A NOTE ON POSITIVE QUADRATURE RULES

H.J. SCHMID

ABSTRACT. A classical problem in constructive function theory is the characterization of positive quadrature rules by linear combinations of orthogonal polynomials the roots of which determine the nodes of the formula. A complete characterization has been derived by F. Peherstorfer in 1984. In this note a variant to his approach will be discussed. It is the one-dimensional restriction of a characterization of interpolatory cubature formulae which might be of some general interest.

1. Introduction. We denote **P** the ring of real polynomials in one variable and by $\mathbf{P}[a, b]$ the restriction of **P** to $[a, b] \subseteq \mathbf{R}$. The linear space spanned by $\{1, x, x^2, \ldots, x^m\}$ will be denoted by \mathbf{P}_m .

Let

$$I: \mathbf{P}[a,b] \to \mathbf{R}: f \to I(f), \ I(1) = 1,$$

be a strictly positive linear functional, i.e., I is linear and $f \ge 0$ implies I(f) > 0 for all $f \in \mathbf{P}[a, b], f \ne 0$. Thus I represents those functionals usually studied in numerical integration.

We denote by p_i the orthogonal polynomials of degree *i* with respect to *I*, normalized such that the highest coefficient is 1, i.e.,

$$p_i = id^i + \sum_{j=0}^{i-1} lpha_j id^j$$

such that $I(fp_i) = 0$ for all $f \in \mathbf{P}_{i-1}$. These polynomials satisfy the recursion formula

(1)
$$p_0 = 1, p_1 = id - \Gamma_0, p_{i+1} = (id - \Gamma_i)p_i - \Lambda_i p_{i-1}, i = 1, 2, \dots,$$

where

$$\Gamma_0 = I(id), \ \Lambda_0 = 1, \ \Gamma_i = \frac{I(idp_i^2)}{I(p_i^2)}, \ \Lambda_i = \frac{I(p_i^2)}{I(p_{i-1}^2)}, \ i = 1, 2, \dots$$

Copyright ©1989 Rocky Mountain Mathematics Consortium

In addition we use the notation

$$G_i = I(p_i^2) = \Lambda_0 \Lambda_1 \dots \Lambda_i > 0, \ i = 0, 1, \dots$$

The linear functional (2)

$$Q: \mathbf{P} \to \mathbf{R}: f \to Q(f) = \sum_{i=1}^{k} c_i f(x_i), \quad c_i > 0, \ x_i \in [\alpha, \beta], \ x_i \neq x_j,$$

is called a positive quadrature rule of type (m, k) for I with nodes in $[\alpha, \beta]$, if I(f) = Q(f) for all $f \in \mathbf{P}_m$ and $I(id^{m+1}) \neq Q(id^{m+1})$ hold. Many applications require that the nodes x_i belong to [a, b].

By the strict positivity of I we obtain the classical lower bound $k \ge [m/2] + 1$ for a quadrature rule (2) of degree m. Hence we can consider formulae of type (2k - s, k), $s = 1, 2, \ldots, k + 1$. For s = 1 we obtain Gaussian formulae, for s = 2 formulae of Radau-type. The Lobatto-type case has been studied by L. Féjer [1] and was treated completely by C.A. Micchelli and T.J. Rivlin [2]. The general case, finally, has been characterized completely by F. Peherstorfer [4]. For the historical development and further approaches we refer to [3, 7 and 8].

We present the one-dimensional case of a characterization of interpolatory cubature formulae. The one-dimensional case is easy to derive and allows control of the distribution of the nodes.

2. Characterization. Let (2) be a quadrature rule of type (2k - s, k). Then the polynomial $q = (id - x_1)(id - x_2) \dots (id - x_k)$ vanishes at the nodes of q. Since the coefficients c_i are uniquely determined by the nodes, the roots of q determine the formula, or, more briefly, q generates the quadrature rule. Due to the degree of exactness q must be orthogonal to \mathbf{P}_{k-s} with respect to I, hence

(3)
$$q = p_k + \sum_{i=1}^{s-1} \gamma_{s-i} p_{k-i}, \quad \gamma_i \in \mathbf{R}, \ \gamma_1 \neq 0.$$

To obtain the prescribed degree of exactness we must require $\gamma_1 \neq 0$. We shall study under which conditions on the γ_i 's the polynomial q in (3) generates a positive quadrature rule of type (2k - s, k) for I with nodes in $[\alpha, \beta]$, thus characterizing all formulae of this type.

Let q be an arbitrary polynomial of degree k, we denote by

$$\Pi_q: \mathbf{P} \to \mathbf{P}_{k-1}: f \to \Pi_q(f)$$

the linear projection from \mathbf{P} to \mathbf{P}_{k-1} with respect to q, defined by the unique representation of f as $f = rq + \prod_q(f), r \in \mathbf{P}, \prod_q(f) \in \mathbf{P}_{k-1}$. For the strictly positive linear functional I on $\mathbf{P}[a, b]$ we define an associated linear functional depending on q by

$$I_q: \mathbf{P} \to \mathbf{R}: f \to I_q(f) = I(\Pi_q(f)).$$

These definitions allow the following characterization of positive quadrature rules.

THEOREM. Let I be a strictly positive linear functional on $\mathbf{P}[a, b]$. For a given $s, 1 \leq s \leq k+1$, let q be of the form (3). Then q generates a positive quadrature rule of type (2k - s, k) for I if and only if I_q is strictly positive on \mathbf{P}_{2k-1} .

PROOF. (\Rightarrow). Let (2) be a positive quadrature rule of type (2k - s, k) for I which is generated by q. Every nonnegative polynomial $f \in \mathbf{P}_{2k-1}$ can be written as $f = p_1^2 + p_2^2$, $p_1, p_2 \in \mathbf{P}_{k-1}$. So a nonnegative $f \in \mathbf{P}_{2k-1}$, $f \neq 0$, cannot vanish all nodes of (2), and we find

$$I_q(f) = I(\Pi_q(f)) = I(f - rq) = \sum_{i=1}^k c_i f(x_i) > 0,$$

where $r \in \mathbf{P}_{k-1}$ is chosen such that $f - rq \in \mathbf{P}_{k-1}$. Hence I_q is strictly positive on \mathbf{P}_{2k-1} .

(\Leftarrow). If I_q is strictly positive on \mathbf{P}_{2k-1} , then q is the k-th orthogonal polynomial with respect to I_q , since $I_q(gq) = 0$ for all $g \in \mathbf{P}_{k-1}$. So q generates the Gaussian formula of degree 2k - 1 for I_q . Since q is orthogonal to \mathbf{P}_{k-s} with respect to I, we find for all $f \in \mathbf{P}_{2k-s}$ the relation

$$I_q(f) = I(\Pi_q(f)) = I(f - rq) = I(f),$$

where $r \in \mathbf{P}_{k-s}$ is chosen such that $f - rq \in \mathbf{P}_{k-1}$. Hence the Gaussian formula for I_q is a positive quadrature rule of type (2k - s, k) for $I.\square$

The Theorem is the one-dimensional case of a characterization of interpolatory cubature formulae, see [6, Theorem 3.4.1]. The proof via projections is due to G. Renner [5]. In contrast to the multivariate case the proof can be reduced to elementary facts of Gaussian quadrature which are not available in the general case.

Let q be of the form (3) and let I_q be strictly positive on \mathbf{P}_{2k-1} . We denote by $q_i, i = 0, 1, \ldots, k$, the orthogonal polynomials with respect to I_q . The recursion for the q_i 's is of the form

(4)
$$q_{i+1} = (id - \Gamma_i^*)q_i - \Lambda_i^*q_{i-1}, \ \Gamma_i^* \in \mathbf{R}, \ \Lambda_i > 0, \ i = 0, 1, \dots, k-1,$$

Since $I_q = I$ on \mathbf{P}_{2k-s} we obtain
(5) $q_i = p_i, \ i = 0, 1, \dots, k - [s/2],$

furthermore, $q_k = q$.

Thus quadrature rules of type (2k-s, k) for I are generated by $q = q_k$, the k-th orthogonal polynomial with respect to I_q . It can be computed recursively via (5) and (4) for arbitrarily chosen $\Lambda_i^* > 0$, $\Gamma_i^* \in \mathbf{R}$, $i = k - [s/2], k - [s/2] + 1, \ldots, k - 1$. This is F. Peherstorfer's elegant characterization. The distribution of the roots of q can be controlled by Sturm's Theorem applied to $\{q_i\}_{i=0,1,\ldots,k}$. This is a characterization of the strict positivity of I_q by the recursion (4). In order to get a characterization by the coefficients of q - similar to the approach by G. Sottas and G. Wanner [7] - we shall present a direct application of the Theorem.

3. Application. The strict positivity of I_q on \mathbf{P}_{2k-1} will be expressed in terms of the γ_i 's in (3), while the distribution of the roots of q will be controlled by the Sturm-sequence of the orthogonal polynomials with respect to I_q .

Let us assume that q is of the form (3) for a given $s, 1 \leq s \leq k+1$. The strict positivity of I_q on \mathbf{P}_{2k-1} is characterized by $I_q(p^2) > 0$ for all $p \in \mathbf{P}_{k-1}, p \neq 0$. Assuming

$$p=\sum_{i=0}^{k-1}\lambda_ip_i,\ \lambda_i\in\mathbf{R},\ \sum_{i=0}^{k-1}\lambda_i^2>0,$$

the strict positivity of I_q is equivalent to

$$I_q(p^2) = \sum_{i=0}^{k-1} \sum_{j=1}^{k-1} \lambda_i \lambda_j I_q(p_i p_j) > 0$$

for the described set of λ_i 's. Hence I_q is strictly positive on \mathbf{P}_{2k-1} if and only if

$$T = (I_q(p_i p_j))_{i,j=0,1,\dots,k-1}$$

is positive definite. So we have to compute the entries t_{ij} of the $k \times k$ matrix T (depending on the γ_i 's) and study the positive definiteness of T. For the computation we use the following

LEMMA. Let $p_i, p_j, 0 \le i, j \le k-1$ be given. Then $t_{ij} = I_q(p_i p_j) = I(p_i p_j - r_{ij}q)$, where r_{ij} is arbitrarily chosen in \mathbf{P}_{k-s} such that

(6)
$$g_{ij} = p_i p_j - r_{ij} q \in \mathbf{P}_{2k-s}.$$

PROOF. Since $I_q(f) = I(f)$ for all $f \in \mathbf{P}_{2k-s}$ we get, for g_{ij} satisfying (6), the relation

$$I(g_{ij}) = I(p_i p_j - r_{ij} q) = I_q(p_i p_j - r_{ij} q) = I_q(p_i p_j) = t_{ij}.$$

Let G be a $k \times k$ matrix with entries as defined in (6). If $0 \le i + j \le 2k - s$ we can choose $r_{ij} = 0$, hence $g_{ij} = p_i p_j$. So the first row and column of G are known. If row i - 1 of G has already been determined, we define, in addition,

$$g_{i-1,k} = -\sum_{j=1}^{s-1} \gamma_{s-j} g_{i-1,k-j} \in \mathbf{P}_{2k-s}.$$

This polynomial satisfies (6) since it can be written as $g_{i-1,k} = p_{i-1}p_k - qr_{i-1,k}$, where

$$r_{i-1,k} = p_{i-1} - \sum_{j=1}^{s-1} \gamma_{s-j} r_{i-1,k-j}.$$

To compute the element of the *i*-th row of G we insert the recursion (1) for p_i and p_{j+1} obtaining

$$p_i p_j = p_{i-1} p_{j+1} + (\Gamma_j - \Gamma_{i-1}) p_{i-1} p_j + \Lambda_j p_{i-1} p_{j-1} - \Lambda_{i-1} p_{i-2} p_j$$

This implies

$$g_{ij} = g_{i-1,j+1} + (\Gamma_j - \Gamma_{i-1})g_{i-1,j} + \Lambda_j g_{i-1,j-1} - \Lambda_{i-1}g_{i-2,j}$$

= $p_i p_j - r_{ij} q, \ j = 0, 1, \dots, k-1,$

where $r_{ij} = r_{i-1,j+1} + (\Gamma_j - \Gamma_{i-1})r_{i-1,j} + \Lambda_j r_{i-1,j-1} - \Lambda_{i-1}r_{i-2,j}$. Since the recursions for g_{ij} are linear we directly obtain the following recursions for the entries of T:

$$t_{ij} = G_i \delta_{ij}, \ 0 \le i+j \le 2k-s,$$
(7)
$$t_{i-1,k} = -\sum_{j=1}^{s-1} \gamma_{s-j} t_{i-1,k-j}, \ i = k-s+1, k-s+2, \dots, k-1,$$

$$t_{i-1,k} = t_{i-1,j+1} + (\Gamma_j - \Gamma_{i-1}) t_{i-1,j} + \Lambda_j t_{i-1,j-1} - \Lambda_{i-1} t_{i-2,j},$$

$$i, j = k-s+2, k-s+3, \dots, k-1.$$

Hence T can be written as

$$T = \begin{pmatrix} D & 0\\ 0 & S \end{pmatrix},$$

where $D = \text{diag}\{G_0, G_1, ..., G_{k-s+1}\}$ and

$$S = \begin{pmatrix} G_{k-s+2} & 0 & 0 & \dots & 0 & 0 & -\gamma_1 G_{k-s+1} \\ 0 & G_{k-s+3} & 0 & \dots & 0 & * & * \\ 0 & 0 & G_{k-s+4} & \dots & * & * & * \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & * & \dots & * & * & * \\ 0 & * & * & \dots & * & * & * \\ -\lambda_1 G_{k-s+1} & * & * & \dots & * & * & * \end{pmatrix}$$

T is positive definite if and only if the $(s-2) \times (s-2)$ submatrix S is positive definite. Let us denote the elements of S by σ_{ij} . The first row

and column of S are known. The remaining entries are computed from the recursion (7) as

(8)
$$\sigma_{ij} = \sigma_{i-1,j+1} + (\Gamma_j - \Gamma_{i-1})\sigma_{i-1,j} + \Lambda_j \sigma_{i-1,j-1} - \Lambda_{i-1} \sigma_{i-2,j}, \\ \sigma_{k-s+1,j} = 0, \ i, j = k-s+3, k-s+4, \dots, k-1.$$

The elements of $\sigma_{i,k}$, i = k - s + 3, k - s + 4, ..., k - 2, are computed successively from

(9)
$$\begin{pmatrix} \sigma_{k-s+2,k} \\ \sigma_{k-s+3,k} \\ \vdots \\ \sigma_{k-1,k} \end{pmatrix} = -S \begin{pmatrix} \gamma_2 \\ \gamma_3 \\ \vdots \\ \gamma_{s-1} \end{pmatrix}.$$

The symmetry of S is useful for the calculation. For s = 2 we obtain

$$T = \operatorname{diag}\{G_0, G_1, \dots, G_{k-1}\}$$

which is obviously positive definite. For s = 3 we obtain

$$S+(G_{k-1}-\gamma_1G_{k-2}),$$

finally, for s = 4 we get

$$S = \begin{pmatrix} G_{k-2} & -\gamma_1 G_{k-3} \\ -\gamma_1 G_{k-3} G_{k-1} - G_{k-2\gamma_2} + G_{k-3\gamma_1\gamma_3} - & (\Gamma_{k-1} - \Gamma_{k-2}) G_{k-3\gamma_1} \end{pmatrix}$$

The computation becomes loathsome with increasing s. The positive definiteness of S restricts the $\gamma_i s$ such that the corresponding q generates a positive quadrature rule for I with real nodes. This is the one-dimensional case of the characterization given in [6] being equivalent to the conditions derived in [7].

To control the distribution of the nodes we use the polynomials q_i which are orthogonal with respect to I_q . Let us assume

$$q_i = p_i + \sum_{j=0}^{i-1} \delta_j p_j, \ \delta_j \in \mathbf{R}, \ i = 0, 1, \dots, k-1.$$

Then $I_q(q_i p_j) = 0$ for $j = 0, 1, \dots, i - 1$ is equivalent to

$$S\begin{pmatrix} \delta_{k-s+2} \\ \vdots \\ \delta_{i-1} \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} = 0, \ i = k - [s/2] + 1, \ k - [s/2] + 2, \dots, k - 1.$$

Since I_q is strictly positive on \mathbf{P}_{2k-1} , q has k pairwise distinct real roots and the q_i 's form a Sturm-sequence. By Sturm's Theorem q has its real roots in $[\alpha, \beta]$ if and only if

(10)
$$q(\beta) \ge 0, \ (-1)^k q(\alpha) \ge 0, \ q_i(\beta) > 0, \ (-1)^i q_i(\beta) > 0, i = 0, 1, \dots, k-1.$$

4. Examples. Let us characterize the first simple cases of positive quadrature rules of type (2k - s, k) with nodes in [a, b]. For s = 2, 3, 4 we have computed above the $(s - 2) \times (s - 2)$ matrices S using (8) and (9). The positive definiteness of these matrices and (10) lead to the following results.

Rules of type (2k - 2, k) are generated by $q = p_k + \gamma_1 p_{k-1}$, where $q(b) \ge 0$, $(-1)^k q(a) \ge 0$. Rules of type (2k - 3, k) are generated by $q = p_k + \gamma_2 p_{k-1} + \gamma_1 p_{k-2}$, where

$$\gamma_1 < \Lambda_{k-1}, \quad q(b) \geq 0, \quad (-1)^k q(a) \geq 0.$$

Rules of type (2k - 4, k) are generated by $q = p_k + \gamma_3 p_{k-1} + \gamma_2 p_{k-2} + \gamma_1 p_{k-3}$, where

$$\Lambda_{k-2}^{2}(\Lambda_{k-1} - \gamma_{2}) + \Lambda_{k-2}\gamma_{1}\gamma_{3} + (\Gamma_{k-1} - \Gamma_{k-2})\Lambda_{k-2}\gamma_{1} - \gamma_{1}^{2} > 0$$

and

$$q(b) \ge 0, \quad (-1)^k q(a) \ge 0, \quad q_{k-1}(b) > 0, \quad (-1)^{k-1} q_{k-1}(a) > 0,$$

with

$$q_{k-1} = p_{k-1} + \frac{\gamma_1}{\Lambda_{k-2}} p_{k-2}$$

H.J. SCHMID

These are the cases which are easy to derive. The amount of computational work increases rapidly with s. Further computation in this general set-up should be done using a computer-algebra system.

If a special form of the generating polynomial q is of interest our approach seems to be easier to apply. We shall illustrate this by the following example.

The polynomial

(11)
$$q = p_k + \gamma_1 p_{k-s+1}, \ \gamma_1 \neq 0,$$

generates a positive quadrature rule of type (2k - s, k) if $|\gamma_1|$ is sufficiently small. Exact bounds can be determined easily in special cases, e.g., if I is chosen such that

$$\Lambda_i = \Lambda, \ \Gamma_i = \Gamma, \ i = k - s + 2, k - s + 3, \dots, k - 1.$$

The Chebyshev-polynomials of the first and second kind (Λ_1 is 1/2 or 1/4, respectively) satisfy (1) with $\Gamma_i = 0$, $\Lambda_2 = \Lambda_3 = \cdots = 1/4$. So they belong to a functional of the appropriate class of $s \leq k$. For such a functional I and a polynomial q of type (11) the recursion (8) is reduced to

$$\sigma_{ij} = \sigma_{i-1,j+1} + \Lambda(\sigma_{i-1,j-1} - \sigma_{i-2,j}),$$

$$\sigma_{ik} = 0, \ \sigma_{k-s+1,j} = 0, \ i, j = k-s+3, k-s+4, \dots, k-1.$$

For $4 \le s \le k$ the matrix S is up to a positive factor of the form

$$S = \begin{pmatrix} \Lambda & 0 & \dots & 0 & -\gamma_1 \\ 0 & \Lambda^2 & \dots & -\gamma_1 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ -\gamma_1 & 0 & \dots & 0 & \Lambda^{s-2} \end{pmatrix},$$

hence it is positive definite if and only if $\gamma_1^2 < \Lambda^{s-1}$. The orthogonal polynomials with respect to I_q are of the form

$$q_{k-1} = p_{k-i} + \frac{\gamma_1}{\Lambda^i} p_{k-s+i+1}, \ i = 0, 1, \dots, [s/2] - 1,$$

so the condition (10) can be checked quite easily. If we select the Chebyshev-polynomials of the first and second kind, respectively, the roots of q are in (-1, 1) if $\gamma_1^2 < \Lambda^{s-1}$.

REFERENCES

1. Féjer, Mechanische Quadraturen mit positiven Coteaschen Zahlen, Mathematische Zeitschrift 37 (1933), 287-309.

2. C.A. Micchelli and T.J. Rivlin, Numerical integration rules near Gaussian formulas, Israel J. Math. 16 (1973), 287-299.

3. F. Peherstorfer, Characterization of positive quadrature formulas, SIAM J. Math. Anal. **12** (1981), 935-942.

4. ———, Characterization of quadrature formula II, SIAM J. Math. Anal. **15** (1984), 1021-1030.

5. G. Renner, Darstellungen von strikt quadratpositiven linearen Funktionalen auf endlichdimensionalen Polynomräumen, Dissertation, Univ. Erlangen-Nürnberg (1986), 1-93.

6. H.J. Schmid, Interpolatorische Kubaturformeln, Diss. Math. CCXX (1983), 1-122.

7. G. Sottas and G. Wanner, The number of positive weights of a quadrature formula, BIT 22 (1982), 339-352.

8. W.J. Thron, Quadrature formulae and moment problems, In: Lecture Notes in Math. 1105 Springer, Berlin - Heidelberg - New York - Tokyo, 1984, 477-488.

MATHEMATISCHES INSTITUT, UNIVERSITÄT ERLANGEN-NÜRNBERG BISMARCK-STRASSE 1-1/2, D-8520 ERLANGEN FEDERAL REPUBLIC OF GERMANY