BANACH-STEINHAUS TYPE THEOREMS FOR STATISTICAL AND \mathcal{I} -CONVERGENCE WITH APPLICATIONS TO MATRIX MAPS

ENNO KOLK

ABSTRACT. Let (A_n) be a sequence of bounded linear operators from a Banach space X into a Banach space Y. It is proved that if X has a countable fundamental set Φ and the ideal $\mathcal I$ of subsets of $\mathbf N$ has property (APO), then (A_nx) is boundedly $\mathcal I$ -convergent for each $x\in X$ if and only if $\sup_n\|A_n\|<\infty$ and $(A_n\phi)$ is $\mathcal I$ -convergent for any $\phi\in\Phi$. This result is applied to characterize some sequence-to-sequence transformations defined by infinite matrices of bounded linear operators.

1. Introduction and auxiliary results. Let $\mathbf{N} = \{1, 2, \dots\}$, and let X, Y be two Banach spaces over the field \mathbf{K} of real or complex numbers. A subset Φ of X is called *fundamental* if the linear span of Φ is dense in X. By B(X,Y) we denote the space of all bounded linear operators from X into Y. We write \sup_n , \lim_n , \sum_n , \cup_n and \cap_n instead of $\sup_{n \in \mathbf{N}}$, $\lim_{n \to \infty}$, $\sum_{n=1}^{\infty}$, $\cup_{n=1}^{\infty}$ and $\cap_{n=1}^{\infty}$, respectively.

Let $A_n \in B(X,Y)$, $n \in \mathbb{N}$. A well-known principle of uniform boundedness asserts that if $\sup_n ||A_n x|| < \infty$ for every $x \in X$, then there exists a constant M > 0 such that

$$(1.1) ||A_n|| \le M, \quad n \in \mathbf{N}.$$

By investigation of the convergence of various linear processes the following corollary from this principle is useful (see, for example, [4, page 248] or [9, page 173]).

Theorem 1 (Banach-Steinhaus). Let $\Phi \subset X$ be a fundamental set. The limit $\lim_n A_n x$ exists for any $x \in X$ if and only if (1.1) holds and $\lim_n A_n \phi$ exists for every $\phi \in \Phi$. Moreover, the limit operator

²⁰¹⁰ AMS $Mathematics\ subject\ classification.$ Primary 46B45, Secondary 47A05, 46B15, 40C05, 40H05.

Supported by Estonian Science Foundation grant 5376. Received by the editors on October 16, 2006 and accepted on November 16, 2009.

 $A, Ax = \lim_n A_n x$, is bounded and linear, i.e., $A \in B(X,Y)$, and $||A|| \leq M$.

Let $\omega(X)$ be the linear space of all X-valued sequences $\mathfrak{x}=(x_k)$. It is well known that the sets $\ell_\infty(X)$, c(X) and $c_0(X)$ of bounded, convergent and convergent to zero element θ X-valued sequences are Banach spaces with the norm $\|\mathfrak{x}\|_\infty = \sup_k \|x_k\|$, and $\ell_p(X) = \{\mathfrak{x} \in \omega(X) : \sum_k \|x_k\|^p < \infty\}$ $(1 \leq p < \infty)$ is a Banach space with the norm $\|\mathfrak{x}\|_p = (\sum_k \|x_k\|^p)^{1/p}$. In the case $X = \mathbf{K}$ we write ω , c, c_0 , ℓ and ℓ_p instead of $\omega(\mathbf{K})$, $c(\mathbf{K})$, $c(\mathbf{K})$, $\ell_1(\mathbf{K})$ and $\ell_p(\mathbf{K})$, respectively.

Now let $\lambda(X)$ be a subspace of $\omega(X)$, $\mu(Y)$ a subspace of $\omega(Y)$ and $\mathfrak{A} = (A_{nk})$ an infinite matrix of operators $A_{nk} \in B(X,Y)$ $(n,k \in \mathbb{N})$. We say that \mathfrak{A} maps $\lambda(X)$ into $\mu(Y)$, and write $\mathfrak{A} \in (\lambda(X), \mu(Y))$, if for all $\mathfrak{x} = (x_k) \in \lambda(X)$ the series $\mathfrak{A}_n \mathfrak{x} = \sum_k A_{nk} x_k$ $(n \in \mathbb{N})$ converge and the sequence $\mathfrak{A}\mathfrak{x} = (\mathfrak{A}_n \mathfrak{x})$ belongs to $\mu(Y)$. If Y = X and the subspaces $\lambda(X), \mu(X) \subset \omega(X)$ are equipped with the limits λ -lim and μ -lim, respectively, then we write $\mathfrak{A} \in (\lambda(X), \mu(X))_{\text{reg}}$ (and read: \mathfrak{A} maps $\lambda(X)$ into $\mu(X)$ regularly) if $\mathfrak{A} \in (\lambda(X), \mu(X))$ and μ -lim_n $\mathfrak{A}_n \mathfrak{x} = \lambda$ -lim_k x_k for all $\mathfrak{x} = (x_k) \in \lambda(X)$.

Using Theorem 1, Zeller [13] (see also [11]) and Kangro [5] described the matrix classes (c(X), c(Y)) and $(\ell_1(X), c(Y))$ as follows.

Theorem 2. Let $\mathfrak{A}=(A_{nk})$ be an infinite matrix with $A_{nk}\in B(X,Y)$. Then:

(1) $\mathfrak{A} \in (c(X), c(Y))$ if and only if there exists a constant M > 0 such that

(1.2)
$$\sup_{\|x_k\| \le 1} \left\| \sum_{k=1}^r A_{nk} x_k \right\| \le M \quad (n, r \in \mathbf{N}),$$

(1.3)
$$\exists \lim_{n} A_{nk} x \quad (k \in \mathbf{N}, \ x \in X),$$

(1.4)
$$\sum_{k} A_{nk} x \text{ converge for each } n \in N \text{ and } x \in X,$$

$$\exists \lim_{n} \sum_{k} A_{nk} x \quad (x \in X);$$

(2) $\mathfrak{A} \in (\ell_1(X), c(Y))$ if and only if (1.3) is satisfied and there exists a constant M > 0 such that

$$(1.5) ||A_{nk}|| \le M (n, k \in \mathbf{N}).$$

Statistical convergence of number sequences was introduced by Fast [2] and investigated in a number of papers (for references see [1]). This notion has been extended in different ways. For instance, Maddox [12] and Kolk [6] considered the statistical convergence of sequences taking values in a locally convex space or a Banach space, respectively. Another extension of statistical convergence is related to generalized densities.

Let $T = (t_{nk})$ be a regular scalar matrix (i.e., $T \in (c, c)_{reg}$) with the elements $t_{nk} \geq 0$ $(n, k \in \mathbf{N})$. A set $K \subset \mathbf{N}$ is said to have T-density $\delta_T(K)$ if the limit

$$\delta_T(K) = \lim_{n} \sum_{k \in K} t_{nk}$$

exists (cf. [3]). A sequence $\mathfrak{x} = (x_k) \in \omega(X)$ is called *T-statistically convergent* to a point $l \in X$, briefly st_T -lim $x_k = l$, if

$$\delta_T(\{k: ||x_k - l|| > \varepsilon\}) = 0$$

for every $\varepsilon > 0$ (see [6]). If T is the identity matrix, then T-statistical convergence is just the ordinary convergence in X and if T is the Cesàro matrix C_1 , then T-statistical convergence is statistical convergence as defined by Fast.

A further extension of statistical convergence is given in [8]. Recall that a subfamily \mathcal{I} of the family $2^{\mathbf{N}}$ of all subsets of \mathbf{N} is called an *ideal* if for each $K, L \in \mathcal{I}$ we have $K \cup L \in \mathcal{I}$ and for each $K \in \mathcal{I}$ and each $L \subset K$ we have $L \in \mathcal{I}$. An ideal \mathcal{I} is called *non-trivial* if $\mathcal{I} \neq \emptyset$ and $\mathbf{N} \notin \mathcal{I}$. A non-trivial ideal \mathcal{I} is called *admissible* if \mathcal{I} contains all finite subsets of \mathbf{N} .

Now let $\mathcal{I} \subset 2^{\mathbf{N}}$ be a non-trivial ideal. A sequence $\mathfrak{x} = (x_k) \in \omega(X)$ is said to be \mathcal{I} -convergent to $l \in X$, briefly \mathcal{I} -lim $x_k = l$, if for each $\varepsilon > 0$ the set $\{k \in \mathbf{N} : ||x_k - l|| \ge \varepsilon\}$ belongs to \mathcal{I} .

The following subsequence characterization of \mathcal{I} -convergence is important for us. An admissible ideal $\mathcal{I} \subset 2^{\mathbf{N}}$ is said to have property (APO) if for every countable family of mutually disjoint sets K_1, K_2, \ldots from \mathcal{I} there exist sets L_1, L_2, \ldots from $2^{\mathbf{N}}$ such that the symmetric difference $K_i \Delta L_i$ is a finite set for every $i \in \mathbf{N}$ and $L = \bigcup_i L_i \in \mathcal{I}$. By an index set we mean any infinite set $\{k_i\} \subset \mathbf{N}$ with $k_i < k_{i+1}$ for each $i \in \mathbf{N}$.

Proposition 1 [8, Theorem 3.2]. Let $\mathcal{I} \subset 2^{\mathbf{N}}$ be an admissible ideal. If the ideal \mathcal{I} has property (APO), then \mathcal{I} - $\lim x_k = l$ in a Banach space X if and only if there exists an index set $M = \{m_i\}$ such that $\mathbf{N} \setminus M \in \mathcal{I}$ and $\lim_i x_{m_i} = l$ in X.

The fact that \mathcal{I} -convergent sequences may be unbounded justifies the following definition.

Definition. An X-valued sequence $\mathfrak{x} = (x_k)$ is called boundedly \mathcal{I} -convergent (boundedly T-statistically convergent) to $l \in X$ if \mathfrak{x} is bounded and \mathcal{I} -lim $x_k = l$ (st_T -lim $x_k = l$).

By $bc_{\mathcal{I}}(X)$ ($bst_{T}(X)$) we denote the set of all boundedly \mathcal{I} -convergent (boundedly T-statistically convergent) X-valued sequences. For $X = \mathbf{K}$ we write $bc_{\mathcal{I}}$ and bst_{T} instead of $bc_{\mathcal{I}}(\mathbf{K})$ and $bst_{T}(\mathbf{K})$, respectively.

Based on Proposition 1 and Theorem 1, we prove Banach-Steinhaus type theorems for bounded \mathcal{I} -convergence and bounded T-statistical convergence. As applications of these results, we characterize matrix classes $(\lambda(X), \mu(Y))$, where $\lambda \in \{c, c_0, \ell_1\}$ and $\mu \in \{bc_{\mathcal{I}}, bst_T\}$. Some special matrix transformations are also considered.

2. Banach-Steinhaus type theorems and matrix maps. In the following let X, Y be two Banach spaces, $A_n \in B(X,Y)$ $(n \in \mathbf{N})$, $\mathcal{I} \subset 2^{\mathbf{N}}$ a non-trivial admissible ideal and $T = (t_{nk})$ a regular matrix of non-negative scalars. We start with a Banach-Steinhaus type theorem for \mathcal{I} -convergence.

Theorem 3. Suppose that X has a countable fundamental set Φ . If the ideal \mathcal{I} has property (APO), then the sequence (A_nx) is boundedly \mathcal{I} -convergent for any $x \in X$ if and only if (1.1) holds and $(A_n\phi)$ is \mathcal{I} -convergent for every $\phi \in \Phi$. Thereby, the limit operator A, $Ax = \mathcal{I}$ - $\lim A_nx$, is bounded and linear, and $||A|| \leq M$.

Proof. If $(A_n x) \in bc_{\mathcal{I}}(X)$ for any $x \in X$, then \mathcal{I} -lim $A_n \phi$ exists for every $\phi \in \Phi$. Moreover, since $(A_n x) \in \ell_{\infty}(X)$ for any $x \in X$, (1.1) is satisfied by the principle of uniform boundedness.

Conversely, assume that (1.1) holds and \mathcal{I} -lim $A_n\phi_j$ exists for every $j \in \mathbf{N}$, where $\Phi = \{\phi_j\}$. Since \mathcal{I} has property (APO), by Proposition 1 there exist index sets $M_j = \{m_i(j)\}\ (j \in \mathbf{N})$ such that

(2.1)
$$\exists \lim_{i} A_{m_{i}(j)} \phi_{j} \quad (j \in \mathbf{N})$$

and $M'_j = \mathbf{N} \setminus M_j \in \mathcal{I}$ for any $j \in \mathbf{N}$. Defining $K'_1 = M'_1$ and $K'_{j+1} = M'_{j+1} \setminus \bigcup_{k=1}^{j} M'_k \ (j \in \mathbf{N})$, we get a countable family of mutually disjoint sets $K'_j \in \mathcal{I}$. By property (APO) we can find the sets $L'_j \in 2^{\mathbf{N}}$ $(j \in \mathbf{N})$ such that $|K'_j \Delta L'_j| < \infty$ and $\bigcup_j L'_j \in \mathcal{I}$. Letting $N'_j = \bigcup_{k=1}^{j} L'_k$, it is easily seen that $|N'_j \Delta M'_j| < \infty$ and $\bigcup_j N'_j = \bigcup_j L'_j$.

Thus we are constructing sets $N'_j \in 2^{\mathbf{N}}$ $(j \in \mathbf{N})$ such that the symmetric differences $N'_j \Delta M'_j$ are finite and $\cup_j N'_j \in \mathcal{I}$. Now, defining $N_j = \mathbf{N} \setminus N'_j$ and $N = \cap_j N_j$, we have, in view of $N_j \Delta M_j = N'_j \Delta M'_j$ and $\mathbf{N} \setminus N = \cup_j N'_j$, that $|N_j \Delta M_j| < \infty$ and N is an index set with $\mathbf{N} \setminus N \in \mathcal{I}$. Consequently, denoting $N = \{n_i\}$, from (2.1) it follows

$$\exists \lim_i A_{n_i} \phi_j \quad (j \in \mathbf{N})$$

which together with (1.1) gives

$$\exists \lim_{i} A_{n_i} x \quad (x \in X)$$

because of Theorem 1. But this is equivalent to

$$(A_n x) \in bc_{\mathcal{I}}(X) \quad (x \in X)$$

by Proposition 1 and (1.1).

Finally, since the limit operator A is determined by $Ax = \lim_i A_{n_i} x$ $(x \in X)$ and $\sup_i ||A_{n_i}|| \leq M$ by (1.1), A must be in B(X,Y) and $||A|| \leq M$ on the grounds of Theorem 1.

It is known that $\mathcal{I}_T = \{K \subset \mathbf{N} : \delta_T(K) = 0\}$ is a non-trivial admissible ideal (see [8, page 671]) with the property (APO) (see [3, Proposition 3.2]). Since \mathcal{I}_T -convergence coincides with T-statistical convergence, from Theorem 3 we immediately get the following Banach-Steinhaus type theorem for T-statistical convergence.

Theorem 4. Suppose that X has a countable fundamental set Φ . Then $(A_n x)$ is boundedly T-statistically convergent for all $x \in X$ if and only if (1.1) holds and st_T - $\lim A_n \phi$ exists for any $\phi \in \Phi$. In this case the limit operator A, $Ax = st_T$ - $\lim A_n x$ $(x \in X)$, belongs to B(X,Y) and $||A|| \leq M$.

Let $\mathfrak{A} = (A_{nk})$, where $A_{nk} \in B(X,Y)$ $(n,k \in \mathbb{N})$. Based on Theorems 3 and 4 we describe matrix transformations \mathfrak{A} from c(X), $c_0(X)$ and $\ell(X)$ into $bc_{\mathcal{I}}(Y)$ and $bst_T(Y)$ under some restrictions on X and \mathcal{I} .

For $x \in X$ and $n \in \mathbf{N}$ let $\mathfrak{e}(x) = (x, x, ...)$ be a constant sequence, and let $\mathfrak{e}^k(x) = (e_j^k(x))$ be the sequence with $e_j^k(x) = x$ if j = k and $e_j^k(x) = 0$ otherwise. It is not difficult to see that if Φ is a (countable) fundamental set in X, then $\mathcal{E}_0(\Phi) = \{\mathfrak{e}^k(\phi) : k \in \mathbf{N}, \phi \in \Phi\}$ is a (countable) fundamental set in Banach spaces $c_0(X)$ and $\ell(X)$, and $\mathcal{E}_0(\Phi) \cup \mathcal{E}_1(\Phi)$ with $\mathcal{E}_1(\Phi) = \{\mathfrak{e}(\phi) : \phi \in \Phi\}$ is a (countable) fundamental set in Banach space c(X).

We begin with a simple lemma.

Lemma. Let Φ be a fundamental set in X. The following is true:

- (1) If (1.2) holds and
- (2.2) $\sum_{k} A_{nk} \phi \text{ converge for each } n \in N \text{ and } \phi \in \Phi,$

then, for any $n \in \mathbb{N}$ and $\mathfrak{x} = (x_k) \in c(X)$, the series $\mathfrak{A}_n \mathfrak{x} = \sum_k A_{nk} x_k$ converge, $\mathfrak{A}_n \in B(c(X), Y)$ and there exists a constant M > 0 such

that

- (2) If (1.2) holds, then, for any $n \in \mathbf{N}$ and $\mathfrak{x} = (x_k) \in c_0(X)$, the series $\mathfrak{A}_n\mathfrak{x} = \sum_k A_{nk}x_k$ converge, $\mathfrak{A}_n \in B(c_0(X), Y)$ and (2.3) is satisfied;
- (3) If (1.5) is satisfied, then, for any $n \in \mathbb{N}$ and $\mathfrak{x} = (x_k) \in \ell(X)$, the series $\mathfrak{A}_n\mathfrak{x} = \sum_k A_{nk}x_k$ converge, $\mathfrak{A}_n \in B(\ell(X), Y)$ and (2.3) is satisfied.

Proof. To prove the first statement we fix arbitrarily index n and consider the operators $\mathfrak{A}_n^r:c(X)\to Y, \,\mathfrak{A}_n^r\mathfrak{x}=\sum_{k=1}^r A_{nk}x_k,\,r\in\mathbf{N}.$ Obviously, $\mathfrak{A}_n^r\in B(c(X),Y)$ for each $r\in\mathbf{N}$ and $\sup_r\|A_n^r\|\le M$ by (1.2). Moreover, $\lim_r A_n^r\mathfrak{x}$ automatically exists for all $\mathfrak{x}\in\mathcal{E}_0(\Phi)$ and the limits $\lim_r \mathfrak{A}_n^r\mathfrak{x},\,\mathfrak{x}\in\mathcal{E}_1(\Phi)$, exist by (2.2). So, applying Theorem 1 to the sequence of bounded linear operators $(\mathfrak{A}_n^r)_{r\in\mathbf{N}}$, we have that $\lim_r \sum_{k=1}^r A_{nk}x_k$ exists for each $\mathfrak{x}\in c(X),\,\mathfrak{A}_n\in B(c(X),Y)$ and $\|\mathfrak{A}_n\|\le M$ for any $n\in\mathbf{N}$.

The proofs of (2) and (3) are quite similar if we observe that in the case of $\ell(X)$, $\|\mathfrak{A}_n\| = \sup_k \|A_{nk}\|$ $(n \in \mathbb{N})$ (see [5, page 113]).

Proposition 2. Suppose that X has a countable fundamental set Φ and the ideal $\mathcal{I} \subset 2^{\mathbf{N}}$ has property (APO). Then:

(1)
$$\mathfrak{A} \in (c(X), bc_{\mathcal{I}}(Y))$$
 if and only if (1.2) and (1.4) hold,

(2.4)
$$\exists \mathcal{I}\text{-}\lim_{n} A_{nk} x \quad (k \in \mathbf{N}, \ x \in X),$$

(2.5)
$$\exists \mathcal{I}\text{-}\lim_{n}\sum_{k}A_{nk}x \quad (x \in X);$$

- (2) $\mathfrak{A} \in (c_0(X), bc_{\mathcal{I}}(Y))$ if and only if (1.2) and (2.4) are satisfied;
- (3) $\mathfrak{A} \in (\ell(X), bc_{\mathcal{I}}(Y))$ if and only if (1.5) and (2.4) are satisfied.

Proof. If $\mathfrak{A} \in (c(X), bc_{\mathcal{I}}(Y))$, then $\mathfrak{A} \in (c(X), \ell_{\infty}(Y))$ and, by the principle of uniform boundedness, (2.3) must hold. But this yields (1.2)

since any sequence $\mathfrak{x}^{[r]}=(x_1,x_2,\ldots,x_r,0,0,\ldots)$ belongs to c(X) and $\|\mathfrak{x}^{[r]}\|_{\infty}\leq 1$ if $\|x_k\|\leq 1$ $(k=1,2,\ldots,r)$. Conditions (2.4)–(2.5) are obviously satisfied.

Conversely, if $\mathfrak{A} = (A_{nk})$ satisfies (1.2) and (1.4), then, by statement (1) of the lemma the series $\mathfrak{A}_{n\mathfrak{x}} = \sum_{k} A_{nk} x_k$ converge, $\mathfrak{A}_n \in B((c(X), Y) \text{ and } (2.3) \text{ holds. Moreover, conditions } (2.4) \text{ and } (2.5) \text{ show that } \mathcal{I}\text{-lim }\mathfrak{A}_{n\mathfrak{x}} \text{ exists for any sequence } \mathfrak{x} \text{ from the countable fundamental set } \mathcal{E}_0(\Phi) \cup \mathcal{E}_1(\Phi) \text{ of } c(X). \text{ So, applying Theorem 3 to the sequence of operators } (\mathfrak{A}_n), \text{ we get } \mathfrak{A} \in (c(X), bc_{\mathcal{I}}(Y)).$

Analogously, using statements (2) and (3) of the lemma, Theorem 3 and the fact that $\mathcal{E}_0(\Phi)$ is a countable fundamental set in $c_0(X)$ and $\ell(X)$, we can prove our statements (2) and (3).

Similarly to Proposition 2, using only Theorem 4 instead of Theorem 3, we get

Proposition 3. Suppose that X has a countable fundamental set. Then:

(1)
$$\mathfrak{A} \in (c(X), bst_T(Y))$$
 if and only if (1.2) and (1.4) hold,

(2.6)
$$\exists st_{T}\text{-}\lim_{n} A_{nk}x \quad (k \in \mathbf{N}, \ x \in X),$$

$$\exists st_{T}\text{-}\lim_{n} \sum_{k} A_{nk}x \quad (x \in X);$$

- (2) $\mathfrak{A} \in (c_0(X), bst_T(Y))$ if and only if (1.2) and (2.6) are satisfied;
- (3) $\mathfrak{A} \in (\ell(X), bst_T(Y))$ if and only if (1.5) and (2.6) are satisfied.

Propositions 2 and 3 lead us to the characterizations of matrix classes $(c(X), bc_{\mathcal{I}}(X))_{\text{reg}}$ and $(c(X), bst_{\mathcal{I}}(X))_{\text{reg}}$ as follows.

Proposition 4. Suppose that X has a countable fundamental set. (1) If the ideal $\mathcal{I} \subset 2^{\mathbf{N}}$ has property (APO), then $\mathfrak{A} \in (c(X), bc_{\mathcal{I}}(X))_{reg}$ if and only if (1.2) and (1.4) hold,

$$\mathcal{I}\text{-}\lim_{n} A_{nk} x = \theta \quad (k \in \mathbf{N}, \ x \in X),$$

$$\mathcal{I}\text{-}\lim_{n} \sum_{k} A_{nk} x = x \quad (x \in X);$$

(2)
$$\mathfrak{A} \in (c(X), bst_T(X))_{reg}$$
 if and only if (1.2) and (1.4) hold,

$$st_{T^-} \lim_n A_{nk} x = \theta \quad (k \in \mathbb{N}, \ x \in X),$$

$$st_{T^-} \lim_n \sum_k A_{nk} x = x \quad (x \in X).$$

Now we consider a matrix transformation $\mathfrak A$ in the case $Y=\mathbf K$. Then B(X,Y) is the topological dual X' of X and the elements of matrix $\mathfrak A=(A_{nk})$ are bounded linear functionals on X, i.e., $A_{nk}\in X'$ $(n,k\in \mathbf N)$. Let $1< p<\infty$ and 1/p+1/q=1. It is known that if the series $\mathfrak A_n=\sum_k A_{nk}x_k$ converge for every $\mathfrak x=(x_k)\in \ell_p(X)$, then $(A_{nk})_{k\in \mathbf N}\in \ell_q(X')$ and consequently, $\|\mathfrak A_n\|=(\sum_k \|A_{nk}\|^q)^{1/q}$ (see, for example, $[\mathbf 10$, page 247]). Moreover, if X has a countable fundamental set Φ , then $\ell_p(X)$ has countable fundamental set $\mathcal E_0(\Phi)$. So, using the same arguments as in the proofs of Propositions 2 and 3, we get

Proposition 5. Let 1 and <math>1/p + 1/q = 1. Suppose that X has a countable fundamental set.

(1) If $\mathcal I$ has property (APO), then $\mathfrak A\in (\ell_p(X),bc_{\mathcal I})$ if and only if (2.4) holds and

$$\sup_{n} \sum_{k} \|A_{nk}\|^{q} < \infty;$$

(2) $\mathfrak{A} \in (\ell_p(X), bst_T)$ if and only if (2.6) and (2.7) are satisfied.

Remark. Kangro [5] proved that for $Y = \mathbf{K}$ we have

$$\sup_{\|x_k\| \le 1} \left\| \sum_{k=1}^r A_{nk} x_k \right\| = \sum_{k=1}^r \|A_{nk}\|.$$

Thus, if $Y = \mathbf{K}$, then condition (1.2) may be replaced with

$$\sup_{n} \sum_{k} \|A_{nk}\| < \infty$$

and (2.2) may be omitted in the lemma. Consequently, (1.4) is superfluous in Propositions 2–4 in the case $Y = \mathbf{K}$.

Finally, if $X=Y=\mathbf{K}$, then the matrix map $\mathfrak{A}:\lambda(X)\to\mu(Y)$ reduces to the transformation $A:\lambda\to\mu$ defined by an infinite scalar matrix $A=(a_{nk})$. So, taking into account also the remark, from Propositions 2–5 we deduce

Proposition 6. Let $A = (a_{nk})$ be an infinite scalar matrix, 1 and <math>1/p + 1/q = 1. If \mathcal{I} has property (APO), then:

(1) $A \in (c, bc_{\mathcal{I}})$ if and only if

$$\sup_{n} \sum_{k} |a_{nk}| < \infty,$$

(2.9)
$$\exists \mathcal{I}\text{-}\lim_{n} a_{nk} = a_{k} \quad (k \in \mathbf{N}),$$

(2.10)
$$\exists \mathcal{I}\text{-}\lim_{n}\sum_{k}a_{nk}=a;$$

- (2) $A \in (c, bc_{\mathcal{I}})_{reg}$ if and only if (2.8)–(2.10) hold with $a_k = 0$ ($k \in \mathbb{N}$) and a = 1;
 - (3) $\mathfrak{A} \in (c_0, bc_{\mathcal{I}})$ if and only if (2.8) and (2.9) are satisfied;
 - (4) $\mathfrak{A} \in (\ell, bc_{\mathcal{I}})$ if and only if (2.9) holds and

$$\sup_{n,k} |a_{nk}| < \infty;$$

(5) $\mathfrak{A} \in (\ell_p, bc_{\mathcal{I}})$ if and only if (2.9) holds and

$$\sup_{n} \sum_{k} |a_{nk}|^{q} < \infty.$$

If $\mathcal{I} = \mathcal{I}_T$, then Proposition 6 gives known characterizations of matrix classes (c, bst_T) , $(c, bst_T)_{reg}$, (ℓ, bst_T) and (ℓ_p, bst_T) (see [7, Corollaries 3–6]).

REFERENCES

- 1. J. Connor, A topological and functional analytic approach to statistical convergence, in Analysis of divergence, Appl. Numer. Harmon. Anal., Birkhäuser Boston, Boston, MA, 1999.
 - 2. J. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951), 241-244.
- 3. A.R. Freedman and J.J. Sember, *Densities and summability*, Pacific J. Math. 95 (1981), 293–305.
 - 4. H. Heuser, Funktionalanalysis, B.G. Teubner, Stuttgart, 1986.
- 5. G. Kangro, On matrix transformations of sequences in Banach spaces, Izv. Akad. Nauk Éston. SSR. Ser. Tehn. Fiz.-Mat. Nauk 5 (1956), 108-128 (in Russian).
- 6. E. Kolk, The statistical convergence in Banach spaces, Tartu Ül. Toimetised 928 (1991), 41–52.
- 7. ———, Matrix maps into the space of statistically convergent bounded sequences, Proc. Estonian Acad. Sci. Phys. Math. 45 (1996), 187–192.
- 8. P. Kostyrko, T. Šalát and W. Wilczyński, \mathcal{I} -convergence, Real Anal. Exchange **26** (2000/2001), 669–686.
- 9. G. Köthe, Topologische Lineare Räume. I, Die Grundlehren der Mathematischen Wissenschaften, Band 107, Springer-Verlag, Berlin, 1966.
- ${\bf 10.}$ I.E. Leonard, $Banach\ sequence\ spaces,$ J. Math. Anal. Appl. ${\bf 54}\ (1976),$ 245–265.
- 11. I.J. Maddox, Infinite matrices of operators, Lecture Notes Math. 786, Springer-Verlag, Berlin, 1980.
- 12. ——, Statistical convergence in a locally convex space, Math. Proc. Cambridge Philos. Soc. 104 (1988), 141–145.
- 13. K. Zeller, Verallgemeinerte Matrixtransformationen, Math. Z. 56 (1952), 18-20.

Institute of Pure Mathematics, University of Tartu, EE 50090 Tartu, Estonia

Email address: enno.kolk@ut.ee