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ON UNIVARIATE CARDINAL INTERPOLATION 
B Y SHIFTED SPLINES 

N. SIVAKUMAR 

1. Introduction. The object of this paper is to study cardinal 
interpolation of bounded data by integer translates of shifted B-splines. 
To set notation, Mn will denote the centered univariate B-spline of 
order n and, for any function g(x) of the real variable x and a fixed 
real number a,ga(x) will stand for g(x + a); g will denote the Fourier 
transform of g. In,af will represent the interpolant S j e z ajMn.a(' — j) 
which agrees with a given function / on Z and Pn,a(x) will stand for 
the characteristic polynomial, viz., 

(1.1) Pn,a(ar) = 5^Af n , a ( j ) c - i ^ . 

In.af can also be written in the Lagrange form 

(1-2) /n,a/ = £ / ( j ) £ n , « ( - - J ) , 
J£Z 

where Ln,Q is the fundamental function of interpolation. 

An application of the Poisson summation formula to (1.1) yields the 
useful identity 

P n , a ( x ) = ^ M n , a ( x + 27TJ) 

(1-3) S 
= ^ M n ( x + 27rj)em(x+27r'). 

jez 

It should also be recalled that the Fourier transforms of Ln,ft and Mn 

are given by 

(1.4) LnM = -jr^ 
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and 

(1.5) M„(x) = [ - ^ - j 

respectively. 

2. Correctness of the interpolation problem. This section 
focuses on the correctness of the cardinal interpolation problem by 
M n , a . To recall, cardinal interpolation with Mn,a is said to be correct 
if, given a bounded real valued function / defined on R, there exists 
a unique bounded sequence {dj\j G Z} such that Yljez aj^n,a{' — j) 
agrees with / on Z. 

The following necessary and sufficient condition is well-known. 

THEOREM 2.1. Cardinal interpolation with Mn,Q is correct if and 
only if Pn,a does not vanish in [—7T,7T]. 

With the aid of this theorem, it will be shown (Theorem 2.2) that 
the interpolation problem is correct for a in ( — 1/2,1/2). This result 
was proved by C.A. Micchelli (cf. [2]) and in a more general setting 
by T.N.T. Goodman (cf [1]) but the proof which will be given here is 
different. It relies on the identity (1.3) and supplies an expression for 
^n,a(#) which will prove useful in §3 for the analysis of the convergence 
of In,af as its order n tends to infinity. 

The following lemma serves as a prelude. 

LEMMA 2.1. Let 0 < b < a < 1 and -TT < 6 < TT. Then, for any 
positive integer j , 

h(0) : = 
(2.1) 

I + aei(2j + l)0 \ 

]*<4(2j + l). 

1 4- bei0 

l + a2 + 2acos(2j + 1)0] è 

1 + 62 + 2òcos0 

PROOF. Since h(0)is even, it may be assumed that 6 belongs to [0, TT). 
The following cases will be considered. 
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Case (i). 0 < e < ir/2. Then 

(2.2) h2{9)< ( l + a ) 2 < 4 . 

Case (ii). 7r/2 < 6 < n. Setting 77 = n - #, it can be seen that 

2 _ l + a 2 - 2 a C O s ( 2 j + l)r7 

{ ' ~ l + 6 2 - 2 6 c o s 7 7 ' 

Since 1 - 4>2/2 <cos<j><\- 4>2/2 + 04/24 for <j> > 0, it follows that 

/,2,m < l + a 2 - 2 a [ l - ( 2 j + l ) V / 2 ] 
1 ; - 1 + Ò2 - 26[1 - T?2/2 + r/4/24] 

( l - a ) 2 + a(2j + l ) V 
~ (1 - 6 ) 2 + 6r72[l - r? 2 /12] ' 

Observing that 0 < r) < x/2 and b < a < 1, it is clear that, when 
0 < b < 1/2, 

(2.3) *.W<|l^+«üi^!<. + ^ W + I , ' . 

Similarly, i f l / 2 < n < a < l , one now obtains 

(2.4, ^ , < | i ^ ! + J?i±i^<1 + ̂  + l f . 

(2.2), (2.3) and (2.4) give (2.1) and the proof is complete, o 

THEOREM 2.2. 

(a) Pn.a{x) # 0 tf-TT < x < 7T and - 1 / 2 < a < 1/2 or îf -n < x < n 
and a = ±1/2. 

(b) Pn,i/2 a ^ ^n,-i/2 ^ a v e simple zeroes at x — ±7r respectively. 

PROOF. Firstly, it should be noted that the evenness of Mn guarantees 
that 

(2.5) PnA-x) = Pn,-a(x), X € R. 
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So it suffices to consider x G [0, n] whilst proving (a). 

Setting x = 2TTU, it then follows that 0 < u < 1/2 and (1.3) reads 

(2.6) e~ia2nuPn,Q(2nu) = £ Mn(2vu + 27rj)eia2"J. 
jez 

Using(1.5) and the fact that Mn is even, (2.6) becomes 

e-a2™Pn.a(27Tu) = Mn(2iru)[l + ( ^ ^ e'
ia2ic 

oc 

+ D-ir(^-)Via21 
1—9 •* J = 2 

which, in turn, after some simplification, reduces to 
(2.7) 

-ia2iru p '„.„(27TW) = M n (2™)[ l + (-JL-)%-*«2*] 

OC 

i = i 

where, for brevity, 

i + (jife)Vte2'<2>+i> 
(2.8) An,a,j{u) :--

1+(Ä)V-2-

Since Mn(27ru) is non-zero for 0 < u < 1/2, and it is clear that 

VI - u) 

if and only if a = ±1/2 and u = 1/2, it suffices to prove that 
the remaining factor in (2.7) is non-zero for 0 < u < 1/2 and 
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— 1/2 < a < 1/2 in order to establish the result. This would follow 
readily if it can be shown that 

oc 

E|;r^|Vn.„.>)|<i 
(2.9) J=I

 J 

r r, 1 , 1 1 
lor 0 < u < - and < a < - . 

- - 2 2 * - 2 

At the outset, an application of Lemma 2.1 to (2.8) yields the fact that 
\An.aJ(u)\ < 4(2j + 1) for 0 < u < 1/2 and - 1 / 2 <a < 1/2. Since 

< for 0 < u < 1/2, 
- 2 j + 1 - - / \u + j \ 

it follows immediately that 

(2.10) f^lu+jl ' n'a'A )]~ j^\2j + l) 

< C < 1 for n > 3. 

It should be noted that Cis independent of u, n, and a; (2.9) is thus 
proved for n > 3. 

The theorem can be checked directly for n — 1,2 and is therefore 
proved in its entirety, o 

3. Convergence of In.af- This section deals with the problem 
of convergence of the interpolant In^f as n approaches infinity; the 
object is to prove a convergence theorem of the Schoenberg type (cf. 
[3, 4]) for the class of shifted splines. 

In what follows, K(a) will stand for a constant dependent only on a. 
It should be remarked, however, that its actual numerical value may 
differ at each appearance. 

The following lemma is of consequence. 

LEMMA 3.1. Let - 1 / 2 < a < 1/2 and 0 < 6 < TT/2. Then the 
following hold: 
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(a) linin^oc Ln,a(x) = 1 for —n < x < n, and the convergence is 
uniform on compact subintervals of (—7T,7T); 

(b) limn-oc Ln.a{±ir) = e^m"/2(cos7ra); 

(c) for x e [—TT — Ô, TT + <5], [Ln,a(x)| < K(a); and 

(d) for TT + <5 < |x| = 2ir(u + j),ue [-1/2,1/2] and j = 1 ,2,3, . . . , 

\Ln.a(x)\ < 
(K(a)[(7T-ó)/(7T 
\K(a)(2j-l)-n, i / j = 1,2,3,. . . . 

PROOF, (a). By virtue of(1.4), (2.5) and the evenness ofMn, it follows 
that 

(3.1) ^n,Of( *£] — ^ n , - Q ( ^ ) -

So x may be taken to belong to [0,7r). NOW (a) follows easily from 
(1.4), (2.7), and (2.10). 

(b). This is an easy consequence of (1.4), (2.7), (2.10), and (3.1). 

(c). To begin with, let x € [0, TT]. Then x = 2nu for u e [0,1/2]. For 
such u, it is not hard to see that 

(3.2) \i+(-!t-)neoia2*\>l}\ 
I VI - u) I t I si 

i f - l / 4 < c * < 1/4, 
sin27ra|, if ± a 6 (1/4,1/2). 

Inequality (3.2), taken in conjunction with (2.7) and (2.10), proves (c) 
for x 6 [0,7T]. The obvious symmetry of the lower bounds (w.r.t. a) in 
(3.2) coupled with (3.1) gives (c) for x € [-TT,0] as well. Now, for 

|ar| = 27r(t£ + j ) , J = 1,2 

the periodicity of Pna permits the estimate 

I Mn,a(27Tu + 2irj)Mn%a(2iru) l 
^>n,a(|^|) 

Pn,Q(27m + 2TT j)Mn ,Q (2TH/) 

u 
= \Ln^(27Tu)\\ 

u + j 
fff(a)[(7T-*)/(* 

- \ ff(a)(2j - I )"* , 
+ ó)]n, i f j = l,|:r| >7T + Ä; 

if j > l . 
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The remaining assertions of the lemma follow from this and (3.1). o 

The convergence theorem can now be stated. 

THEOREM 3.1. Let 

for a bounded measure fi on [—7r, W) and let —1/2 < a < 1/2. 

(a) If fi is absolutely continuous {w.r.t. Lebesgue measure), In.af 
converges uniformly to f. 

(b) If fi = 6-TT, then In,af(x) converges uniformly to COSTT(X + a)/ 

(coswa). 

PROOF, (a) Since {/(— j) : j G Z} are the Fourier series that 

f(x) - /„ .„/(*) = ±-f eixtdß(t) - Y, fU)L„.a(x - j) 

2n 
(3.3) 

h[fjxtMt) 

-T.™) r eiitt»-a(t)eixtdt] 
= ^[f e'xtdß{t) - j " Ln.a{t)e

lxtdm 

where fi is the periodic extension of fi. 

Let, for a given e > 0, N-n := [-7T-Ó, -TT+6] and Nn := [n-<5, n-f <5] 
be chosen such that 

(3.4) /2(iV±7r) < e 

by the absolute continuity of fi. 
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From (3.3), it is clear that 

|/(X) - J„.„/(*)| <^-\ I" |1 - LnAt)W 

(3.5) 4- / [1 + \Ln.a(t)\]dß 
JN-nUNn 

/

—ir — b /»oc 

\Lrua (t)\dß + / \Ln.a(t)\dß 
OC Jlt + 6 

Noticing that the sum of the last two integrals on the right hand side 
of (3.5) can be written as 

/

—TT — Ò p'Ò7T 

{t)dß+ / \Ln.a(t)\dß 
-37T JTT + Ô 

^c *(2j + l)7T Ä f(2j-l)n 

+ > / {t)\dp+ / |Ln,Q(0|d/i 
j = 2

 L ^ (2 j -1 )7T 7 - ( 2 j + l)7T 

and then using (a), (c), and (d) of Lemma 3.1 along with (3.4), it 
follows that 

l i m s u p | | / - / n . a / | | 3 C < - [ l + tf(a)]e, 
ri — oc TT 

from which the desired conclusion follows. 

(b) When // = 6-n, 

+ £ LnA(^j-^y{2j-i)nx 

j€Z\{0.1} 

which converges uniformly to 

e-i7T(x + a) + et7T(x + «) ^ C O S ^ ( X + a ) 

2 cos 7ra cos 7ra 

by (b) and (d) of Lemma 3.1. 
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