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(0.3) INTERPOLATION ON THE ZEROS OF r,(x)

M.R. AKHLAGHI. AN. CHAK AND A. SHARMA

1. Introduction. Baldzs and Turdn’s work [1] on (0.2) interpo-
lation in 1957 led to considerable interest in the general problem of
Birkhoff interpolation. However. in spite of the recent classic book on
this subject by G.G. Lorentz et al. [2]. the problem of (0.3) interpo-
lation on the zeros of 7, () seems to have been ignored. Similarly.
although we know [2. p. 10] that (0.2.3) interpolation is regular on
any real distinct nodes. i.e.. is alwavs uniquely solvable. there is no
known formula for the explicit expression for the interpolant. except in
the trigonometric case on equidistant nodes.

Recently Varma has found some quadrature formulae using values and
third derivatives of 7, (') together with values of the first derivatives
at +1 on using his method in [3]. However. his approach is not via
interpolatory formulae. In view of this. we propose to show that (0.3)
interpolation is regular for n > 1 on the zeros of 7, () and to give
the explicit formulae for the fundamental polynomials. (For n < 3. the
problem is not regular hecause Polyva conditions are not satisfied and
for n = 3. the problem is trivial.) It turns out that the quadrature
formula of Varma can he obtained by integrating the polyvnomial of
(0.3) interpolation. The methods used here show that the problem of
(0.1..... r—3.r) on zeros of m, (1) is regular for any positive integral

In §2. we give the preliminaries and state the main results. The
proof of Theorem 1 is given in 3 and the fundamental polynomials are
derived in §4. §5 comprises the proof of Theorem 2 and the fundamental
polynomials for the (0.3) case are given in §6. In §7. we apply the
results to derive a quadrature formula.

2. Preliminaries and main results. It is known that the
polynomials 7, () satisfv the differential equation
(2.1) (1 =22y = —=n(n—1)y. n>2.
For n = 0 and 1.7p(2) = Lowy () = & and 7, () = (1 - 2P ()
where P, (r) denotes the Legendre polynomial of degree n with P, (1) = 1.
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We shall require

(1) =—n(n—1) (=1)"*ix! (-1).
(22) < 7"(1) =-n*(n-1)%/2=(- )"w{,’( 1).
(1) = —n?(n -1 +1)(n—2)/8 = (=1)"T1xll(-1).

We recall that P,_,(1) =1 = (=1)""'P,_1(—1) and that

(23 P'/, l(l) =”(n—1)/2'— 1)" n l( 1)
3) " (1) =+ —-1)(n—-2)/8=(-1)""1P'_(-1).

We shall also make use of the known identities

("+1) n+l( ) =(2n+1)1'P,,(1')—nP,,_l(r).
(24 (1 - lz)Pl( ) = I)P,,_l(-l') - nl‘Pn( )‘
) nP,(x) = cPl() - Pl (2).
(n+ DP,(x) =Py, (x) =P (x).

The known orthogonal property

1 (ke —
(2.5) /l(l—l )P _\(x)P; (.r)d.r=2’\(" 1)6.iL'~

2k —1
where 6,1 denotes the Kronecker delta and the recursion relation

(2n = DaP,_y(x) = (n = )P, (x) + nP,_,(x)

leads to
l .
[ 1= eror o
J-1
(2.6) 2 -Dn(n+1)/2n-1)2n+1). k=n+1,
_ 2n(n—1)(n-2) A — 1
2n=—D(2n=3)" =n-21
0. otherwise.

We also note the integrals

(2.7) J2 Py ()P ()de = (14 (=1)+) R g <o
rl n— 1(1 ~_|(~1')dJ'=(1—(-])""’")!‘1&2—&_ k< n.
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Let -1 =1, < --- < 2,1 < 1, = 1 denote the zeros of m,(z). We
recall the known identity

P, (t) -1 &= 2%-1 :
2.8 i = P._ . ()P._(x,).
( ) t"l',, R,—](Iu) ’g . _ k l() A l( )

From (2.4), we have
(1- $2)P1’,—1(-"3)

_n(n-1) P, y1(z) 2(2n - 1) / P, _3(z)
—_2n—1{_-2;+1‘+@n—3N%r+UR“AI%_2n—3}'

Multiplying both sides by (1 — z2)P;_,(z) and using (2.5), we observe
that, for 2 < k < n — 1, we have

(2.9)
n(n-1) 2(n—2)(n-3) k=n-2

1 —_— .
(2n—-1)(2n-3) 2n-5 ’
/ T (2T (2)dx = {

! 0, ks#n-—2.

We shall prove that the problem of modified (0,3) interpolation on
zeros of m,(x) is regular. More precisely, we shall prove

THEOREM 1. If Q(z) € 72,1 satisfies the conditions

Q(IU)ZO l/=1727"'7nw
(2.10) Q'(+1)=Q'(-1) =0,

Q" (z,) =0, v=2,...,n—1,
then Q(z) = 0.

As a consequence we will derive

THEOREM 2. The problem of (0, 3) interpolation on the zeros of m,(z)
s regular.

The proofs of Theorems 1 and 2 will depend on the elementary
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LEMMA 1. Let g(x) be a given polynomial of degree < m and let
Ly(x) denote the linear function interpolating g(x) at £1. Then the
only polynomial solution of the differential equation

3(1-2%)y" — n(n — 1)y = g(z)

is given by
1 1 )
y=-rm-pl@+ f_ (9(0) = Ly(®) K (=, 1),
where
(2.11)
I t) - Z (2V ;th):r_li 1)) L l(t)v Auu = 3V(V - 1) + n(n - 1)

The proof of this lemma is a simple consequence of the relation (2.7)
and is left out. If we set

ma(t)

(1 —z;)m (x;)’

(2.11a) ¢(t) =
we have

LEMMA 2. The following identities are valid:

1
/1““’( ! () = Po_y (1)K (2, t)dt
(212) o (n — k)(n + k — 1)(2k — 1)mp(x)

-k - k — 1)mi(z

2k(k — 1)Ap.n ’

k=2

/ (1= 8)(P_y(t) = Po_y(~1))K(z, t)dt

(2.13) - .
_ Z (n = k)(n+k - 1)(2k — D)7, (z)(-1)"**
2k(k = 1)Ax.n

k=2
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and
(2.14)
1 ] -1 2k — Dm(x)Pi_ ()
/_l"f(t)"(fv’)d’: P 1) e D DR v 1 v

k=2
where A, is given in (2.11).
PROOF. These identities are easy to verify on using the expression

(2.11) for K (z,t) and the formulae (2.7). In particular, from (2.7) we
have

1 1
/ P _(z)dx =1+ (-1)", / P, _(x)dx =1-(-1)".
—1 -

1

We also use the differential equation for P, _,(x), viz.,

(1= 2Py, (z) = 22P,_,() +n(n — 1)P,_1(z) = 0.

3. Proof of Theorem 1. From (2.10) we see that the polynomial
Q(x) € my,—; must be of the form ,(z)s(x), s(r) € m,_;. The
conditions Q"' (x,) = 0,v = 2,...,n— 1, after simplification imply that

3(1 - z2)s"(x,) —n(n—1)s(z,) =0, v=2,....,n—1.

Since s(x) € m,_1, the above conditions show that s(z) satisfies the
differential equation

(81)  3(1-=z?)s"(z) — n(n —1)s(z) = (Az + B)P,_,(x).
The requirement Q'(+1) = 0 implies that s(+1) = 0. Putting r = 1

in (3.1) we get A+ B = —A + B = 0, which shows that A = B = 0.
From Lemma 1, it follows that s(z) = 0, which completes the proof. O

4. Fundamental polynomials for modified (0, 3) case. We can
now find the fundamental polynomials of modified (0,3) interpolation.
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We shall denote them by {r,(r)}}. o1(x). o,(xr) and {p,(x)}!2;
respectively.

a) The polynomials p,(r).v = 2...., n — 1. These polynomials are
determined by the conditions

pu(r;) =0, j=1..... n.
(41) pl/(Il) _py(-l'n) =0,
p:/"(‘rj) “‘6111 J—?....,n—l.

Putting p,(r) = m,(r)s,(r), and using (4.1). we see that

31 = sl (r;) — n(n — 1)s,(x;) =6 ﬂ j=2 n-1
J 14 J 14 J v) 7'[':'(_1‘1-)’ ..... .

Equivalently. s, (r) satisfies the differential equation

3(1 - 2%)sy(x) — n(n = 1)s,(x)
_ 1- I;Z/ X 1,1 1( )
W{,(I,,) (.1‘ _IV) n— I(I )

From p,(£1) = 0, we get s,(£1) = 0 so that putting r = £1 in the
above differential equation, we obtain

+(AI+B) n— 1(1‘)

-1
(1= 22)(P_y(x))*

Using these values and simplifying, we derive

B=Ar,, A=

; £,(x)
3(1 - x%)s)(x) — n(n - 1)s,(x) = P ()
where (,(r) is given by (2.11a).
By Lemma 1, we have
su(r) = ) / () K (z,t)dt,
n 1 Ly

and from (2.14) in Lemma 2 we get
"4{:1 (2k = V)mi(z) Py (20)

(42) s (2) = k(k — 1)k

n2(n — 1)2P;,‘ 1(x) &
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and p, () = m,(z2)s,(x).

b) The polynomials o1(x), o,(x). From symmetry it follows that
on(r) = —oy(— .l‘) where o(z) is determined by the conditions that
oi(x,) =0, v =1,..., n; oy(z1) = loi(z,) = 0 and o7'(x,) =
0, v =2,...,n — 1. Setting o1(r) = m,(x)a(xr) we see that a(l) =
0, a(-1) = (—1)"/n(n —1). As above, we see that a(r) satisfies the
differential equation

3(1 - z%)a"(z) — n(n — a(z) = (Cz + D)P,_,(x).
Since a(1) = 0, we get
D=-C=-1/n(n-1).

Applying Lemma 1 we get

_ (=" -x) - ’
Q(I) - 2n(n - 1) ‘n 71 - 1) /(1 " l(t Pn——l( 1))1\(I*t)dt

and using (2.13) in Lemma 1 gives an explicit form for a(z). Indeed,
we obtain

(4.3)

a(r) =

(—)"(1—z) = (2k=1)(n—k)(n+k—1)(-1)" . (z)
2n(n—1) é 2n(n — Dk(k — DA ’

c) The polynomials r,(x),2 < v < n — 1. Since r,(r) is determined
by the conditions

{r,,(.r)zé,,j, j=1,....n,
(4.4) ry(zj) =r,(xn) =0,
r(zj))=0, j=2,...,n—-1,
we set,

1- 2
1-22

14

From r/,(£1) = 0, it follows that 3,(£1) = 0. As in case (b), we see
that r)’(z;) =0, j =2,...,n — 1, implies that

Z,,(:r,) + ﬂ,,(l’)ﬂu(l‘), Bu(x) € Tp—1-

r,(x) =

2 2

1-22 ,1— m
31 = )8 (a,) — nln — VB(e3) = ~ 1 (T )
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j=2,...,n—1

Since 3,(£1) = 0 and since f3,(x) € m,_1, it follows from the above
that (3, (z) satisfies the differential equation

(4.5) 3(1-2%)8(z) — n(n - 1)B,(z) = ()

where ~,(z) is a polynomial of degree n — 1 which satisfies the inter-
polating conditions

'7!/(:!:1) =0

1-—2122 1-—z2 m
Y=o ¢ ) . j=2,...,n—1.
Ww(z;) &) + (1—1:3 v(7) R n

Some elementary calculations show that +,(z) can be explicitly given

by

(4.6)
n(n—1) 1-22-(1-22)¢,(x)
(@) = (1-z2)n(z,) T—T,
C1-2 {6(1-6,(2) +2(z — 2,)6,(2) + (&= 5,6 x))
™, (xv) (z—=,)?

From Lemma 1, we now get

1
B,(z) = /_ W(OK (it

where K(z,t) is given by (2.11) and +,(t) is given by (4.6).

d) The polynomials ri(z),rn(x). These polynomials are similar to
those in (c) above. They also satisfy (4.6) with v replaced by 1 and n
respectively. It is then clear that r,(x) = r1(—z). We shall find r(z)
explicitly. To do so, we set

4.7 ri(z) = (1 -z)(Az + B)li(z) + T (z)B1(), Bi(z) € mpo1,

where we choose A and B such that ri(z;) = 1 and $3;(z1) = 0 when
ri(z1) = 0. Then

2(B - A) =1 and 2(B — A)¢,(~1) + (34 — B)ty(~1) =
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Since £(-1) = 1 and ¢j(-1) = %%((T_IIT) = —'—‘(14'—1)-, it follows easily
that
2 _ 2 _
(4.8) A="znrt2 p_n"-n+6
8 8
From r""'(z;) = 0, we get
(4.9)
2\ Q! I_I? " .
3(1—23)8(z;) = n(n - 1)Bi(z;) = ———2A"(zj), j=2,...,n—1
T ()

where A(z) = (1 — z)(Az + B)¢1(z) and A, B are given by (4.8).
Now

1- :cf

T (2;5)

_ g2 _ .
_ 1 x]{(_n(n b, 6a I’))(Azj+B)

A" (x;)

S (-1) A+z;2 " (1+4g;)°
6

- m(—AIL‘j +2A - B)}

Elementary calculation shows that the unique polynomial 7, (x) which
satisfies the conditions

2

n(£1) =0, m(z;) = —W,‘(;f) A"(z}), j=2...,n—1,
is given by
__1-a 1+ (1+2)6i(=1) - bi(x)
[Ty {"("‘ R R,
6{1+ (1+2)¢,(-1) + 11 + )2} (-1) - &s(z)}
+ (1+z)3 ’

Then from (4.9), we see the differential equation for 3;(z) to be

3(1 - 2)8(z) — n(n - 1)Bi(z) = n(z).
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By Lemma 1, we then have

1
Bu(z) = /0 K (z, t)y (t)dt

and ry(z) is given by (4.7).

5. Proof of Theorem 2. We shall show that if Q(z) € m2,,—1 and
satisfies

(5.1) Q(z,)=0, Q"(z,)=0, v=12,...,n,
then Q(z) is identically zero.

By Theorem 1, there exists a unique polynomial Q(z) € w2, —; such
that
Q(z,)=0, v=1,...,n
Q(-1)=C, Q(1)=D,C*+D*#0
Q"(zj)=0, j=2,...,n- 1

From the fundamental polynomials of modified (0,3) interpolation
we have

Q(z) = Coy(x) + Do, (x).
If we now impose the requirement that Q"' (—1) = Q"'(1) = 0, then

we get a homogeneous system of two equations whose determinant A
is given by

n "
A= olll(l 1 Ulll(l 1
V(1) a'(1)
Since o0, (z) = —o1(—z), we have
A — _{O_HI II/ }{U’" +1) + U,I,( 1)}

From the explicit formula for o1 (z) in §3, we have
o1(x) £ o(-z)
= T (x)a(r) £ T (—1)a(-1) = 7 (z)(a(x) £ (-1)"a(-1))
_ (ax + B)ma(x)
T 2n(n-1)

n—1

3R @k D= Bt k= D) £ D w)mule)
2k(k — Dn(n — D)ren

k=2
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where a = (-1)"*1 1, 3= (-1)" £ 1 (i.e.,, a + 3 = £2). Since

((ax + B)mn(2))7Z; = (a + B)m,'(1) + 3am, (1)
= +2m'(1) + 3am, (1)
(mn(2)m(2)) 72y = 3(my (1) (1) + (1) + 7 (1)

= Bl 2 DREZD 2 42— ),

it is easy to check that, when n is even, o7’(1) + 0{’(-1) < 0 and
n n

01" —o{'(—1) > 0 and that the same holds when n is odd.

Thus A 3# 0 which shows that C = D = 0. By Theorem 1 this implies
that Q(z) = 0, contrary to our hypothesis. This completes the proof
of Theorem 2.

6. Fundamental polynomials of the (0,3) case. The funda-
mental polynomials for the (0,3) case will be denoted by {r}}} and
{p;(z)}}. They are characterized by theorem properties, viz.,

(6.1) {r( ) = by, r,‘:m(.rj)=0, v,j=1,..., n
pu(z;) =0 p (zj)=puvj, v,j=1,...,n.

It is easy to check that

ry(x) o1(x) on(x)
m@= x| W) o) o) |, v=lin.
1",1"(-—1) m( 1) IH( 1)

pu(T) o1(z) on(r)
p,/(1)  o"(1)  0,'(1)
p(=1) ot'(=1) o"(~1)

v

v=2,....,n—1,

3

pL(x) = A

where
A = (07'(1) = ay"(=1))(0"(1) + 01" (-1)).

The expressions for p}(z), p(z) are simpler. Indeed, we have

* _ o1(x) o,(x) . _l o (r) —oi(-rx)
pl(‘t) - _A /ln(l) 0""(1) P,.(I) N o,lllll(__l) I"(l)
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7. Application to quadrature. For a given function f € C3[-1, 1],
we denote by R, (f,z) the unique polynomial interpolant of modified
(0, 3) interpolation of f(z) on the zeros of m,(z). Thus

Ru(f,z,) = f(zv), v=1,---n,
(6.1) R,(f,x1) = f'(z1), R, (f,zn) = f'(zn),
R)(f,z;) = f"(zj), j=2,...,n— 1L
By Theorem 1, we have

n—1

Ru(f,2) = Zf(xu)ru(r)+f (€1)01(2)+f'(@n)on(2) +Zf'" z)pu ().

v=1

Integrating both sides from —1 to 1 we get a quadrature formula, exact
for polynomials of degree 2n — 1. On simplifying, it turns out that

n—1 f(l'}.)
/ f(@)dz =An(f(1) + f(~1)) + Bn Zp

nl

n—1

zi(l — 22
Culf(1) = f/(~1)) + Dy Mf’"(xk),
k=2 7l—l(zk)
where
(6.2)
ol o _ 8n?—25n424
( An - f_ll Tl(:lf)dl‘ - f—l Tﬂ(x)dz - n(2nfl)(2n2t81z+9) )
F'?—_l—j‘(‘m Zf_l’l',,(.’l:)dl‘, v=2,...,n—1,
. _ 4(n—2)(n-3)
ﬁ Le. B” - n(2n 1)(2n2—-8n+9)°
1
Ca ) - f 191 (z)d:c - f 10" d.’L‘ — T (2n-1)(2n7—8n+9)°’
D;’fi(,l(;f) ) = f—1 pu(x)dz, v=2,...,n—1,
— 1
\ D, — n(n—-1)(2n—-1)(2n?-8n+9) "

These formulae were obtained by Varma in a very nice simple way
without the use of the fundamental polynomials of modified (0,3)
interpolation. But he could not obtain the quadrature formula without
using f’(1) and f’(—1). But in view of Theorem 2, we can give such a
quadrature formula. Indeed, we have

1 n n
[ 1@ =3 430w+ 3Bl e,
- 1 1
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where
PP S U o R
YT P D) - oy (1)
and
g Deni=2d) . -y
S TRLE) A o) |
Moreover, c
Bf =-B: = >

o) =o' (-1)’
where A,,, B,,,C, and D, are given by (6.2).

It is interesting to note that the method used above can be adapted
to derive the fundamental polynomials of (0, 2, 3) interpolation on zeros
of 7, (z). We propose to return to this later.
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