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ON THE RELATIVE GROWTH OF AREA 
FOR SUBORDINATE FUNCTIONS 

P.J. EENIGENBURG 

Introduction. Let / be analytic in the open unit disk A and let 
A(r, f) denote the area of the region on the Riemann surface onto 
which the disk \z\ < r is mapped by / . Then 

A(r.f)= I f\f(z)\2dxdy 
J\z\<rJ 

= nJTn\an\
2r2n. 

71 = 1 

If F is also analytic in A, we say / is subordinate to F(f -< F) 
if there exists a bounded analytic function u;, u;(0) = 0, such that 
f(z) = F(u(z)),z e A. Golusin [5] has shown that if / -< F , then 

A(rJ) <A{r,F), r< 1/VÏ. 

Reich [6] has extended this result by showing that, for 0 < r < 1, 

(1) A(rJ)<T(r)A(r,F), 

where 

in the range 

T(r) = mr2li 

<rz < — (m = 1, 2 , . . . t 
m m + 1 

He also finds, for each r, all pairs (/, F) for which equality holds in (1). 
Waniurski and this author [3] have extended Reich's results to quasi-
subordinate pairs. It is the purpose, however, of this paper to examine 
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the asymptotic behavior of the ratio A(r,f)/A(r,F) for subordinate 
pairs (/, F). The definition of T(r) immediately yields the existence of 
positive constants A and B such that 

A ^ x B 
<T{r)<- , < r < l . 1 - r - v ' - 1 

It then follows from (1) that f < F implies 

(2) A(rJ)/A{r,F)=0(j^), as r - 1. 

We intend to examine the relation (2) for various choices of schlicht 
mappings F: a bounded mapping, a mapping onto an infinite strip, 
and a mapping onto a sector with central angle 7ra. We find that the 
growth of A(r, F)/A(r, F) becomes smaller as the range of F becomes 
more expansive. In particular, the relation (2) is almost best possible 
when F is bounded, while A(r, / ) < A(r, F) when F maps A onto a 
sector with central angle > n. We first establish these two extreme 
cases, and then we give some results which interpolate between them. 

Main Results. Fix p > 1. We first exhibit a function / , analytic in 
A, continuous in A, for which 

A(r,f)> h 

(1-rMlog^)2" 

- < r < 1, A'a constant. 

We simply define f(z) = Yl^=i an^\ where 

10 otherwise. 

The justification that / has the desired properties can be found in [4]. 

Actually, one cannot hope to find a bounded / such that A(r, f) > 
A'(l — r ) _ 1 , as the following theorem states. 

THEOREM 1. If f e H2 then l im r_i( l - r)A(rJ) = 0. 
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PROOF. Since for r < rn = 1 - £ we have A(r, f) < i4(r„, /) , it 
suffices to show that (1 — rn)A(rn,f) —•> 0 as 77 —> oc. But 

( l - r „ ) . 4 ( r , M F ) < - y > | a , | 2 

+ * £ A - | a , | 2 ( l - - ) ^ 

n 
(3) 

1 x 2A-

A-=r?-hl 

Let £ > 0. Choose N such that E A ^ Y + I K l 2 < e- T h e n 

Ï7 X1A-=Y+I k\ak\2 < z> Consequently, the first term of the right side 
of (3) satisfies 

n2 

< —(constant) -f TTE 
n 

< 27T£, if n is sufficently large. 

For the second term of the right side of (3), a differentiation shows 
£(1 - ^)2k is a decreasing function of A\ for A' > (log^^Tj-))"1. Since 
log(l + x) > x - x2/2 for 0 < x < 1, the choice x — 1/(77 - 1) shows 
that n > ( log(^Y)) - 1 ^or n > 2* Hence. A*(l - yi)

2k is a decreasing 
function of A\ for k > 77, and so 

iÈ*M'(.-i)"<iÈi..iM'-;)-\ak\'n\l-
A=™ + 1 ' ' l " A = / J + 1 

A=7J + 1 

The proof is complete, o 

We now take up the case where F maps A onto a sector with central 
angle > TT. Brannan, Clunie, and Kirwan [1] have shown that if 

' 1 + cz \ " 
A > 1, \c\ < 1, 

/ 1 + CZ \ <y 
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then every / -< F can be expressed as 

f(z) = f F(ze-')dp(t) 
J — 7T 

for some probability measure /x on |z| = 1. 

THEOREM 2. Le£ F òe analytic in A, and /e£ /i 6e a probability 
measure on \z\ — 1. If F is defined by 

f(z) = f F(*r»)d//(0, 
J — 7T 

£/ien 
4 ( r , / ) < A ( r , F ) . 

PROOF. Letting ; = pe'e, we have 

4 ( r , / ) = / ' I" \f{z)\2pdOdp 
Jo Jo 

rr />2n pit j2 

= / / / F'(ce- ' ' ' )e""d/i(0 pdödp 

<['['[" \F'(ze"t)\2dp{t)pd6dp 

Jo Jo J-ix 
(by Jensen's inequality) 

= y y (j2* \F'{pe'^-'))\2de)dp{t)pdp 
= f r \F'{pe^)\2d<j>pdp 

Jo Jo 

= A(r,F). 

The proof is complete, a 
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In preparation for our final result, we need to establish some notation. 
First, A' will denote a constant, not necessarily the same in each 
instance. Also, if p(x) and q(x) are positive functions on the same 
domain X, then p(x) ~ q(x) will mean that the ratio p(x)/q(x) is 
bounded away from 0 and oc on X. That is, there exist positive 
constants m and M such that 

m < p(x)/q(x) < A/, x e X. 

LEMMA 1. [2, p. 84] If z = re20,1/2 < r < 1, then 

i: d0 j ( l-r)P-1 Ì{P>1* 
\1-Z\P~ \ l o g ^ i f p = l . 

In fact, a more careful analysis would show that the limits of inte­
gration can be replaced by — n/2 and n/2. That is, all of the growth is 
attained in the right half plane. This remark will be used in the proof 
of the next result. 

LEMMA 2. If F(z) = (f^f ) a , a > 0, then 

A(r, F) ~ (1 - r)~2n, - < r < 1. 

lfF(z) = \og(\^z),then 

A(r,F) ~ log y — , - < r < 1, 

PROOF. In the case a > 0 we have 

| F ' ( 2 ) I ~ Ï Ï ^ W ' *eA,Re*>0, 

and 

file:///1-z/p~
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pr pn/2 in 

Since 1 - a < 1 + a, it follows that, for z - pel6, 1/2 < r < 1, 

rr rn/2 

~ (1 — r ) _ 2 f t , by Lemma 1. 

The logarithm case follows by this same reasoning, but with a — 0. 
The proof is complete, o 

We now state our main result giving the growth of A(r, f)/A(r, F) 
for various domains F (A). 

THEOREM 3. Iff -< F , where F(z) = K(fë)n, then 

(4) A(rJ)/A(r,F)=l 

{ 0(1) ? / a > 1/2 , 

o ( l o g T ^ ) if a = 1/2, 

[ ° ( ( i - r ) i - ^ ) tf0<a<l/2. 

Also, 

(5) i 4 ( r , / ) M ( r , F ) = < > . x 7 

lo(î^) ifF{z) = Kz, 

PROOF. We first consider the case a > 1/2. By Littlewood's 
subordination theorem and Lemma 1, 

/

7r f1* r/# 
l - 2 o 

We now use a theorem of Hardy and Littlewood's relating the mean 
growth of an analytic function with the mean growth of its derivative 
[2, p. 80]. The result is that 

I* \f'(z)\2d0<K(l-ry 
J — 7T 
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and hence A(r. / ) < K(l — r)~2a. By Lemma 2, we may divide the 
left side by A(r,F) and the right side by (1 — r)~2<\ thus giving the 
desired result. 

Now consider the case a = 1/2. Applying Lemma 1. 

1 

J — 7T 
\f(z)rdO < log-} l - r 

By the Cauehy formula 

2 m J\C\=P 

f(Qd< 
( C - = ) 2 

P r /(pe'('+e>y('-% 
2TT ./_„ (pe" - r) 

where p — \{\ + r). Minkowski's inequality (in continuous form) then 

Ah(P,f)dt 

2 
gives 

1 F J\ 
2pr cos t + r2 

( 6 )
 = A / 2 ( ^ / ) < A-(iQgrb)1/2 

p2 _ r2 — 1 — r 

where M2(r, / ' ) denotes the mean square {£; J*n \f(rei0)\2d0}i/2. Us­
ing (6) and integration by parts gives 

Application of Lemma 2 yields 

A(r.f)/A(r.F)<K log (j^). 

We finally consider the case 0 < a < 1/2. This, and also (5), are 
easily proved since / G H2. We may thus use Theorem 1 to obtain 
A(r,F) = o(l — r ) - 1 . Then we divide each side by the approximate 
relations from Lemma 2. 
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This completes the proof of Theorem 3. It would be interesting to 
know whether, in the case a = 1/2, the "big O" may be replaced by 
"little o". 

The author is indebted to Douglas Campbell for his contribution 
to the proof of Theorem 1 and also to the referee for many helpful 
suggestions. 
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