fiz.-Mat. Nauk 5 (1956), 108-128 (in Russian).

6. E. Kolk, The statistical convergence in Banach spaces, Tartu Ul. Toimetised
928 (1991), 41-52.

7. , Matriz maps into the space of statistically convergent bounded se-
quences, Proc. Estonian Acad. Sci. Phys. Math. 45 (1996), 187-192.

8. P. Kostyrko, T. Salst and W. Wilczynski, Z-convergence, Real Anal. Exchange
26 (2000/2001), 669-686.

9. G. Kothe, Topologische Lineare Raume. I, Die Grundlehren der Mathematis-
chen Wissenschaften, Band 107, Springer-Verlag, Berlin, 1966.

10. LE. Leonard, Banach sequence spaces, J. Math. Anal. Appl. 54 (1976),
245-265.

11. I.J. Maddox, Infinite matrices of operators, Lecture Notes Math. 786,
Springer-Verlag, Berlin, 1980.

12. , Statistical convergence in a locally convex space, Math. Proc. Cam-
bridge Philos. Soc. 104 (1988), 141-145.

13. K. Zeller, Verallgemeinerte Matriztransformationen, Math. Z. 56 (1952),
18-20.

INSTITUTE OF PURE MATHEMATICS, UNIVERSITY OF TARTU, EE 50090 TARTU,
EsToNIA
Emalil address: enno.kolk@ut.ee




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


