ON UNIVARIATE CARDINAL INTERPOLATION BY SHIFTED SPLINES

N. SIVAKUMAR

1. Introduction. The object of this paper is to study cardinal interpolation of bounded data by integer translates of shifted *B*-splines. To set notation, M_n will denote the centered univariate *B*-spline of order *n* and, for any function g(x) of the real variable *x* and a fixed real number $\alpha, g_{\alpha}(x)$ will stand for $g(x + \alpha)$; \hat{g} will denote the Fourier transform of *g*. $I_{n,\alpha}f$ will represent the interpolant $\sum_{j \in \mathbb{Z}} a_j M_{n,\alpha}(\cdot - j)$ which agrees with a given function *f* on \mathbb{Z} and $P_{n,\alpha}(x)$ will stand for the *characteristic polynomial*, viz.,

(1.1)
$$P_{n,\alpha}(x) = \sum_{j \in \mathbb{Z}} M_{n,\alpha}(j) e^{-ijx}.$$

 $I_{n,\alpha}f$ can also be written in the Lagrange form

(1.2)
$$I_{n,\alpha}f = \sum_{j \in \mathbb{Z}} f(j)L_{n,\alpha}(\cdot - j),$$

where $L_{n,\alpha}$ is the fundamental function of interpolation.

An application of the Poisson summation formula to (1.1) yields the useful identity

(1.3)
$$P_{n,\alpha}(x) = \sum_{j \in Z} \hat{M}_{n,\alpha}(x+2\pi j)$$
$$= \sum_{j \in Z} \hat{M}_n(x+2\pi j) e^{i\alpha(x+2\pi j)}.$$

It should also be recalled that the Fourier transforms of $L_{n,\alpha}$ and M_n are given by

(1.4)
$$\hat{L}_{n,\alpha}(x) = \frac{\hat{M}_{n,\alpha}(x)}{P_{n,\alpha}(x)}$$

Received by the editors on October 15, 1986.

Copyright ©1989 Rocky Mountain Mathematics Consortium

and

(1.5)
$$\hat{M}_n(x) = \left[\frac{\sin(x/2)}{(x/2)}\right]^n$$

respectively.

2. Correctness of the interpolation problem. This section focuses on the correctness of the cardinal interpolation problem by $M_{n,\alpha}$. To recall, cardinal interpolation with $M_{n,\alpha}$ is said to be correct if, given a bounded real valued function f defined on \mathbf{R} , there exists a unique bounded sequence $\{a_j; j \in \mathbf{Z}\}$ such that $\sum_{j \in \mathbf{Z}} a_j N_{n,\alpha}(\cdot - j)$ agrees with f on \mathbf{Z} .

The following necessary and sufficient condition is well-known.

THEOREM 2.1. Cardinal interpolation with $M_{n,\alpha}$ is correct if and only if $P_{n,\alpha}$ does not vanish in $[-\pi,\pi]$.

With the aid of this theorem, it will be shown (Theorem 2.2) that the interpolation problem is correct for α in (-1/2, 1/2). This result was proved by C.A. Micchelli (cf. [2]) and in a more general setting by T.N.T. Goodman (cf [1]) but the proof which will be given here is different. It relies on the identity (1.3) and supplies an expression for $P_{n,\alpha}(x)$ which will prove useful in §3 for the analysis of the convergence of $I_{n,\alpha}f$ as its order *n* tends to infinity.

The following lemma serves as a prelude.

LEMMA 2.1. Let $0 \le b < a \le 1$ and $-\pi \le \theta \le \pi$. Then, for any positive integer j,

(2.1)
$$h(\theta) := \left| \frac{1 + ae^{i(2j+1)\theta}}{1 + be^{i\theta}} \right|$$
$$= \left[\frac{1 + a^2 + 2a\cos(2j+1)\theta}{1 + b^2 + 2b\cos\theta} \right]^{\frac{1}{2}} \le 4(2j+1).$$

PROOF. Since $h(\theta)$ is even, it may be assumed that θ belongs to $[0, \pi]$. The following cases will be considered.

482

Case (i). $0 \le \theta \le \pi/2$. Then

(2.2)
$$h^2(\theta) \le (1+a)^2 \le 4.$$

Case (ii). $\pi/2 < \theta \leq \pi$. Setting $\eta = \pi - \theta$, it can be seen that

$$h^{2}(\theta) = \frac{1 + a^{2} - 2a\cos(2j+1)\eta}{1 + b^{2} - 2b\cos\eta}.$$

Since $1 - \phi^2/2 \le \cos \phi \le 1 - \phi^2/2 + \phi^4/24$ for $\phi \ge 0$, it follows that

$$\begin{split} h^2(\theta) &\leq \frac{1+a^2-2a[1-(2j+1)^2\eta^2/2]}{1+b^2-2b[1-\eta^2/2+\eta^4/24]} \\ &= \frac{(1-a)^2+a(2j+1)^2\eta^2}{(1-b)^2+b\eta^2[1-\eta^2/12]}. \end{split}$$

Observing that $0 \le \eta < \pi/2$ and $b < a \le 1$, it is clear that, when $0 \le b \le 1/2$,

(2.3)
$$h^2(\theta) \le \frac{(1-a)^2}{(1-b)^2} + \frac{(2j+1)^2 \pi^2/4}{(1-b)^2} \le 1 + \pi^2 (2j+1)^2.$$

Similarly, if $1/2 \le n < a < 1$, one now obtains

(2.4)
$$h^2(\theta) \le \frac{(1-a)^2}{(1-b)^2} + \frac{(2j+1)^2}{b[1-\eta^2/12]} \le 1 + \pi^2(2j+1)^2.$$

(2.2), (2.3) and (2.4) give (2.1) and the proof is complete. \Box

THEOREM 2.2.

(a) $P_{n,\alpha}(x) \neq 0$ if $-\pi \leq x \leq \pi$ and $-1/2 < \alpha < 1/2$ or if $-\pi < x < \pi$ and $\alpha = \pm 1/2$.

(b) $P_{n,1/2}$ and $P_{n,-1/2}$ have simple zeroes at $x = \pm \pi$ respectively.

PROOF. Firstly, it should be noted that the evenness of M_n guarantees that

(2.5)
$$P_{n,\alpha}(-x) = P_{n,-\alpha}(x), \quad x \in \mathbf{R}.$$

So it suffices to consider $x \in [0, \pi]$ whilst proving (a).

Setting $x = 2\pi u$, it then follows that $0 \le u \le 1/2$ and (1.3) reads

(2.6)
$$e^{-i\alpha 2\pi u} P_{n,\alpha}(2\pi u) = \sum_{j \in \mathbb{Z}} \hat{M}_n(2\pi u + 2\pi j) e^{i\alpha 2\pi j}.$$

Using (1.5) and the fact that \hat{M}_n is even, (2.6) becomes

$$e^{-\alpha 2\pi u} P_{n,\alpha}(2\pi u) = \hat{M}_n(2\pi u) \left[1 + \left(\frac{u}{1-u}\right)^n e^{-i\alpha 2\pi} \right.$$
$$\left. + \sum_{j=1}^{\infty} (-1)^{jn} \left(\frac{u}{u+j}\right)^n e^{i\alpha 2\pi j} \right.$$
$$\left. + \sum_{j=2}^{\infty} (-1)^{jn} \left(\frac{u}{u-j}\right)^n e^{-i\alpha 2\pi j} \right]$$

which, in turn, after some simplification, reduces to (2.7)

$$e^{-i\alpha 2\pi u}P_{n,\alpha}(2\pi u) = \hat{M}_n(2\pi u) \left[1 + \left(\frac{u}{1-u}\right)^n e^{-i\alpha 2\pi}\right]$$
$$\times \left[1 + \sum_{j=1}^\infty (-1)^{jn} e^{i\alpha 2\pi j} \left(\frac{u}{u+j}\right)^n A_{n,\alpha,j}(u)\right]$$

where, for brevity,

(2.8)
$$A_{n,\alpha,j}(u) := \frac{1 + \left(\frac{j+u}{j+1-u}\right)^n e^{-i\alpha 2\pi (2j+1)}}{1 + \left(\frac{u}{1-u}\right)^n e^{-i\alpha 2\pi}}.$$

Since $\hat{M}_n(2\pi u)$ is non-zero for $0 \le u \le 1/2$, and it is clear that

$$1 + \left(\frac{u}{1-u}\right)^n e^{-\alpha 2\pi} = 0$$

if and only if $\alpha = \pm 1/2$ and u = 1/2, it suffices to prove that the remaining factor in (2.7) is non-zero for $0 \le u \le 1/2$ and

 $-1/2 \le \alpha \le 1/2$ in order to establish the result. This would follow readily if it can be shown that

(2.9)
$$\sum_{j=1}^{\infty} \left| \frac{u}{u+j} \right|^n |A_{n,\alpha,j}(u)| < 1$$

for $0 \le u \le \frac{1}{2}$ and $-\frac{1}{2} \le \alpha \le \frac{1}{2}$

At the outset, an application of Lemma 2.1 to (2.8) yields the fact that $|A_{n,\alpha,j}(u)| \le 4(2j+1)$ for $0 \le u \le 1/2$ and $-1/2 \le \alpha \le 1/2$. Since

$$\left|\frac{u}{u+j}\right| \le \frac{1}{2j+1}$$
 for $0 \le u \le 1/2$,

it follows immediately that

(2.10)
$$\sum_{j=1}^{\infty} \left| \frac{u}{u+j} \right|^n |A_{n,\alpha,j}(u)| \le 4 \sum_{j=1}^{\infty} \left(\frac{1}{2j+1} \right)^{n-1} \le C < 1 \text{ for } n \ge 3.$$

It should be noted that C is independent of u, n, and α ; (2.9) is thus proved for $n \geq 3$.

The theorem can be checked directly for n = 1, 2 and is therefore proved in its entirety. \Box

3. Convergence of $I_{n,\alpha}f$. This section deals with the problem of convergence of the interpolant $I_{n,\alpha}f$ as *n* approaches infinity; the object is to prove a convergence theorem of the Schoenberg type (cf. [3, 4]) for the class of shifted splines.

In what follows, $K(\alpha)$ will stand for a constant dependent only on α . It should be remarked, however, that its actual numerical value may differ at each appearance.

The following lemma is of consequence.

LEMMA 3.1. Let $-1/2 < \alpha < 1/2$ and $0 < \delta < \pi/2$. Then the following hold:

(a) $\lim_{n\to\infty} \hat{L}_{n,\alpha}(x) = 1$ for $-\pi < x < \pi$, and the convergence is uniform on compact subintervals of $(-\pi,\pi)$;

(b)
$$\lim_{n\to\infty} \hat{L}_{n,\alpha}(\pm\pi) = e^{\pi i \alpha \pi}/2(\cos \pi \alpha);$$

(c) for $x \in [-\pi - \delta, \pi + \delta], [\hat{L}_{n,\alpha}(x)] \leq K(\alpha);$ and
(d) for $\pi + \delta < |x| = 2\pi(u+j), u \in [-1/2, 1/2]$ and $j = 1, 2, 3, ...,$
 $|\hat{L}_{n,\alpha}(x)| \leq \begin{cases} K(\alpha)[(\pi - \delta)/(\pi + \delta)]^n, & \text{if } j = 1, \\ K(\alpha)(2j - 1)^{-n}, & \text{if } j = 1, 2, 3, \end{cases}$

PROOF. (a). By virtue of (1.4), (2.5) and the evenness of \hat{M}_n , it follows that

(3.1)
$$\hat{L}_{n,\alpha}(-x) = \hat{L}_{n,-\alpha}(x).$$

So x may be taken to belong to $[0, \pi)$. Now (a) follows easily from (1.4), (2.7), and (2.10).

(b). This is an easy consequence of (1.4), (2.7), (2.10), and (3.1).

(c). To begin with, let $x \in [0, \pi]$. Then $x = 2\pi u$ for $u \in [0, 1/2]$. For such u, it is not hard to see that

(3.2)
$$\left|1 + \left(\frac{u}{1-u}\right)^n e^{0i\alpha 2\pi}\right| \ge \begin{cases} 1, & \text{if } -1/4 \le \alpha \le 1/4, \\ |\sin 2\pi\alpha|, & \text{if } \pm \alpha \in (1/4, 1/2). \end{cases}$$

Inequality (3.2), taken in conjunction with (2.7) and (2.10), proves (c) for $x \in [0, \pi]$. The obvious symmetry of the lower bounds (w.r.t. α) in (3.2) coupled with (3.1) gives (c) for $x \in [-\pi, 0]$ as well. Now, for

$$|x| = 2\pi(u+j), \quad j = 1, 2, \dots,$$

the periodicity of $P_{n,\alpha}$ permits the estimate

$$\begin{split} \left| \hat{L}_{n,\alpha}(|x|) \right| &= \left| \frac{\hat{M}_{n,\alpha}(2\pi u + 2\pi j)\hat{M}_{n,\alpha}(2\pi u)}{P_{n,\alpha}(2\pi u + 2\pi j)\hat{M}_{n,\alpha}(2\pi u)} \right| \\ &= \left| \hat{L}_{n,\alpha}(2\pi u) \right| \left| \frac{u}{u+j} \right|^n \\ &\leq \begin{cases} K(\alpha)[(\pi - \delta)/(\pi + \delta)]^n, & \text{if } j = 1, |x| > \pi + \delta; \\ K(\alpha)(2j-1)^{-n}, & \text{if } j \ge 1. \end{cases} \end{split}$$

The remaining assertions of the lemma follow from this and (3.1).

The convergence theorem can now be stated.

THEOREM 3.1. Let

$$f(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{ixt} d\mu(t)$$

for a bounded measure μ on $[-\pi, \pi)$ and let $-1/2 < \alpha < 1/2$.

(a) If μ is absolutely continuous (w.r.t. Lebesgue measure), $I_{n,\alpha}f$ converges uniformly to f.

(b) If $\mu = \delta_{-\pi}$, then $I_{n,\alpha}f(x)$ converges uniformly to $\cos \pi (x + \alpha)/2$

 $(\cos \pi \alpha).$

PROOF. (a) Since $\{f(-j) : j \in \mathbb{Z}\}$ are the Fourier series that

(3.3)

$$f(x) - I_{n,\alpha}f(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{ixt} d\mu(t) - \sum_{j \in Z} f(j) L_{n,\alpha}(x-j)$$

$$= \frac{1}{2\pi} \Big[\int_{-\pi}^{\pi} e^{ixt} d\mu(t)$$

$$- \sum_{j \in Z} f(j) \int_{-\infty}^{\infty} e^{ijt} \hat{L}_{n,\alpha}(t) e^{ixt} dt \Big]$$

$$= \frac{1}{2\pi} \Big[\int_{-\pi}^{\pi} e^{ixt} d\mu(t) - \int_{-\infty}^{\infty} \hat{L}_{n,\alpha}(t) e^{ixt} d\tilde{\mu}(t) \Big]$$

where $\tilde{\mu}$ is the periodic extension of μ .

Let, for a given $\varepsilon > 0$, $N_{-\pi} := [-\pi - \delta, -\pi + \delta]$ and $N_{\pi} := [\pi - \delta, \pi + \delta]$ be chosen such that

(3.4)
$$\tilde{\mu}(N_{\pm\pi}) < \varepsilon$$

by the absolute continuity of μ .

,

From (3.3), it is clear that

$$|f(x) - I_{n,\alpha}f(x)| \leq \frac{1}{2\pi} \Big[\int_{-\pi+\delta}^{\pi-\delta} |1 - \hat{L}_{n,\alpha}(t)| d\mu + \int_{N_{-\pi} \cup N_{\pi}} [1 + |\hat{L}_{n,\alpha}(t)|] d\tilde{\mu} + \int_{-\infty}^{-\pi-\delta} |\hat{L}_{n,\alpha}(t)| d\tilde{\mu} + \int_{\pi+\delta}^{\infty} |\hat{L}_{n,\alpha}(t)| d\tilde{\mu} \Big].$$

Noticing that the sum of the last two integrals on the right hand side of (3.5) can be written as

$$\int_{-3\pi}^{-\pi-\delta} |\hat{L}_{n,\alpha}(t)d\tilde{\mu} + \int_{\pi+\delta}^{3\pi} |\hat{L}_{n,\alpha}(t)|d\tilde{\mu} + \sum_{j=2}^{\infty} \Big[\int_{(2j-1)\pi}^{(2j+1)\pi} |\hat{L}_{n,\alpha}(t)|d\tilde{\mu} + \int_{-(2j+1)\pi}^{(2j-1)\pi} |\hat{L}_{n,\alpha}(t)|d\tilde{\mu} \Big],$$

and then using (a), (c), and (d) of Lemma 3.1 along with (3.4), it follows that

$$\limsup_{n\to\infty} ||f - I_{n,\alpha}f||_{\infty} \le \frac{1}{\pi} [1 + K(\alpha)]\varepsilon,$$

from which the desired conclusion follows.

(b) When $\mu = \delta_{-\pi}$,

$$I_{n,\alpha}f(x) = \hat{L}_{n,\alpha}(-\pi)e^{-i\pi x} + \hat{L}_{n,\alpha}(\pi)e^{i\pi x} + \sum_{j\in\mathbf{Z}\setminus\{0,1\}}\hat{L}_{n,\alpha}((2j-1)\pi)e^{i(2j-1)\pi x}$$

which converges uniformly to

$$\frac{e^{-i\pi(x+\alpha)} + e^{i\pi(x+\alpha)}}{2\cos\pi\alpha} = \frac{\cos\pi(x+\alpha)}{\cos\pi\alpha}$$

by (b) and (d) of Lemma 3.1.

Acknowledgements. The author wishes to express his gratitude to his teacher, Prof. S. Riemenschneider, for his patience and for being a perennial source of encouragement and guidance. He also wishes to thank two of his colleagues, Mr. R.P. Sawatzky and Mr. Z. Yang for some helpful comments.

REFERENCES

1. T.N.T. Goodman, Solvability of cardinal spline interpolation problems, Proc. Roy. Soc. Endinburgh Sect. A, **95A** (1983), 39-57.

2. C.A. Micchelli, Cardinal \mathcal{L} -splines, Studies in Spline Functions and Approximation Theory, Academic Press, 1976, 203-250.

3. S.D. Riemenschneider, Convergence of interpolating cardinal splines: Power growth, Israel J. Math. 23 (1976), 339-346.

4. I.J. Schoenberg, Notes on spline functions III, On the convergence of the interpolating cardinal splines as their degree tends to infinity, Israel J. Math. 16 (1973), 87-93.

DEPARTMENT OF MATHEMATICS. UNIVERSITY OF ALBERTA. EDMONTON. CANADA T6G 2G1