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ON THE CONDITIONAL EXPECTATION OF
THE FIRST EXIT TIME OF BROWNIAN MOTION

MAJID HOSSEINI

ABSTRACT. Let U be a domain, convex in = and sym-
metric about the y-axis, which is contained in a centered and
oriented rectangle R. If 74 is the first exit time of a Brownian
motion from A and AT = AN {(z,y) : = > 0}, it is proved
that EZ(1y+ | Ter >t) < E*(ry | TR > t) for every t > 0
and every z € UT.

1. Introduction. In this note we prove an inequality for the
conditional expectation of the first exit time of a Brownian motion
from a bounded domain. This inequality is in the spirit of the ratio
inequalities proved in [3, 8, 9, 11, 17].

Davis [8] proved the first inequality of this kind for the heat kernel of
Laplacian, in order to obtain a lower estimate for the gap between the
first two eigenvalues of the Laplacian. Banuelos and Méndez-Hernandez
[3] extended Davis’s result to the heat kernel of Schrodinger operators
and integrals of these kernels. You [17] proved an inequality of this
type for the trace of Schrodinger operators. Davis and Hosseini [9]
proved the extension to the heat content.

We call a set A C R? convex in z if its intersection with every
line parallel to the z-axis is a single interval or empty. We put
AT = An{(z,y) | = > 0}. Let By = (B1¢, Bay), t > 0, be a standard
two-dimensional Brownian motion and 74 = inf{¢t > 0: B; ¢ A} (for a
general reference on Brownian motion, random walks, and other topics
in probability theory discussed in this note, see [6]). The literature on
the estimates for 74 for various A is quite extensive (see, for instance
2, 4, 7, 10, 14, 15]). We will prove the following.

Theorem 1. Let U be an open, bounded and connected set in R?
which is symmetric about the y-azis and convex in x. Also, let R be
an open rectangle containing U that is symmetric with respect to the
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y-azxis, and has sides parallel to the azes. If z is a point in U™, and
t >0, then

(1) EZ(TU+|TR+>t)§EZ(TU|TR>t).

For an open, bounded and connected set V C R?Z, the Brownian
motion conditioned to stay forever in V is the diffusion process {Y," }s>0
with generator

1o Vey
Ly ==-A+ V,
2 oy

where ¢} is the positive eigenfunction corresponding to \g, the simple
eigenvalue at the bottom of the spectrum of —(1/2)A, with the Dirichlet
boundary condition on V [16]. If U C V is also open and connected,
define the first exit time of this process out of U by 7 = inf{s > 0:
Yy ¢ U}

If we let t — oo in (1), we get the following.

Proposition 2. Let U, R and z be as in Theorem 1. Then

E* (T{}I) < F*# (T[}}).

Since
EZ(TU|TR>t)=/ P?(ty > s|1r > 1) ds,
0

and a similar equation holds for E#(ry+ | 7r+ > t), Theorem 1 will be
proved if we prove the following.

Proposition 3. Let R, U and z be as in Theorem 1. Then for every
s, t >0,

(2) P?(ty+ >s|7p+ >t) < P*(1y >s|Tr>1).

To prove Proposition 3, we first prove a discrete analog of inequality
(2) and then use scaling. The discrete analog is stated and proved



THE FIRST EXIT TIME OF BROWNIAN MOTION 565

in the following section. The method of deriving inequality (2) from
its discrete counterpart is a standard application of the invariance
principle. We will omit this derivation for the sake of brevity. See
[9] for a detailed description of an almost identical derivation.

Note that Proposition 2 follows from a weaker form of Proposition 3;
we need only to prove inequality (2) for ¢ > s. We will discuss later in
this note that this case of Proposition 3 has been essentially proved in
[9]-

The following example shows that the conclusions of Theorem 1 and
Proposition 3 are not valid if the convexity condition is removed. Let
0<d<1/2, and take U = (—1,1) x (—1,1)\ {(0,y) : |y| > 1/4}. Let
R = (-1,1) x (-1,1) and z = (d,1/2). We will show at the end of
Section 2 that, for this example, if ¢ > 0 is fixed, the right sides of (1)
and (2) converge to zero as d — 0 while the left side of (1) is bounded
away from zero for all 0 < d < 1/2 and the left side of (2) equals 1 if
s<t.

If all boundary points of U are regular, then the function fy(z) =
E?(1y) is the unique solution of the Poisson equation

AfU =-2 in U;
fu=0 on OU.

Theorem 1 and the ratio inequalities proved in [3, 8, 9, 17] lead to the
following conjecture.
Conjecture 4. Let U, R and z be as in Theorem 1. Then

E* (ry+)
FE* (TR+)

E* (1v)
E*(1R)

<

2. Discrete-time inequalities. In this section we prove a discrete
version of inequality (2) which, as we pointed out earlier, will imply in-
equality (2) by an application of invariance principle, see [13, Theorem
2.4.20]. To keep the notation simple, we now assume that U and R are
subsets of Z% and z = (z,y) € U™.

Let {X;}i>0 and {Y;};>0 be independent sequences of random vari-
ables such that both sequences {X;4+1 — X;} and {Y;; — Y;} are i.i.d.
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sequences of random variables, each taking values 0, 1 and —1 with
probability 1/3. Let Z; = (X;,Y;). The process {Z;};>o is a random
walk on Z? started at Zy. For any A C Z?,let 74 = inf{i > 0: Z; ¢ A}.
We call A C Z? connected if any two elements of A can be joined by a
path that is entirely within A.

Proposition 5. Let U be a bounded and connected subset of Z>
which s symmetric about the y-axis and conver in x. Let R be a
rectangle containing U with sides parallel to the axes. Then, for all
nonnegative integers m and n,

P? (ty+ >m | 1p+ >n) < P*(ry >m |7 >n).

We will prove the equivalent statement that, for all nonnegative
integers m and n,

(3)

P* (TU+ >m,Tr+ > n) P* (TR+ > n)
P*(ry >m,Tr >n) ~ P*(tp >n)’

We consider two cases: m < n and m > n. The proof of the case
m < n is essentially the same as the proof of the case m = n which was
done in [9], cf. Lemma 5 and its proof in [9]. To avoid repetition, we
omit this proof.

If m > n, then (3) becomes
(4) P? (ty+ >m) _ P?(1gp+ >n)

PZ(TU>m) - PZ(TR>TL) '

By Lemma 5 in [9],

(5)

P? (ty+ > m) < P? (tp+ > m)
P*(ty >m) — P*(tg >m)

Thus, if we prove that the right side of inequality (4) is a decreasing
function of n, then the case m > n of (3) will be proved.

To prove that the right side of (4) is decreasing in n, we will show
that, for all n > 0,

(6)

PZ(TR+>n+1) PZ(TR+>n)
PZ(TR>TL+1) - PZ(TR>7’L) ’
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Since R is a rectangle with sides parallel to the axes, and {X;}i>¢ and
{Y;};>0 are independent, both sides of inequality (6) are independent
of y, where 2z = (z,y), and can be written in terms of {X;}". Assume
that R = (—L,L) x (—W, W) with L, W > 2 (so that R+ # @). Then
inequality (6) can be rewritten as

PPO0<X;<L0<i<n+1l) P*0<X;<L,0<i<n)
Pr(|X;]<L,0<i<n+1) — P*(X;|<L,0<i<n)’

or equivalently,

o PTO<X;<LO0<i<n+l) P*(X|<LO0<i<n+l)
Pr(0<X;<L0<i<n) ~ P°(X;<L0<i<n)

Let Rt ={0< X; < L,0 <i<n}and R, = {|X;|] < L,0<i<n}.
Note that R},; C R} and R,41 C R,. Thus, inequality (7) will be
proved if we prove the following.

(8) P (0 < Xp1 <L|R}) <P*(|Xn41| <L|Rn).

It is shown in [9] that (see the proof of Lemma 5 there), for any
teR,

9) P (X, >t|Rf) > P*(|Xa| >t | Ry).

Suppose that y is the distribution of X,, (under P?) given R;}, and v
is the distribution of |X,| given R,,. Thus, x4 and v are probability
measures on integers with u({1,...,L — 1}°) = 0 and »({0,...,
L — 1}¢) = 0. Furthermore, by (9), for every | € {0,...,L — 1},
we have

(10) wl{l,...,L—1}>vfl,...,L—1}.

By the definition of R}, for every [ € {1,... ,L — 1}, we have

P (X412 L] Xn =1, RY) = P* (X412 L | Xn =1)
=P(X;>1L).
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Similarly, for every [ € {0,...,L — 1}, we have

P*(|Xps1| > L | [Xu| =1, Ra) = P (|X1] > L).

Therefore, inequality (8) is equivalent to

(11) PFO<X1<L)<P'(Xi1]<L).

We will prove that
(12) Pr(X, > 1) 2 PP (X 2 1),

which implies (11).
To prove (12), note that

P*(X, > L)~ P¥ (X1 > L)

L-1 L-1
=Y P Xy >L)uf{l} - PH(1X1| > L) v{l}

=1 =0
= PPN (X) 2 D) p{L - 1} - PY1 (X0 2 D)L - 1)

= % (u{L -1} —v{L —1}) (since L >2)
>0 (by (10)).

This completes the proof of inequality (12). Thus, inequality (6) is also
proved. As we pointed out earlier, inequality (6) implies Proposition 5.
Finally, the invariance principle implies that Proposition 3 follows from
Proposition 5. Therefore, the proof of Proposition 3 is complete.

Note that the proofs of inequality (9) and the case m < n of inequality
(3) are based on the idea of conditioning on the times that a random
walk equals zero. Since the number of times a Brownian motion hits
zero are uncountable, we cannot apply the method by which they are
proved to Brownian motion directly.

Now we will show that, for the example in the introduction, inequal-
ities (1) and (2) fail.

First we show that, for any 0 < s < t, the left side of (2) is equal to
1, while the right side of (2) converges to zero as d — 0 for all s,¢ > 0.
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Recall that B, = (B, Bay), r > 0, is a standard two-dimensional
Brownian motion. Note that Rt = U™ and therefore the left side of
(2) equals 1 if s < t.

Now assume that s > 0 is arbitrary. For any € > 0, there exists a
6 > 0 such that

(13) Pi(ry > s) < POYI(ry > 5) +¢

for 0 < d < 6, see [12, page 55, inequality (20)]. On the other hand, by
the law of the iterated logarithm for By ,., see [13, Theorem 2.9.23], we
have P(®1/2)(r; = 0) = 1 and, therefore, P("/?)(r; > s) = 0. This,
together with (13), implies that limy_,o P?(7y > s) = 0. Thus,

0 <limsup P* (ry > s,7g > t) < lim P? (ry > s) =0,
d—0 d—0

and therefore

(14) lim P? (ry > s,7g >t) =0 forall s,t>0.
d—0

On the other hand,

(15) lim P*(7p > t) = POY2 (1 > 1) > 0.

It follows from (14) and (15) that

(16) lim P*(ry > s|mr >t) =0 forall s,¢>0.
d—0

Now we will show that, for this choice of U and R, the right side of
(1) converges to zero as d — 0, while the left side of (1) is bounded
away from zero.

First note that, since Ut = Rt forall 2z € UT,

E? (ty+ | TR+ > t) > t.

Also, for any t > 0, the function z — P*(7g > t) is continuous on R
(since f(t,z) = P*(tg > t) is the solution of the heat equation on R,
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with initial value 1, and boundary value zero, see [5, Theorem 11.4.14])
and, therefore, there is a &; > 0 such that if z € [0,1/2] x {1/2} then

(17) P? (1 > t) > 6.

Similarly, for any s > 0, the function z — P*(ry > s) is continuous
on U. Furthermore, (13) and the comments following it show that
this function is also continuous at (0,1/2). Therefore, it is continuous
on [0,1/2] x {1/2}. Hence, there exist constants ¢; and ca, see [1,
Theorem 3|, such that, for all z € [0,1/2] x 1/2,

P?(ty > s) < cre” “°.

Therefore,

P* (TU > S)
18 p* > >t) < —7 2
(18) (tr > s| 7R )_PZ(TR>t)_

Thus, by (16), (18), and the dominated convergence theorem, the
right side of (1) converges to zero as d — 0.

3. Higher dimensions. The analog of Proposition 3 holds for an
arbitrary dimension k. We state it as Proposition 6, and we will show
how the proof of Proposition 3 can be modified to prove it.

Represent a point in R¥ by z = (21,...,2;). Also, for A C R¥, put
At = An{z € Rk |z > 0}. Call A convex in z; if the intersection of
A with every line parallel to z;-axis is a connected interval or empty.

Proposition 6. Let k be a positive integer, and let U be a bounded,
connected and open subset of R* which is symmetric about {z; = 0}
and convex in z. Also, let R = (—Ly,Ly) X -+ X (—Lg, Li) be a
k-dimensional rectangle, containing U. Then, for every z € U™ and
every s,t > 0,

(19) P*(ty+ >s|7p+ >t) < P*(ty >s|mr>1).

The proof of Proposition 6 is very similar to the proof of Proposi-
tion 3. Let {X}}i>o0,...,{XF}i>0 be k independent one-dimensional
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random walks, each constructed as {X;}i>o in Section 2. Then
the analog of Proposition 5 holds by independence of {X}};>¢ from
{(X2,..., X)}iso
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