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MORE ON HEIGHTS DEFINED
OVER A FUNCTION FIELD

JEFFREY LIN THUNDER

1. Introduction. When confronted with a Diophantine equation
(or set of equations) which has infinitely many solutions, one would
like to estimate the number of such solutions with height less than a
given bound. Examples of such estimates include quantitative versions
of Northcott’s theorem and Schanuel’s result on the number of points
in projective space over a number field.

In [1], the authors claim that, in many cases, the number of points
of bounded height on certain varieties should grow at a prescribed
rate. As evidence towards this, they prove such growth estimates
for general flag manifolds. (See also [4].) Their method used deep
results on the analytic continuation of certain Eisenstein series and
dealt with an arbitrary number field. Independently, the author proved
asymptotic estimates with explicit error terms for the number of points
of bounded height on Grassmannians and flag varieties defined over a
number field. The methods used were comparatively elementary, but
were subsequently used in [7] to prove growth estimates for Schubert
varieties—a case not dealt with in the results of [1, 4].

In a different but related vein, others, see e.g., [2, 6], have considered
the number of points of bounded absolute height in projective space

P"(Q) whose field of definition is a fixed (or bounded) degree over a
given number field. Recently, Masser and Vaaler in [3] gave asymptotic

estimates as B — oo for the number of (p,1) € 62 with [K(p): K] =d
and absolute height no more than B, where K is a fixed number field.

In this paper, we will use results and techniques developed by the
author in [8] to prove function field analogs of the two results alluded
to above. Specifically, we prove growth estimates and asymptotic
estimates for Schubert varieties defined over function fields and also
an analog of the result of Masser and Vaaler. In order to state our
results, we need to briefly mention some notation. Let K be a finite
algebraic extension of the field of rational functions Fg(X), where X
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is transcendental over the finite field F, with g elements. We assume
that F is the field of constants. Denote the genus by g and number of
divisor classes of degree 0 by J. Let (; denote the zeta function of K.
For any n > 1, set

Jqr1=9)
(¢ — 1)Ck(n)

All implicit constants to follow depend only on K and either n or d,
as appropriate. We define the heights used in Sections 1 and 3 below.

a(n) :=

Theorem 1. Set k = [K: Fy(X)], and fix an algebraic closure K of
K. Ford>1 and m > 0, let N(d,m) denote the number of p € K of
degree d over K with absolute height h(p,1) = m. Then

N md?k .
N(d,m) = da(d + 1)gmd=@+1 | { O(qm*s)  if d#2,
O(mkg™*) if d=2.

For integers 0 < d < n, let ¢(n,d) denote the set of order increasing

d-tuples of integers & = (a1, @2,... ,04), 1 <y <az <+ <ag <n.
Let eq,... ,e, denote the canonical basis vectors for K™, and let K¢
be the subspace spanned by eq,... ,eq for any d < n.

Definition. For a € ¢(n,d), the Schubert variety associated with o
is the set of d-dimensional subspaces S C K™ which satisfy

dimg(SNK*) >4 for1l<i<d.
We denote the number of such subspaces S with height h(S) = m by
N(a,m).

Rather than give estimates for N(a, m) directly, we deal with “cells”
of the Schubert variety.

Definition. Let N'(c, m) denote the number of subspaces S counted
in N (o, m) which also satisfy

dimg (SN K*) =4 > dimg(SNK*™) for 1 <i<d.
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We write 8 < a for B, € ¢(n,d) to mean §; < «; for 1 < i < d.
One easily checks that

(1) N(a,m)= > N'(B,m).
B<a

For a € ¢(n,d) we set

1<i<d
cla)=4#{i: a(a) =a; —2i+d+1}

c3(@) = max {i: c1(a) = a; —2i +d + 1}.

)

c1(a) = max{a; —2i} +d+1
(
( 1<i<d

Conjecture. Let 0 < d < n and a € ¢(n,d) with ag > 1. Then, for
some positive a(a) depending only on K and a,

N (e, m) = a(a)g™er (@@
{O(qmq(a)ch(a)z) if Cg(a) > 1,
+

19) (qM(m (Q)—=1)pd— 1) otherwise.

Note that if 8 < a then ¢;(8) < ¢1 (@), and if these two constants are
equal, then c3(8) < c2(a) as well. Thus, by (1), proving the conjecture
would imply a similar asymptotic estimate for N(a, m) as well. Also,
if oy =1, it is a simple matter to see that N(a, m) = N(B,m), where
B=(az—1,... ,aq4 — 1) (see Lemma 0 below). Thus, the hypothesis
a1 > 1 is harmless. We will prove the conjecture for a wide variety of
a’s. For d > 1 and a € ¢(n,d), it will be convenient in what follows to
denote (ay,... ,aq-1) by '

Theorem 2. Let 0 < d < n and o € ¢(n,d) with a3 > 1.
Suppose c3(a) = d. If ca(a) = 1, then the conjecture holds for o
with a(a) = a(ay) if d =1 and

oo

a(@) = alag — d+1) 3 N'(e, )¢

i=0
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if d> 1. If ca(ax) > 1 (so0 that d > 1) and the conjecture holds for o,
then it holds for o with

a(a’)

Co (a’)

ala) =alag—d+1)

Implicit in the statement of Theorem 2 is that the sum Y °° ; N'(e', 7)

¢’(4=24) converges. That is indeed the case; it follows from one of the
inequalities in Theorem 5 below (see Proposition 2 in Section 2).

Theorem 3. Let 0 < d < n and o € ¢(n,d) with a3 > 1. Suppose
cs(a) < d and the conjecture holds for o. If the genus g = 0, then the
conjecture holds for .. If a;y1 = a;+1 for alli withd—1 > i > c3(a’),
then the conjecture holds for a.

Theorem 4. If the genus of K is 0, then the conjecture holds.

Theorem 5. Let 0 < d < n and a € c(n,d) with oy > 1. Then
there is a B < a with c¢i1(a) = ¢1(B) and ca(a) = co(B) for which the
congjecture holds, and

N'(a,m) >< gmer (@ pea(@)=1,

I. Definitions and notation. Here we will define the heights to
be used throughout and also introduce some auxiliary definitions and
notation. (We postpone the definition of absolute height to Section 3,
however.) In addition to the notation established above, we will write
M(K) for the set of places of K and Ka for the adele ring. For a
place v € M(K), we let K, denote the topological completion of K at
v and let ord, be the order function on K,, normalized to have image
Z U {o0}. We extend ord, to K by defining

ordy, (Z1,...,2,) = lr<nii£1n ord, (z;).
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For any x = (x,) € Ko™ with ord,(x,) € Z for all places v and with
ord,(x,) = 0 for all but finitely many places, we get a divisor

div (x) := Z ord, (xy) - v.

veEM(K)

Thus, for any nonzero x € K™ and A € GL,(Ka) we have a divisor
div (Ax) and the additive and multiplicative heights

ha(x) := —degdiv (4x), Ha(x) i= ¢ha®.

Since the degree of a principal divisor is 0, one sees that these heights
are actually functions on projective (n — 1)-space.

These heights are extended to arbitrary subspaces of K™ via Grass-
mann coordinates. Specifically, suppose 1 < d < n,and S C K" is a
d-dimensional subspace with basis x1,... ,x4. Then X = x1A---Ax4 €

K (3), and we define

ha(S) := h/\dA(X) = —degdiv (Ax; A--- A Axg), Ha(S) := ¢4,

Note that hs(K™) = —degdivdet (A). We define h4({0}) = 0. The
case where A = I, the identity element of GL, (K4 ), gives the usual
“untwisted” heights, which will be simply denoted by h and H without
the subscript.

For A € GL,(Ka) the successive minima p1(A4) < -+ < p,(A) are

wi(A) := min{m: K" contains ¢ linearly independent x
with hy(x) < m}

forl1 <i<n.

Throughout this paper we will use capital script German letters to
denote divisors: 2, B, €, etc., and simply use 0 to denote the zero
divisor. We say a divisor 2 is nonnegative and write 2 > 0 if ord, ()
is nonnegative for all places v € M (K'). More generally, we write 2l > B
if A —B > 0. We let u denote the Mdbius function on nonnegative
divisors; p is defined by u(0) = 1, p(f) = —1 for prime divisors P,
p(mP) =0if m > 1, and p(A+ B) = pu(A) - u(B) whenever A and B
have disjoint support.
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2. Schubert cells. We start by recalling some pertinent results
from [8] and proving a few preparatory lemmas.

For A € GL,(KAa), set N(A,1,m) equal to the number of one-
dimensional subspaces Kx € K™ with height hs(x) = m. The first
result follows from [8, Theorem 1].

Theorem 0. Suppose n > 2 and A € GL,(Ka). Then, for all
m 2 pin (A)7

A qm qm—pn(A)
N(A,1,m) = a(n) Ha(K™) + O<q—nun(A)HA(Kn)>'

We will also use the following from [8, Lemmas 8a and 8b] which
shows how our heights behave when restricting to subspaces and when
looking at factor spaces.

Lemma 0. Let A € GL,(Ka) and 1 < d < n. Let S C K"
be a d-dimensional subspace, and choose a basis Xi,...,X, of K"
such that x1,...,%Xq 1 a basis for S. There are A’ € GL4(Ka) and
A" € GL,,_q(Ka) such that the height ha: on S with respect to the basis
X1,... ,Xq is equal to hy and the height ha» on K™/S with respect to
the basis X441 + S,... ,xn, + S satisfies han(V/S) = ha(V) — ha(S)
for all subspaces V2 S.

We will need the following three simple results.

Lemma 1. Let S C K™ be a d-dimensional subspace, where
0 <d < n. Then, for any canonical basis vector e ¢ S, we have

h(S @ Ke) < h(S).

Proof. This is obvious if S = {0}, so assume d > 0 and let x3,... ,Xq4
be a basis for S. Clearly the components of x; A--- Axg Ae are, up to
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sign, also components of x; A - -+ A xg4. Thus, for any place v € M(K),
we have
ord,(x3 A+ - AxgAe)>ord, (X1 A AXg),

so that h(S @ Ke) < h(S). O

Lemma 2. Let S be as in Lemma 1, and let B € GL,,_4(Ka) give
the height on K™/S as in Lemma 0. Then p,—q(B) < 0.

Proof. Let x;,...,%Xq be a basis for S, and let e;,,...,e; , be
canonical basis vectors such that x;,... ,%x4,€i,,... ,€;,_, is a basis for
K™. Then e;,+S € K" /S are linearly independent for j = 1,... ,n—d,
and by Lemma 1,

hB(eij + S) = h(S (&) Keij) - h(S) <0

for all j. ]

Lemma 3. Let T C K™ ! be a (d — 1)-dimensional subspace where
1<d<n. Then for anyx € K™\ K" !, we have

W(T ® Kx) > h(T).

Proof. This is clear if d = 1, so assume d > 1, and let xy,... ,Xq4_1
be a basis for 7. Let x € K™\ K" !; without loss of generality, we
may assume X = e, + v, where v € K®~!. Then, up to sign, every
component of x; A --- A Xq_1 is a component of e, A x; A--- A Xq_1,
hence is also a component of x A x; A -++ Axg_1. As in the proof of
Lemma 1, this shows that h(T ® Kx) > h(T). O

We now turn to estimating the number of subspaces of given height.
We use just a little more notation. For A € GL,,(K4) and a divisor 2,
let

LA, A) :={x e K": ord,(A,x) > —ord, () for all v € M(K)}
L™ (A, A) := {x € K™: min{ord,(A4,x),0}
> —ord, () for all v e M(K)}
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L™ (21, A) == {x € K": min{ord,(4,x),0}
= —ord, () for all v € M (K)}

and denote their cardinalities by A(2, A), A"2(2(, A) and A2 (2, A),
respectively. As discussed in [8], L(2, A) is a vector space of finite
dimension (2, A) over F,, so that A\(, A) = ¢!(*4). Clearly,

(2) g = (A, A) = A (A, A) for A > 0.

Lemma 4 [8, Lemma 3]. Let A € GL,(Ka), and let A be a
nonnegative divisor. Then

Do @A - € A) = X (L A).

0<e<

Lemma 5. Let o, € c(n,d) with o < 8. Then N'(a,m) >
N'(B,m) for all m.

Proof. For 1 < i <d,let a; = (B1,-..,0i, Qit1,--.,04), let apg =
and ag = B. Thenag > a; > --->ag=06. Foralli =1,...,d, the
permutation of K" given by e,, < eg, takes all subspaces counted in
N'(ea;, m) to subspaces counted in N'(a;—1,m) in a one-to-one fashion.
Thus,

N'(at,m) = N'(co,m) = N'(@z,m) = -+ = N'(aym) = N'(8,m). ©

Proposition 1. Let T C K"~ be a (d — 1)-dimensional subspace,
where 1 < d < n, and let m > 0. Then the number N of d-dimensional
subspaces S C K™\ K™™' with S O T and h(S) =m + h(T) satisfies

N =a(n—d+1)g™" Y H(T) + O (¢™" D H(T)).

Proof. Let B € GL,,_44+1(Ka) and B~ € GL,_4(Ka) give the
heights on K™/T and K"~!/T, respectively. Then N = N(B,1,m)
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— N(B—,1,m). By Lemma 2, pun—g+1(B), in—d(B~) < 0. Further,
hp(K"~4*1) = h(K™) — h(T) = —h(T) and hp- (K"~ %) = h(K" 1)
— h(T) = —h(T'). The proposition thus follows from Theorem 0. o

Proposition 2. Let 1 <d <n and m > 0. Then, for all a € ¢(n,d)
with a; > 1, we have

N'(a, m) < qmcl(a)ch(a)fl‘

Proof. We prove this by induction on d. In the case d = 1, we apply
Proposition 1 with n = ay and T = {0} to get

@ V(o) = o)™ +0(gex).

Since ¢ () = a and ca(a) = 1 here, this proves the case d = 1.

Now assume d > 1 and the proposition is true for d—1. If S is counted
in N'(a,m), then S = T @ Kx where T = S N K%' is counted in
N'(a/,j) for some j and x € K% \ K%~ ! is unique modulo 7. By
Lemma 3, h(S) = m > h(T). Hence, by Proposition 1,

(4) N'(a,m)

=3~ [ (aq—d+1)g (m—j)(ad—dﬂ)qj+O(q(m—j)(ad—d)qj)]'
7=0

Applying the induction hypothesis to a’, we get

() N(aym) < gty gilal@)eatdje@),
j=0

There are three possibilities. First, if ag —d > c1(a’), then ¢;(a) =
ag—d+1 and c2(a) = 1. In this case, using ¢;(a’) —ag+d—1< -1
in (5) gives

N(a m <<qm(:1(a Zq de 2
7=0
< qmcl(a)‘
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Second, if ag —d = ¢1(a’), then ¢1(a) = ag—d+1, c2(a) = ca(a’) +1,
and by (5),

N'(a, m) < qmcl(a) Zng(a)—Q
j=0
< qmcl(a)mcz(a)—l.

Finally, if ag — d < c1(@’), then ¢;(a) = c1(e’) + 1, c2(a) = ca(a’)
and by (5)

N'(a, m) < qm(ad7d+1) Z qj(cl(a')focqud)jcz(a')fl
j=0

S qm(ad7d+1)mcz(a)fl qu(cl(a’)fad+d)
7=0
< qmcl(a)ch(a)fl‘ O

With these results in hand, we can now prove one of our main results.

Proof of Theorem 2. The case d = 1 is (3), so assume that d > 1
and suppose first that cy(a) = 1. Then, since c3(a) = d, we must have
c1(a) =ag—d+1>c(a') + 1. By Proposition 2,

D ON'(,§)gi 4
§=0

converges; call this sum C. Also by Proposition 2,

Z Nl(a/,j)qj(dfad) < qumcz(a')fl < qumdfl

j>m
and
m m
ZN/(al,j)qg(qudfad) < Zng(a )—1 < mdfl‘
=0 =0

Theorem 2 follows from (4) and these estimates.
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Now suppose cz2(a) > 1. Then ¢;(a) =ag —d+1=ci(a’)+1 and
co(a) = co(a’)+1. Assuming the conjecture holds for o, if c3(a@’) =1
we have

>N, j)g e
7=0
= Za(a/)q (ci(@')+d—aq +O( jlea()+d—aq l)jd 2)
j=0
= Za( )+O( d 2)
j=0
=a(a')ym+ O(1)
and

N'(ef, j)g/HHe—e) <<qu <qm
7=0 7=0

If co(a’) > 1, we have

m

ZN(a P)a J(d agq) Za J(61(a )+d— ad) sca(O')—
7=0

j=0
(qy(61(a )+d—ad)j62(a’)—2)

+0
=2 ale)j @07 4 0(j 072

j=0
/
:a(a) a)+0( a)1)
cz(a’)

and

ZN’(a',j)qj(1+d_ad) < qujcz(a')_l < qmmCZ(al)_l.

=0 j=0
Theorem 2 in these cases follows from (4) and these estimates. O

To prove the remaining results dealing with Schubert cells, we need
the following.
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Proposition 3. Let a € ¢(n,d) where 0 < d < n. Suppose ay > 1,
and suppose further that a1 = a; + 1 for all ¢ with d > i > c3(a).
Let V. C K% be an (ag — 1)-dimensional subspace and denote by
N'(a,m,V) the number of subspaces S C V which are counted in
N'(ee,m). Then, for all m >0,

@D mi=l i gy(a) = 1,

N'(a,m,V <<{
( ) qm61(a)m52(a)_2 otherwise.

Proof. Clearly N'(a,m,V) < N'(at,m). Suppose d = 1, and let
A € GL,, 1(KAa) give the height on V as in Lemma 0. Then u(4) >0
and [8, Theorem 1] imply that

N,(avm) < N(Aa 1, m) < qm(al—l) = qm(cl(a)*l)‘

We will now assume d > 1. Arguing as in the proof of Proposition 2,
every S counted in N'(e, m, V') can be written S = T & Kx, where T
is counted in N'(a’, 7,V N K*4-1) for some j and x is unique modulo
T. By Lemma 3, m = h(S) > h(T), so we have j < m. For such
a subspace T, let A(T) € GLy,—4(Ka) give the height on V/T as in
Lemma 0. We then have

N'(e,m,V) <Y N'(e,5,V N K* 1 )N(A(T),1,m - j).
j=0

For any subspace W/T C V/T, we have h ) (W/T) = h(W)—h(T) >
—h(T). This together with [8, Theorem 1] shows that N(A(T), 1,5) <
¢’(@a=) H(T). Thus,

6)  N'(e,m,V) <Y N'(a,5,V N Koat)gm=lea=d+i,
j=0

We now proceed by induction on d — cz(ex) + 1. Suppose first that
d—cs(a)+1=1,ie., ci(a) = ag—d+1. Since N'(a/,j,VNK*-1) <
N'(e', j), Proposition 2 and (6) give us

N’ (a, m, V) < Z qm(adfd)qj(cl (a')fad+d+1)jcz(a')71.
§=0
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In the case ca(a) = 1, we must have ag — d > ¢;(a’), so

N'(a,;m, V) < gm@a= Y~ jea(@)
7=0
< qm(ad—d)mq( )
< qm(cl(a)—l)md—l‘

In the case ca(a) > 1 we must have ag — d = ¢;(a), so

N'(e,m,V) < g™(@a=d) qujq(a')—l
j=0
< gm(ea—dtl)pea(0) -1

— qmcl (o) me? (ox)—2 .

Now assume d — c3(ex) + 1 > 1. Then we may use the induction
hypothesis on N'(a’,7,V N K*-1) provided that the dimension of
VNK*-1is ag 1 — 1. Now we have ag = ag_1 + 1, so either
this is the case or V. = K®-1, But V = K®%-1! implies that
N'(at,m,V) = 0, so we may apply the induction hypothesis in (6).
Note that ci;(@’) = ci(a) =1 > ag — d and cz(a@’) = co(a). If
co(a) = co(a’) =1, we have

N'(a,m, V) <3 glm=Dea=d+igile(@) 1) jd=2
7=0

m

< qm(adfd)md72 Z qj(cl(a')faqud)
7=0

& qmcl(a’)md—l

m(ci(Q)—1), d—1 )

:q m
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If cz(ax) = ca(a’) > 1, then

m
(a,m,V) < Zq (aa—d) +]qJC1(a )]cz(a’)—2
7=0

< qm(ad—d)mCZ(a')—Q Z qj(cl(a')—ad—i-d-‘rl)
=0
< qm(cl(a’)+1)ch(a’)72

mcl(a) 2(01)72_

=q m° O

We now prove the remaining results on Schubert cells.

Proof of Theorem 3. Every S counted in N’(a,m) can be written
S =T&K(x+ ey,), where T = SN K*-1 is counted in N'(a/, j)
for some j and x € K% ! is unique modulo T. By Lemma 3
once more, h(T) < h(S) = m. Given a T counted in N'(a/,j), let
B(T) € GLy, a(Ka) give the height on K®¢=!/T. Then

S AR (9 B(T))
deg ()=m—j

will give the number of S counted in N'(a, m) with SN K%-1 =T,
We thus have by Lemma 4

N'(eaym)= > S A"(21, B(T))

A>0 T
(7) deg (A)<m
= > ) (@) A (A-¢, B(T)),
A>0  0<e<A T
deg (A)<m

where the inner sums are over subspaces T' counted in N'(a’,m —
deg (A)).

To ease the notation in what follows, let ¢« = agq_1 — d + 1 and
r = a4 — aq—1 — 1. Now each B(T) above is of the form

20~ (5 5l
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where B~ (T) € GL,(Ka) gives the height on K*¢-* /T and “0” denotes
an appropriately sized matrix of all zeros. Combining (2) with [8,
Lemma 16] yields

AP (A — ¢, B(T))
qa(deg (A—-C)+1—g)+H(A—-C,I,.)+h(T)
if deg (A — €) > puo(B~(T)) +29 - 1,
O(q(a+7')deg (2l7¢)+h(T))
otherwise.
Since 2 > € here, by Lemma 2 the latter case can only happen if
deg (A — ) < 29 — 1 and po(B (T)) > 1 — 29. Combining this with
(7) gives

Nl(aa m) = Z Z M(c)qa(deg (A=) +1—-g)+I(A,C, 1) +m—deg ()

A>0  0<eE<A
deg (A)<m

“N'(a',m — deg (U))

ro X3 Y,

A>0  0<e<A T
deg (A)<m

where the inner sum in the error term is over subspaces T’ counted in
N'(a/,m — deg () with p, (B_(T)) >1-—2g.
From the Riemann-Roch theorem (since % — € > 0)
(- L)=rl(A—-¢ 1)
=r[deg(A—C)+1—g+1(W+C—A 1)
< r[deg (A —€) +1],

where 20 is any divisor in the canonical class. From this, we note that
the double sum

oY p(@)gries G- OHE—C L) ~er(@)+1des () (deg (31))°
A>00<E<A
converges for all s > 0, since a+r—cy(a’)—1 = ag—d—ci(a’)—1 < =2
and a +r = ag — d > 1. Moreover,

T Y p(@)grE A OHE-G I~ (e (@) ) () _ o(gmm)

A>0  0<E<A
deg (2A)>m
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and
Z Z M(Q:)qadeg (A=) +I(A—€,I.)—c1 (O )deg (A) (deg (Q[))S
A>0  0<e<aA
deg (A)<m

= O0(m**th)
for all s < n. Thus, assuming the conjecture holds for a’, we have

(9) Z Z #(Q:)qa(deg (A—€)+1—g)+U(A, €, 1) +m—deg (A)
A>0  0<E<A

deg (A)<m
-N'(a/,m — deg (1))
= a(a)qm(CI(al)+1)m62(a/)_1
0(gm (@ mi-1) i eale) = 1,
O(qm(61(a')+1)mc2(a')*2) otherwise,
= a(oz)qmcl(o‘)mCZ(O‘%1
O(qm(cl(a)fl)mdfl) if co(a) =1,
O(qmcl(a)mCZ(a)_2) otherwise,
where
a(c)
= a(a’)g*t~9 Z Z ((€) qadeE (A= OFH(A=C. )= (er () 1)deg ()
A>00<E<A

In the case g = 0, the sum in the error term of (8) is empty, so this

case follows from (8) and (9).

Suppose that a; 11 = a;+1 for all i withd—1 > i > ¢3(a’), and let T”

be a subspace occurring in the error term of (8). Then by Lemma 2 and
Minkowski’s theorem, see [8], T' C V for some (ag_; — 1)-dimensional

subspace V' C K%4-1 where
h(V) = h(T) < pa (B™(T)) + -+ + pa—1 (B (T))
=1 (B™(T)) + -+ pa(B(T)) — pa (B~ (1))
<ag—T) — pa (B (T))
<(a+2)g—1-h(T).
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Thus,

UNED YD B ekl

A>0  0<e<A T
deg (A)<m

< Y ) D N(o,m—deg (), V)gm @),

A>0  0<e<A V
deg (A)<m

where the first inner sum is over subspaces 1" counted in N'(a’,m
—deg (A)) with pu,(B~(T)) > 1—2g and the second is over (g1 —1)-
dimensional subspaces V' C K-t with A(V) < (a + 2)g — 1. Using
Proposition 3, one readily verifies that

(11) Z Z ZN’(O/, m — deg (), V)gmdee ()
A>0  0<e<A V
deg (A)<m
O(qmcl(al)md_l) if CQ(Q/) =1,
<

10) (qm(c1 (@')+1) ez (a’)72) otherwise.

(Here the implicit constant will depend on the number of such subspaces
V, but that number depends only on ay_; and K.) Since ¢i(a) =
ci1(a’) +1 and ca(a) = ca(’) here, the remaining case of Theorem 3
follows from (8)—(11). o

Proof of Theorem 4. We use induction on d. If d = 1, then the
conjecture holds by Theorem 2. Suppose d > 1. The conjecture holds
by the induction hypothesis and Theorem 3 if c¢3(a) < d, and by the
induction hypothesis and Theorem 2 if c3(a) = d. o

Proof of Theorem 5. We use induction on d again. If d = 1, then the
conjecture holds by Theorem 2. Suppose d > 1, and let a € ¢(n,d)
with a7 > 1.

We first consider the case where c3(a) = d. Get a B’ < o' with
c1(B') = c1(a’) and cy(B') = ca(a’) for which the conjecture holds.
Let B4 = ag. Then ¢1(B) = c1(a), c2(B) = co(ax) and the conjecture
holds for 8 by Theorem 2. By Lemma 5
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N'(a,m) > N'(ﬁ,m) > qmcl(ﬂ)mcz(ﬂ)fl — qmcl(a)ch(a)fl

and N'(a,m) < ¢+ (@) me2(@)~1 by Proposition 2.

Next, consider the case where c3(a) < d. Let " = (au,. .. , g a))-
We apply the induction hypothesis, getting a 8" < &' with ¢1(B8") =
c1(a’”) and c3(B") = c2(a’) for which the conjecture holds. Set

ﬂ = (ﬂla' e 7663(@)7663(0) +1,... aIBc;;(a) +d— 03(a))‘

Then 8 < a, ¢1(8) = c1(a), c2(B) = c2(a), and the conjecture holds
for B via repeated applications of Theorem 3. By Lemma 5

N'(a,m) > N'(8,m) > qmcl(ﬁ)m@(,@)q — gmer(@) pea(@)-1

and N'(a,m) < ¢t (@) me2(@)~1 by Proposition 2. u]

3. Theorem 1. We first define absolute height. Fix K and
K = F,(X). Suppose x € K is a nonzero vector in the algebraic
closure. Then x € L for some finite extension L of Fy(X). If we let
h and H denote the additive and multiplicative heights on L, then the

absolute additive and multiplicative heights are

A(x) = —X)__ H(x) = H(x) Y P,

In what follows, Y is transcendental over K.

Lemma 6 [5, Lemma 4.9]. Let P(Y) € K[Y] be a monic irreducible
polynomial of degree d. Denote the coefficient vector of P by P, and
let p € K be a root of P. Then

dh(p,1) = h(P).

Proposition 4. The number N of monic reducible polgnomials
P(Y) € K[Y] of degree d with h(P) = mdx satisfies N < ¢™® *.
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Proof. For any ¢ > 1 and j > 0, the number of reducible monic
polynomials Q(Y) of degree 7 and h(Q) = j is certainly no more than
the total number of monic polynomials of degree ¢ and height j, which
is N(I;+1,1,7). Now any reducible monic polynomial P(Y’) of degree d
can be written as a product: P(Y) = Q(Y)R(Y), where Q(Y) and
R(Y') are monic and the degree of Q(Y') is at least 1 and no greater
than d/2. Moreover, by [5, Lemma 4.9] h(P) = h(Q) + h(R). Letting
¢ denote the greatest integer less than or equal to d/2, we have by
Theorem 0

c mdk

N < Z Z N(Lit1,1,5)N(la-i+1, 1, mds — j)
i=1 j=0

c mdk

< 37 Y UitV glamitn mdn—j)
i=1 j=0

c mdk

_ Z Z q(dfi+1)mdnqj(2ifd)‘

i=1 j=0

Now if d is odd, then 2¢ < d — 1, and we have

c mdk
N < Z Z q(d71+1)mdnq](2zfd)
i=1 j—0
c
& Zq(dfiJrl)mdn
i=1
md%k
< q .
If d is even, then 2¢ = d, and we have
c mdk
N < Z Z q(d7i+1)mdnqj(2i7d)
i=1 j=0
c—1
< mdﬂq(chl)mdn + Zq(d7i+1)mdn‘ o
i=1

Proposition 5. The number N of monic polynomials P(Y) € K[Y?P]
of degree d with h(P) = mdk, where p is the characteristic of K,
satisfies N < qde”.
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Proof. This is clear if d = 1, so assume d > 1. Certainly suchza
polynomial P has no degree 1 term. Thus, N < N(I4,1, mdx) < g™ *
by Theorem 0. a

Proof of Theorem 1. Clearly the number of monic polynomials
P(Y) € K[Y] of degree d with h(P) = mdk is N(I441,1, mdr).
By Theorem 0 and the above two propositions, we see that there
are a(d + 1)gmrd+1) 4 O(gmd*%) of these polynomials which are
irreducible and have exactly d distinct roots. By Proposition 5 any
possible remaining irreducible monic polynomials (which have less than
d distinct roots each) are accounted for in the error term. Theorem 1
follows from these estimates and Lemma 6. O
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