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ON THE HENSTOCK-KURZWEIL-DUNFORD AND
KURZWEIL-HENSTOCK-PETTIS INTEGRALS

YE GUOJU

ABSTRACT. In this paper, we discuss the Kurzweil-Hen-
stock-Dunford integral and Kurzweil-Henstock-Pettis integral
of the functions mapping a compact interval into a Banach
space. We firstly show that the Pettis and Dunford integra-
bility for measurable functions are equivalent if and only if the
Banach space contains no copy of ¢gp. Then we prove that the
Kurzweil-Henstock-Pettis and Kurzweil-Henstock-Dunford in-
tegrability for measurable functions are equivalent if and only
if the Banach space is weakly sequentially complete. The
equivalence results on the Kurzweil-Henstock-Dunford and
Kurzweil-Henstock-Pettis integrability are also discussed in
Schur spaces.

1. Introduction. It is well known that the Kurzweil-Henstock
integral of real-valued functions is a kind of nonabsolute integral
that contains the Lebesgue integral and equals the Perron integral.
The Kurzweil-Henstock-Dunford and Kurzweil-Henstock-Pettis inte-
grals are generalizations of the Kurzweil-Henstock integral of the real
functions to Banach space-valued functions, see [6]. The relationships
between the Kurzweil-Henstock-Pettis integral and Pettis, Kurzweil-
Henstock-Dunford and Dunford integrals for Banach-space-valued func-
tions were discussed in [6]. It can be seen from the corresponding
definitions that a Kurzweil-Henstock integrable function is Kurzweil-
Henstock-Pettis integrable and a Kurzweil-Henstock-Pettis integrable
function is Kurzweil-Henstock-Dunford integrable, but the reverse does
not hold. An example shows that the Kurzweil-Henstock-Dunford inte-
grability of Banach-valued functions cannot imply Kurzweil-Henstock-
Pettis integrability. We would like to know what is the relationship
between the Kurzweil-Henstock-Pettis and Kurzweil-Henstock-Dunford
integrability in Banach spaces? In this paper we study this problem
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and give some interesting results. Firstly, we prove that the Pettis
and Dunford integrability for measurable functions are equivalent if
and only if the Banach space contains no copy of ¢y, and then prove
that the Kurzweil-Henstock-Pettis and Kurzweil-Henstock-Dunford in-
tegrability for measurable functions are equivalent if and only if the Ba-
nach space is weakly sequentially complete. Moreover, in Schur spaces
equivalence results on the Kurzweil-Henstock-Dunford and Kurzweil-
Henstock-Pettis integrability for measurable functions are discussed.

2. Basic definitions. Throughout this paper, X denotes a real
Banach space with norm || - || and X* its dual. B(X*) = {z* €
X*; |lz*|| < 1} is the closed unit ball in X*. Let Iy = [a,b] be a
compact interval in R! and E C R' a measurable subset of Iy. u(E)
stands for the Lebesgue measure. The Lebesgue integral of a function
f over a set E will be denoted by (L) [, f.

We say that intervals I and J are nonoverlapping if int (1) Nint (J) =
@. By int (J) the interior of J is denoted.

A partial M -partition D in I is a finite collection of interval-point
pairs (I,€) with nonoverlapping intervals I C Iy, £ € Iy being the
associated point of I. Requiring £ € I for the associated point of I, we
get the concept of a partial K -partition D in Iy. We write D = {(I,£)}.

A partial M-partition D = {(I,£)} in Iy is an M -partition of I if the
union of all the intervals I equals Iy and similarly for a K-partition.

Let § be a positive function defined on the interval Iy. A partial
M-partition (K-partition) D = {(I,£)} is said to be J-fine if for
each interval-point pair (I,£) € D we have I C B(&,6(€)), where
B(&,0(8)) = (§ = 6(£), €+ 6(£))-

Definition 2.1. An X-valued function f is said to be McShane
integrable on Iy if there exists an Sy € X such that for every € > 0 there
exists a §(¢) > 0 such that for every d-fine M-partition D = {(I,£)} of
Iy, we have ‘

We write (M) ro f =S¢ and call Sy the McShane integral of f over
Io.

;f(ﬁ)u(f) - SfH <e.
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f is McShane integrable on a set £ C I if the function f - Xg is
McShane integrable on I, where X g denotes the characteristic function
of E. We write (M) [, f = (M) [, fxg = F(E) for the McShane
integral of f on E.

Denote the set of all McShane integrable functions f : Iy — X by M.

Replacing the term “M-partition” by “K-partition” in the definition
above, we obtain Kurzweil-Henstock integrability and the definition of
the Kurzweil-Henstock integral (K H) ro f.

It is clear that if f : Iy — X is McShane integrable, then it is
also Kurzweil-Henstock integrable because every K-partition is an M-
partition.

It is known that linearity, integrability on subintervals, additivity of
intervals of McShane and Kurzweil-Henstock integrals hold. For details,
see [2, 3, 5-10].

Definition 2.2. (a) A function f : Iy — X is Kurzweil-Henstock-
Dunford integrable if for each x* in X* the function z*f is Kurzweil-
Henstock integrable on I and for each interval I in I there exists a
vector z}* in X** such that z}*(z*) = [,2*f for all * in X*. We
write z7* = (KHD) ro f =F(ly), and F is the primitive of f on Ij.

(b) A function f : Iy — X is Kurzweil-Henstock-Pettis integrable on

Iy if f is Kurzweil-Henstock-Dunford integrable on Iy and z7* € X for
every interval I in Iy. We write 27" = (KHP) [ f = F(I).

For simplicity, the letters M, KH, KHD and KHP stand for Mc-
Shane, Kurzweil-Henstock, Kurzweil-Henstock-Dunford and Kurzweil-
Henstock-Pettis, respectively, and we denote the sets of all Mc-
Shane, Kurzweil-Henstock, Kurzweil-Henstock-Dunford and Kurzweil-
Henstock-Pettis integrable functions f : Iy — X by M, KH, KHD,
KHP, respectively.

From the corresponding definitions of different integrals, we have
MCKHCKHP CKHD.

For further discussion of the McShane and Kurzweil-Henstock integrals,
see [2, 3, 5-10].
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Remark. A function f is scalarly Kurzweil-Henstock integrable on I
if for each x* in X™* the function z* f is Kurzweil-Henstock integrable
on Iy. It is well known from [6, Theorem 8.2.26] that a function f is
scalarly Kurzweil-Henstock integrable on Iy then there exists a vector

in X** such that x}*(z*) = [;2*f for all * in X*. Therefore,
by Definition 2.2 f is Kurzwell Henstock-Dunford integrable on I if
f is scalarly Kurzweil-Henstock integrable on ;. This means that a
function f is Kurzweil-Henstock-Dunford integrable on Iy if and only
if f is scalarly Kurzweil-Henstock integrable on Ij.

3. The main results. In this section the main theorems are
Theorem 3.3-Theorem 3.5. We first show an equivalence result of the
Dunford integral and the Pettis integral.

Theorem 3.1. Suppose that a function f : Iy — X is measurable.
Then the Dunford and Pettis integrability of f are equivalent if and
only if X contains no copy of cy.

Proof. Suppose that X contains no copy of ¢y and f is measurable on
Iy. Then by [6, Proposition 1.1.9], there exists a bounded measurable
g: Ip — X and a measurable h : Iy — X with

= mXp,(t), zk€X, keN, tel,

where Ej, C Iy, k € N, are pairwise disjoint measurable sets such that
f =g+ h. Obviously, g is Bochner integrable on I and therefore g is
Pettis integrable on Ij.

If f is Dunford integrable, then h = f — g is Dunford integrable and

(Dunford)/ h = (Dunford) [ f— (Pettis)/ g.

Iy I Io

Hence, for each z* € X*, x*h is Lebesgue integrable on I;. It follows
that

@ | 1t = Zm i) (Br) <
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Moreover, for every measurable set F C I,
@) [ ot =3 o ) (B 1 Bx) < .
E k=1

This means that >~ | 2*(z,)u(E,NE) is absolutely convergent. Since
X contains no copy of ¢y, by the Bessaga-Pelczynski theorem [1, page
22), >>° | z,u(E, N E) is unconditionally convergent. Consequently,
there exists an zx € X such that g =Y ;- zxu(E N Ey) and

(L)/ rh=3 o*(@e)u(E N Ey) = 2" (zp).
E k=1
We obtain

(Dunford)/ h= i(wn)p(En NE)=zg € X.

n=1

Hence, h is Pettis integrable on Iy. It follows from f = g + h that f
is Pettis integrable on Ij.

Conversely, the following example shows that if the Dunford and
Pettis integrability for measurable functions f are equivalent, then X
contains no copy of cy.

Define f : [0,1] — ¢g by

f(t) = (X[OJ} (t), 2X[071/2] (t), ... ,TLX[OJ/n] (t), . )

For every z* € ¢ = I', let * = g = (91,92,--- yGn,---)- Then
* oo 1 * o0

a* f(t) = YolingnXo,1/n)(t) and [ lz*f(t)] = 307 lgal < oo
This means that f is Dunford integrable on [0,1], but fol f =
(1,1,...,1,...) € co. So f is not Pettis integrable on [0,1]. This
leads to a contradiction. Hence, X contains no copy of ¢g. a

Now we would like to know under what conditions are the Kurzweil-
Henstock-Pettis and Kurzweil-Henstock-Dunford integrability equiva-
lent? Therefore, we need the following two results.
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Theorem 3.2. A function f : Iy — X is Kurzweil-Henstock-Dunford
integrable if and only if for each closed set E C I there exists a portion
P=FENI of E on which f is Dunford integrable.

Proof. Since f is Kurzweil-Henstock-Dunford integrable on I, for
each z* € X*, z*f is Kurzweil-Henstock integrable and therefore the
primitive z*F'(t) = f[a,t] x*fis ACG*. By [6, Theorems 8.2.8, 8.2.9 and
7.2.3], for each closed set E C I there exists a portion P = ENI of E
such that for each z* € X™* z* f is Lebesgue integrable on P. Hence, f
is Dunford integrable on P. The reverse process is also valid. O

Theorem 3.3. Suppose that X is weakly sequentially complete. Then
a function f : Ip — X is Kurzweil-Henstock-Pettis integrable if and
only if for each closed set E C Iy there exists a portion P = ENI of
E on which f is Pettis integrable.

Proof. (Necessity). Since f is Kurzweil-Henstock-Pettis integrable on
Iy, f is Kurzweil-Henstock-Dunford integrable on I. By Theorem 3.2,
for each closed set E C Iy there exists a portion P = ENI of E on
which f is Dunford integrable. In what follows, we prove f being Pettis
integrable on P.

By Kurzweil-Henstock-Pettis integrability on subintervals, for each
interval J in Iy we have (KHP) [, € X.

Let G be an open set in Iy, z* f Kurzweil-Henstock integrable on G
and z* f McShane integrable on I \ G for each z* € X*. Then G can
be expressed as the union of nonoverlapping open intervals J,, and

(KH)/Ga:f:nz_:l(KH)/Jnxf:T;x(KHP) Jnf, e X*.

Since X is weakly sequentially complete, Y > (KHP) [, f exists in
X. Denote xg =Y . (KHP) [, f;then zg € X.
Now suppose that A is any measurable subset of P. It follows from the

Dunford integrability of f on P that f is Dunford integrable on A C P
and therefore z* f is McShane integrable on A for each z* € X*.

If A is an open subset of P, then from the above discussion there
exists an x4 € X such that (M) [, z*f = z*(za).
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If A is a closed subset of P, then G = Iy \ A is open. There
is an g = zr\a € X such that (M) [,2*f = (KH) [, «*f -
(KH) [ga*f = «*((KHP) [ f — zg). It follows that there exists
an x4 = (KHP) [, f— =z such that (M) [, 2*f = 2*(za).

If A is any measurable subset of P, then a family of closed sets F},
exists such that

F, C Foy1, [j F,=A,
n=1

and zp, € X such that (M) [, «*f = z*(zp,). Since

JLH;OW)Lf = Jim o*(or,) = 01) [ 2
and X is weakly sequentially complete, there exists an x4 € X such
that (M) [, z* f = z*(x4). Hence, we obtain that f is Pettis integrable
on P.

(Sufficiency). Suppose f is not Kurzweil-Henstock-Pettis integrable
on Iy. Denote by A the family of the closed intervals I C Iy such that
f is Kurzweil-Henstock-Pettis integrable on I. Since the Kurzweil-
Henstock-Pettis integral has integrability on the subintervals and the
additivity for intervals, with no loss of generality, suppose that the I's
are pairwise nonoverlapping intervals. By using the Cauchy extension
property, we further suppose that I NJ = @ when I,J € A. That
is, if I = [¢,d] € A, then for every n > 0, I; = [¢ — n,d] ¢ A and
I, =[e,d+n] ¢ A. Obviously, A is not empty and at most countable.
We write A = {I,,}2° ;.

Let E = Iy\Uy, cal? and I? be the interior of I,,. Then E is a closed
set and Iy = E U (U,I2).

We will prove that E contains only two endpoints of Iy. Otherwise,
suppose that E contains an inner point of I,. Since E is a closed
set, there exists an open interval K with endpoints in E such that
ENK #0 and f is Pettis integrable on £ N K. By the property of the
Pettis integral, for every interval I C K, f is Pettis integrable on E N I

and
(P)/ffXEZ(P)/EmifeX.
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Since f is Kurzweil-Henstock-Pettis integrable on each I, for each
J C I, f is Kurzweil-Henstock-Pettis integrable on J and

(KH) /J 2" f = 2" (KHP) /, f, (KHP) /J fex.

Especially, (KHP) [;,; f € X for each n € N.

Note that I = (I'n E) U (U (I N I})) and (I N I,) are pairwise
nonoverlapping intervals. Let G = U,(INI2) = I\ (I N E). Then
f is Kurzweil-Henstock-Pettis integrable on G and, for each z* € X*,
(KH) fG o f = Eio:l(KH) ffmn ' f = fozl z*(KHP) ffmln f

Since X is weakly sequentially complete, > -, [ inr. [ exists in X.

Moreover,
) [ar =) [ AV / Y
= z*(P) mef + x*;(KHP) /fmn f
= z*((P) /imEf—k;(KHP) - ).
By

(P)/iMEf—kZ(KHP) fex

InI,

and the randomness of [ C K, we obtain that f is Kurzweil-Henstock-
Pettis integrable on K and

(KHP) /K =@ [ r+Y(&HP) /K /.

KNE NI,
So there is an I,, € A such that K = I} . On one hand, by the
hypothesis of E = Iy \ Ur,eal), KNE = I} NE = @. On the
other hand, K N E = 120 N E # @. This is a contradiction. So f is
Kurzweil-Henstock-Pettis integrable on Ij. u]
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Theorem 3.2 and Theorem 3.3 may serve as alternative definitions
of the Kurzweil-Henstock-Dunford and Kurzweil-Henstock-Pettis inte-
grals.

Theorem 3.4. Suppose that X is weakly sequentially complete and
f i Iy — X is a measurable function. If f is Kurzweil-Henstock-
Dunford integrable on Iy, then f is Kurzweil-Henstock-Pettis integrable
on I.

Proof. Since f is Kurzweil-Henstock-Dunford integrable on I, by
Theorem 3.2, for each closed set E C I, there exists a portion
P = E NI on which f is Dunford integrable. Since X is weakly
sequentially complete, therefore X contains no copy of cy. It follows
from Theorem 3.1 that f is Pettis integrable on P = ENI. By
Theorem 3.3, f is Kurzweil-Henstock-Pettis integrable on ;. a

Theorem 3.5. The Kurzweil-Henstock-Dunford and Kurzweil-
Henstock-Pettis integrability for measurable functions on Iy are equiv-
alent if and only if X is weakly sequentially complete.

Proof. The sufficiency follows from Theorem 3.4.

Conversely, if the Kurzweil-Henstock-Dunford and Kurzweil-Henstock-
Pettis integrability for the measurable functions on I are equivalent,
we prove that X is weakly sequentially complete.

Suppose X is not weakly sequentially complete. Then there exists
a series Y~ | &, in X such that the series > - z*(z,) converges for
each z* in X* but the series >~ | z,, converges weak” to z* € X**—X.
For each positive integer n, let I,, = ((1/n + 1),1/n].

Define f : [0,1] — X by

Then the function f is measurable. For every * € X™*, z* f is McShane
integrable on [a, 1] for every a € (0,1).
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Especially, for a € ((1/N +1),1/N),

L B 1/N . 1 2 (zw) N-1 .

Since > °° | z*(zy) converges,

1 oo
lim ' f = Z z*(xy,).
n=1

a—0+ a

Hence, z* f is Kurzweil-Henstock integrable on [0, 1] and
1 oo
(KH)/ 2 =3 2t (en) = 23 (2Y):
0 n=1

This means that f is Kurzweil-Henstock-Dunford integrable on [0, 1],
but not Kurzweil-Henstock-Pettis integrable on [0,1]. This leads to a
contradiction. i

Corollary 3.1. Assume that X is weakly sequentially complete. If
X is separable and function f is Kurzweil-Henstock-Dunford integrable
on Iy, then f is Kurzweil-Henstock-Pettis integrable on Iy.

Proof. If f is Kurzweil-Henstock-Dunford integrable on I, then f
is weakly measurable. Since X is separable, f is measurable. By
Theorem 3.5, f is Kurzweil-Henstock-Pettis integrable on Ij. ]

Recall that a Banach space X is a Schur space if weakly convergent
sequences in X are norm convergent.

Corollary 3.2. Assume that X is a Schur space and f : Iy — X 1is
measurable. If f is Kurzweil-Henstock-Dunford integrable on Iy, then
f is Kurzweil-Henstock-Pettis integrable on Ij.

Proof. Since a Schur space is weakly sequentially complete, by
Theorem 3.5, f is Kurzweil-Henstock-Pettis integrable on Ij. O
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Theorem 3.6. If f : Iy — X is weakly continuous and bounded,
then f is Kurzweil-Henstock-Pettis integrable on I.

Proof. Since f is weakly continuous and bounded, f is measurable
and Dunford integrable. It follows that f is Pettis integrable. Hence,
f is Kurzweil-Henstock-Pettis integrable on Ij. O

Theorem 3.7. If F : Iy — X is weakly differentiable with the weak
derivative f, then f is Kurzweil-Henstock-Pettis integrable on Iy and
the Newton-Leibniz formula holds, that is, (K HP) fat f=F()— Fl(a).

Proof. Since F is weakly differentiable with the weak derivative
f, for each z* € X*, (2*F)'(t) = z*f(¢t) for t € Iy. So, z*f is
Kurzweil-Henstock integrable on I, and (KH) fat z*f = z*(F(t) —
F(a)). By F(t) — F(a) € X, we obtain that f is Kurzweil-Henstock-
Pettis integrable on Iy and (K HP) fat f=F({)—F(a). o
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