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REAL HYPERSURFACES IN COMPLEX
PROJECTIVE SPACE WHOSE STRUCTURE
JACOBI OPERATOR SATISFIES L:R; = VR,

JUAN DE DIOS PEREZ AND FLORENTINO G. SANTOS

ABSTRACT. We classify real hypersurfaces in complex
projective space whose structure Jacobi operator satisfies that
its Lie derivative in the direction of the structure vector field
coincides with its covariant derivative in the same direction.

1. Introduction. Let CP™, m > 2, be a complex projective space
endowed with the metric g of constant holomorphic sectional curvature
4. Let M be a connected real hypersurface of CP™ without boundary.
Let J denote the complex structure of CP™ and N a locally defined
unit normal vector field on M. Then —JN = ¢ is a tangent vector
field to M called the structure vector field on M. We also call D the
maximal holomorphic distribution on M, that is, the distribution on
M given by all vectors orthogonal to £ at any point of M.

Jacobi fields along geodesics of a given Riemannian manifold (M ,9)
satisfy a very well-known differential equation. This classical differ-
ential equation naturally inspires the so-called Jacobi operator. That
is, if R is the curvature operator of M, and X is any tangent vec-
tor field to M, the Jacobi operator (with respect to X) at p € M,
Rx € End (TPM), is defined as (RxY)(p) = (R(Y,X)X)(p) for all
Y € TpM , being a self-adjoint endomorphism of the tangent bundle
TM of M. Clearly, each tangent vector field X to M provides a Jacobi
operator with respect to X.

Let M now be a real hypersurface in CP™, R its curvature operator,
and let £ be the structure vector field on M. We will call the Jacobi
operator on M with respect to £ the structure Jacobi operator on M,
R¢. Then the structure Jacobi operator Re € End (T,M) is given by
(Re(Y))(p) = (R(Y,€)€)(p) for any Y € T,M, p € M.
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Recently we have studied parallelness and Lie parallelness of the
structure Jacobi operator, [3, 4, 5]. Further results about the covariant
derivative of the structure Jacobi operator can be seen in [6, 7).

In this paper we will prove the nonexistence of several families of real
hypersurfaces in CP™ by some propositions that allow us to prove the
following

Theorem. Let M be a real hypersurface in CP™, m > 3, whose
structure Jacobi operator satisfies LeRe = VeRe. Then M s locally
congruent either to a tube of radius w/4 over a complex submanifold of
CP™ or to a tube with radius r # /4 over CPk, 0<k<m-1.

2. Preliminaries. Throughout this paper, all manifolds, vector
fields, etc., will be considered of class C'* unless otherwise stated. Let
M be a connected real hypersurface in CP™, m > 2, without boundary.
Let N be a locally defined unit normal vector field on M. Let V be
the Levi-Civita connection on M and (J, g) the Kaehlerian structure of
cpm™.

For any vector field X tangent to M, we write JX = ¢X + n(X)N
and —JN = ¢. Then (¢,&,n,9) is an almost contact metric structure
on M. That is, we have
(2.1)
¢’X = X +n(X)§, n(E) =1, g(¢X,0Y)=g(X,Y)—n(X)n(Y)

for any tangent vectors X,Y to M. From (2.1) we obtain

(2.2) p€ =0, n(X)=g(X,).

From the parallelism of J, we get

(2.3) (Vx9)Y =n(Y)AX — g(AX,Y)¢
and
(2.4) Vx& = ¢AX

for any X,Y tangent to M, where A denotes the shape operator of the
immersion. As the ambient space has constant holomorphic sectional
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curvature 4, the equations of Gauss and Codazzi are given, respectively,
by

(2.5)
R(X,Y)Z = g(Y,2)X — g(X,2)Y + g(¢Y, 2)¢X — g(¢X, Z)pY
—29(¢X,Y)$Z + g(AY, Z)AX — g(AX, Z)AY,

and
(2.6)  (VxA)Y — (VyA)X =n(X)gY —n(Y)pX — 29(¢X,Y)E

for any tangent vectors X,Y, Z to M.
3. Some propositions.

Proposition 3.1. There exist no real hypersurfaces M in CP™,
m > 3, whose Weingarten endomorphism satisfies A = a& + U,
AU =¢, ApU = —(1/a)pU, where U is a unit vector field in D and «
18 a nonnull function defined on M.

Proof. The Codazzi equation yields (Vi A)pU — (V4oy A)U = —26. If
we compute its scalar product with & we get

and its scalar product with U implies
(3.2) 9(VyU,¢U) = 2.

From (3.1) and (3.2) we have a contradiction, and the proof is fin-
ished. O

Proposition 3.2. There exist no real hypersurfaces M in CP™,
m > 3, whose Weingarten endomorphism is given by A = af + BU,
AU = B¢+ ((B? — 1)/a)U, ApU = —(1/a)¢U, the eigenvalues of A
in Dy = Span {¢, U, ¢U}* are different from 0, —1/a and (8% —1)/a,
and if Z € Dy satisfies AZ = \Z, then ApZ = A\pZ, where U, and o
are as in Proposition 3.1 and B is a nonnull function defined on M.
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Proof. We get (VzA)pZ — (VyzA)Z = —2¢. Its scalar product with
¢Z yields

(3.3) Z(A) =0.
Scalar product with Z gives
(3.4) (62)(\) = 0.

As g((VeuA)Z—(VzA)@U, ¢Z) = 0, we obtain (A+(1/))g(V 29U, ¢ Z)
=0. As A # —(1/a), from (2.3) we have

(3.5) 9(V2U,Z) = 0.

From the Codazzi equation, g((VeA)Z — (VzA)E,Z) = 0. This yields
&(A\) = B9(VzU, Z). From (3.5), we obtain

(3.6) £(\) =0.

The Codazzi equation yields g((VyA)pU — (V4 A)U, ¢U) = 0. Thus,

(3.7) aU(é) — 829(V 506U, U).

Similarly, g((VeA)pU — (VguA)E, ¢U) = 0. Therefore,

(55) (%) - satVevoi).
From (3.7) and (3.8), we get

(3.9) BE(a) = al(a).

As from the Codazzi equation g((V¢A)U — (VyA)E,§) = 0, €(B) =
U(a) and from (3.9), we have

(3.10) Bé(ar) = ak(B).
Now (VzA)pZ — (VyzA)Z = —2. The scalar product with & gives

(3.11) Bg([¢Z, Z],U) = 2\% — 2a\ — 2,
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and from the scalar product with U we get

(3.12) <,\— BZQ_ 1>g([¢z, Z),U) = 2B

From (3.11) and (3.12), as 8 # 0, we have (A + (1 — 82/a))(\? — aX
— 1) = B2\, and with the hypothesis of Proposition 3.2, this can be
written as

(3.13) (XA +1)(A2 —aX — 1) = B2(\? — 1).

From (3.13), bearing in mind (3.6), we get A¢(a)(A? — aX — 1) + (aX
+ 1)(—X(a)) = (A2 — 1)28¢(B). That is, (A(A2 — aX — 1) — A(aX
+ 1))é(a) = 28(A% — 1)€(B). From (3.10), we obtain (A(A2 — aA
—1) = Alar +1))é(a) = 2(B2/a)(A2 — 1)é(a). If we suppose &(a) # 0,
AAZ—ad—1)=A(aA+1) = 2(8%/a)(A\%—-1) = (2/a)(ar+1)(A2—ar-1).
Therefore, aA(A\? — 2aX — 2) = 2(aX + 1)(A? — aX — 1). This yields
al®+2X2 —2a\—2 = 0. Thus, \3¢(a) —2X€(a) = 0 and, as we suppose
£(a) # 0, this gives A(A2 —2) = 0. As X\ # 0, A2 = 2, and by (3.13)
(@A +1)(1 — aX) = B2. Thus, 1 — 2a? = B2. Now —4aé(a) = 28£(B)
and from (3.10), we get

(3.14) B2 +2a% =0,

giving a contradiction. Thus,

(3.15) §(a) =¢(B) = U(a) = 0.

The Codazzi equation yields g((VeA)Z — (VzA)E, &) = 0. Thus,
(3.16) Z(a) = —pg(VeZ,U).

As g((VeA)Z — (VZ2A)E,U) =0, we get

(3.17) Z(B) = <,\ _B- >g(V§Z, U).
From (3.16) and (3.17), we obtain
(3.18) BZ(B) = <52a_ L A) Z(a).
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Bearing in mind (3.13), from (3.3) we get AZ(a)(A\? — aX — 1) + (aX
+ 1)(=AZ(a)) = 28(A2 —1)Z(B). Therefore, by (3.18), Z(a)(A(A\2
—ad—1)=Aar+1)) =2(A\2=1)((8% —1/a) — \) Z(a). If we suppose
Z(a) # 0, we get 3A3 — 20\ — 4\ = (282 = 2/a)(A\2 = 1) = (2/a)(aA
+1)(A%2 —aX — 1) — (2/a)(A? — 1). That is, a(3)\3 — 2aA? — 4)) =
2(aX +1)(A? —aX — 1) — 2(A\2 — 1). From this we have Z(a)(3)\* —
2002 —4\) +a(—2X2Z(a)) = 2A(A\2 —aX—1)Z(a) +2(ar+1)(—2Z(a)).
As we suppose Z(a) # 0, this yields A = 0, so we have a contradiction.
This proves

(3.19) Z(8) = Z(a) = 0.

(3.20) X(a)=X(8) =0

for any X € Dy.
The Codazzi equation yields g((VeA)pU — (Vg A)E,§) = 0. Thus,

(3.21) (60)(@) = 2 + a8 + By(veU, 61

As g((VeA)pU — (Vyu A)E,U) = —1, we also get

2 2
_"A — ! + 3%+ %g(ng, oU).

As g((VeA)U — (Vy A)E, ¢U) = 1, we obtain

(3.22) (¢U)(B)

2 2 _
623)  Tyve,en) - pvov,en =

And, as g((VyA)pU — (V4uA)U,U) = 0, we have

B2 -1

(3.24)  Bg(VuU,dU) + % — 3 —2(¢U)(B) + of

(9U)(a) = 0.
From (3.21), (3.22) and (3.24), it follows that

p2-1
9(VeU,dU) + —5— —4=0.

2
(325)  Ba(vuv,ev) - T
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From (3.23) and (3.25), we have g(V¢U, ¢U) = —4a and g(Vy U, ¢U) =
(1-8?)/(a?B) — 4B. From (3.21) and (3.22), we conclude

1—a?

(3.26) (60 (@) = 38(+—)
and

2, B2-1
(3:27) (6U)(8) = ~36° + *=.

Thus, grad (o) = 38((1 —a?)/a)¢U = ke¢U. As g(Vx grad(a),Y)
= g(Vy grad (), X) for any X,Y € TM, we have X (k)g(¢U,Y)
Y (R)g(6U, X) + Kg(VxU,Y) — g(VyU, X)) = 0. Taking ¥ = ¢,
it follows k(g(VxoU, &) — g(VeoU, X)) = 0, for any X € TM. Thus,
either £k = 0 or g(VxoU, &) = g(VeoU, X) for any X € TM. Suppose
k # 0. If we take X = U we get —g(U, AU) = g(V¢¢U,U). Thus,
40?432 = 1. Then 4a(¢U)(a)+8(¢U)(8) = 0. From (3.26) and (3.27)
we get 9o 4+ 32 = 1. Both results yield o = 0, which is impossible.
Thus, k = 0. Equivalently o? = 1. Now (3.26) becomes (¢U)(c) = 0
and (3.27) yields (¢U)(8) = —(26%+1). From (3.15) and the fact that
g((VeA)U — (Vg A)E,U) = 0 we get U(B) = 0. Thus,

(3.28) grad (3) = —(28% + 1)¢U.

By the same argument as applied above to grad (8) we get —(1 +
26%)(g(Vx U, &) — g(VepU, X)) = 0, for any X € TM. This yields
9(VxoU, &) = g(VepU, X), for any X € TM. Taking X = U, we
obtain 4a? + 8% = 1. As o? = 1, this yields f? = —3, which is
impossible and the proof is finished. O

Proposition 3.3. There exist no real hypersurfaces M in CP™,
m > 3, whose Weingarten endomorphism is given by A{ = £ + BU,
AU = BE+ (B2 - 1)U, ApU = —@U and there exists Z € Dy such that
AZ = -7, ApZ = —¢Z, where U, Dy and B are as in Proposition 3.2.

The proof is similar to the proof of Proposition 3.2.

4. Proof of the Theorem. The condition L;R: = VR, is
equivalent to the condition pAR; = RepA.
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First, we consider that M is Hopf, that is, A{ = af for a certain
function @ on M. Take X € D such that AX = AX. Then
PAR:(X) = (1 + aM)ApX = Re(pAX) = A1 + ap)pX, where
= (aX+2/2)\ — a) is the eigenvalue of §X, see [2]. From this we get
aX(A—p) = 0. The same reasoning applied to ¢X yields au(A—p) = 0.
From both equations we have a(\ — u)? = 0. Thus either & = 0 or
A = p. Therefore, if @« =0, M is locally congruent to a tube of radius
/4 over a complex submanifold of CP™, [1]. If a #0,as A= pu, M is
locally congruent to a tube of radius 0 < r < 7/2, r # w/4 either over
a point (this is a geodesic hypersphere) or over a CP*, 0 < k < m — 1.

So we now consider that M is not Hopf. Thus, locally, there exists
a unit U € D and a nonnull function 8 defined on M such that
A€ = a& + BU. As $ARg(€) = 0, we get Re(pA€) = 0 = BRe(4U).
Thus, R¢(¢U) = ¢U + aApU = 0, and this yields a # 0 and
ApU = —14U.

Analogously, Re¢(¢pA9pU) = ¢pAR:(¢U) = 0. Thus, 0 = —(1/a)
Re(¢ppU) = (1/a)Re(U). Then, Re(U) = U + a AU — BAE — 52U = 0.
Therefore, AU = B¢ + (82 —1/a)U. This yields Dy is A-invariant
and ¢-invariant. If X € Dy satisfies AX = AX, then pAR:(X) = A(1
+aN)pX = Re(pAX) = A(¢X +aAdX). Thus \26X = A\AGX. If \ £
0, ApX = ApX. If A =0, AX =0 and $AR($X) = Re(pApX) yields
pA%pX = ApApX. Therefore, g(¢pA%2p X, X) = g(¢pApX,AX) =0. So
we have g(A¢X, ApX) = 0, which gives ApX = 0. From this, we can
assure that the eigenspaces of A in Dy are ¢-invariant.

Taking Z € Dy such that AZ = \Z, as in the proof of Proposition 3.2
we obtain (A + (1 — 8%/a))(A\2 — aX — 1) = B2X\. Now we have the
following possibilities:

1. If there exists Z € Dy such that AZ = 0, M is as in Proposition 3.1
and this kind of real hypersurfaces does not exist.

2. Suppose there exists Z € Dy such that AZ = AZ, A # 0. If
A = (8% — 1/a), from the formula above, A = 0, giving a contradiction,
thus also A # (82 —1/a). That is, (3.13) is true. From (3.13),
A = —1/a if and only if A2 = 1 and o = 1. If this is the case,
changing, if necessary, £ by —¢, we suppose a = 1. So M is, locally, a
real hypersurface either as in Proposition 3.2 or as in Proposition 3.3.
As these types of real hypersurfaces do not exist, the proof concludes. O
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