# A NOTE ON POSITIVE QUADRATURE RULES 

H.J. SCHMID


#### Abstract

A classical problem in constructive function theory is the characterization of positive quadrature rules by linear combinations of orthogonal polynomials the roots of which determine the nodes of the formula. A complete characterization has been derived by F. Peherstorfer in 1984. In this note a variant to his approach will be discussed. It is the one-dimensional restriction of a characterization of interpolatory cubature formulae which might be of some general interest.


1. Introduction. We denote $\mathbf{P}$ the ring of real polynomials in one variable and by $\mathbf{P}[a, b]$ the restriction of $\mathbf{P}$ to $[a, b] \subseteq \mathbf{R}$. The linear space spanned by $\left\{1, x, x^{2}, \ldots, x^{m}\right\}$ will be denoted by $\mathbf{P}_{m}$.
Let

$$
I: \mathbf{P}[a, b] \rightarrow \mathbf{R}: f \rightarrow I(f), I(1)=1,
$$

be a strictly positive linear functional, i.e., $I$ is linear and $f \geq 0$ implies $I(f)>0$ for all $f \in \mathbf{P}[a, b], f \frac{1}{\tau} 0$. Thus $I$ represents those functionals usually studied in numerical integration.
We denote by $p_{i}$ the orthogonal polynomials of degree $i$ with respect to $I$, normalized such that the highest coefficient is 1 , i.e.,

$$
p_{i}=i d^{i}+\sum_{j=0}^{i-1} \alpha_{j} i d^{j}
$$

such that $I\left(f p_{i}\right)=0$ for all $f \in \mathbf{P}_{i-1}$. These polynomials satisfy the recursion formula
(1) $p_{0}=1, p_{1}=i d-\Gamma_{0}, p_{i+1}=\left(i d-\Gamma_{i}\right) p_{i}-\Lambda_{i} p_{i-1}, i=1,2, \ldots$,
where

$$
\Gamma_{0}=I(i d), \Lambda_{0}=1, \Gamma_{i}=\frac{I\left(i d p_{i}^{2}\right)}{I\left(p_{i}^{2}\right)}, \Lambda_{i}=\frac{I\left(p_{i}^{2}\right)}{I\left(p_{i-1}^{2}\right)}, i=1,2, \ldots
$$

In addition we use the notation

$$
G_{i}=I\left(p_{i}^{2}\right)=\Lambda_{0} \Lambda_{1} \ldots \Lambda_{i}>0, i=0,1, \ldots
$$

The linear functional

$$
\begin{equation*}
Q: \mathbf{P} \rightarrow \mathbf{R}: f \rightarrow Q(f)=\sum_{i=1}^{k} c_{i} f\left(x_{i}\right), \quad c_{i}>0, x_{i} \in[\alpha, \beta], x_{i} \neq x_{j}, \tag{2}
\end{equation*}
$$

is called a positive quadrature rule of type $(m, k)$ for $I$ with nodes in $[\alpha, \beta]$, if $I(f)=Q(f)$ for all $f \in \mathbf{P}_{m}$ and $I\left(i d^{m+1}\right) \neq Q\left(i d^{m+1}\right)$ hold. Many applications require that the nodes $x_{i}$ belong to $[a, b]$.
By the strict positivity of $I$ we obtain the classical lower bound $k \geq[m / 2]+1$ for a quadrature rule (2) of degree $m$. Hence we can consider formulae of type $(2 k-s, k), s=1,2, \ldots, k+1$. For $s=1$ we obtain Gaussian formulae, for $s=2$ formulae of Radau-type. The Lobatto-type case has been studied by L. Féjer [1] and was treated completely by C.A. Micchelli and T.J. Rivlin [2]. The general case, finally, has been characterized completely by F. Peherstorfer [4]. For the historical development and further approaches we refer to $[\mathbf{3 , 7}$ and 8].
We present the one-dimensional case of a characterization of interpolatory cubature formulae. The one-dimensional case is easy to derive and allows control of the distribution of the nodes.
2. Characterization. Let (2) be a quadrature rule of type $(2 k-s, k)$. Then the polynomial $q=\left(i d-x_{1}\right)\left(i d-x_{2}\right) \ldots\left(i d-x_{k}\right)$ vanishes at the nodes of $q$. Since the coefficients $c_{i}$ are uniquely determined by the nodes, the roots of $q$ determine the formula, or, more briefly, $q$ generates the quadrature rule. Due to the degree of exactness $q$ must be orthogonal to $\mathbf{P}_{k-s}$ with respect to $I$, hence

$$
\begin{equation*}
q=p_{k}+\sum_{i=1}^{s-1} \gamma_{s-i} p_{k-i}, \quad \gamma_{i} \in \mathbf{R}, \quad \gamma_{1} \neq 0 . \tag{3}
\end{equation*}
$$

To obtain the prescribed degree of exactness we must require $\gamma_{1} \neq 0$. We shall study under which conditions on the $\gamma_{i}$ 's the polynomial $q$ in
(3) generates a positive quadrature rule of type $(2 k-s, k)$ for $I$ with nodes in $[\alpha, \beta]$, thus characterizing all formulae of this type.

Let $q$ be an arbitrary polynomial of degree $k$, we denote by

$$
\Pi_{q}: \mathbf{P} \rightarrow \mathbf{P}_{k-1}: f \rightarrow \Pi_{q}(f)
$$

the linear projection from $\mathbf{P}$ to $\mathbf{P}_{k-1}$ with respect to $q$, defined by the unique representation of $f$ as $f=r q+\prod_{q}(f), r \in \mathbf{P}, \prod_{q}(f) \in \mathbf{P}_{k-1}$. For the strictly positive linear functional $I$ on $\mathbf{P}[a, b]$ we define an associated linear functional depending on $q$ by

$$
I_{q}: \mathbf{P} \rightarrow \mathbf{R}: f \rightarrow I_{q}(f)=I\left(\Pi_{q}(f)\right)
$$

These definitions allow the following characterization of positive quadrature rules.

Theorem. Let $I$ be a strictly positive linear functional on $\mathbf{P}[a, b]$. For a given $s, 1 \leq s \leq k+1$, let $q$ be of the form (3). Then $q$ generates a positive quadrature rule of type $(2 k-s, k)$ for $I$ if and only if $I_{q}$ is strictly positive on $\mathbf{P}_{2 k-1}$.

Proof. $(\Rightarrow)$. Let (2) be a positive quadrature rule of type $(2 k-s, k)$ for $I$ which is generated by $q$. Every nonnegative polynomial $f \in \mathbf{P}_{2 k-1}$ can be written as $f=p_{1}^{2}+p_{2}^{2}, p_{1}, p_{2} \in \mathbf{P}_{k-1}$. So a nonnegative $f \in \mathbf{P}_{2 k-1}, f \stackrel{1}{\tau} 0$, cannot vanish all nodes of (2), and we find

$$
I_{q}(f)=I\left(\Pi_{q}(f)\right)=I(f-r q)=\sum_{i=1}^{k} c_{i} f\left(x_{i}\right)>0
$$

where $r \in \mathbf{P}_{k-1}$ is chosen such that $f-r q \in \mathbf{P}_{k-1}$. Hence $I_{q}$ is strictly positive on $\mathbf{P}_{2 k-1}$.
$(\Leftarrow)$. If $I_{q}$ is strictly positive on $\mathbf{P}_{2 k-1}$, then $q$ is the $k$-th orthogonal polynomial with respect to $I_{q}$, since $I_{q}(g q)=0$ for all $g \in \mathbf{P}_{k-1}$. So $q$ generates the Gaussian formula of degree $2 k-1$ for $I_{q}$. Since $q$ is orthogonal to $\mathbf{P}_{k-s}$ with respect to $I$, we find for all $f \in \mathbf{P}_{2 k-s}$ the relation

$$
I_{q}(f)=I\left(\Pi_{q}(f)\right)=I(f-r q)=I(f)
$$

where $r \in \mathbf{P}_{k-s}$ is chosen such that $f-r q \in \mathbf{P}_{k-1}$. Hence the Gaussian formula for $I_{q}$ is a positive quadrature rule of type $(2 k-s, k)$ for $I$.a

The Theorem is the one-dimensional case of a characterization of interpolatory cubature formulae, see [6, Theorem 3.4.1]. The proof via projections is due to G. Renner [5]. In contrast to the multivariate case the proof can be reduced to elementary facts of Gaussian quadrature which are not available in the general case.

Let $q$ be of the form (3) and let $I_{q}$ be strictly positive on $\mathbf{P}_{2 k-1}$. We denote by $q_{i}, i=0,1, \ldots, k$, the orthogonal polynomials with respect to $I_{q}$. The recursion for the $q_{i}$ 's is of the form
(4) $q_{i+1}=\left(i d-\Gamma_{i}^{*}\right) q_{i}-\Lambda_{i}^{*} q_{i-1}, \Gamma_{i}^{*} \in \mathbf{R}, \Lambda_{i}>0, i=0,1, \ldots, k-1$, Since $I_{q}=I$ on $\mathbf{P}_{2 k-s}$ we obtain

$$
\begin{equation*}
q_{i}=p_{i}, i=0,1, \ldots, k-[s / 2] \tag{5}
\end{equation*}
$$

furthermore, $q_{k}=q$.
Thus quadrature rules of type $(2 k-s, k)$ for $I$ are generated by $q=q_{k}$, the $k$-th orthogonal polynomial with respect to $I_{q}$. It can be computed recursively via (5) and (4) for arbitrarily chosen $\Lambda_{i}^{*}>0, \Gamma_{i}^{*} \in \mathbf{R}, i=$ $k-[s / 2], k-[s / 2]+1, \ldots, k-1$. This is F. Peherstorfer's elegant characterization. The distribution of the roots of $q$ can be controlled by Sturm's Theorem applied to $\left\{q_{i}\right\}_{i=0.1, \ldots . k}$. This is a characterization of the strict positivity of $I_{q}$ by the recursion (4). In order to get a characterization by the coefficients of $q$-similar to the approach by $G$. Sottas and G. Wanner [7] - we shall present a direct application of the Theorem.
3. Application. The strict positivity of $I_{q}$ on $\mathbf{P}_{2 k-1}$ will be expressed in terms of the $\gamma_{i}$ 's in (3), while the distribution of the roots of $q$ will be controlled by the Sturm-sequence of the orthogonal polynomials with respect to $I_{q}$.

Let us assume that $q$ is of the form (3) for a given $s, 1 \leq s \leq k+1$. The strict positivity of $I_{q}$ on $\mathbf{P}_{2 k-1}$ is characterized by $I_{q}\left(p^{2}\right)>0$ for all $p \in \mathbf{P}_{k-1}, p \neq 0$. Assuming

$$
p=\sum_{i=0}^{k-1} \lambda_{i} p_{i}, \quad \lambda_{i} \in \mathbf{R}, \sum_{i=0}^{k-1} \lambda_{i}^{2}>0
$$

the strict positivity of $I_{q}$ is equivalent to

$$
I_{q}\left(p^{2}\right)=\sum_{i=0}^{k-1} \sum_{j=1}^{k-1} \lambda_{i} \lambda_{j} I_{q}\left(p_{i} p_{j}\right)>0
$$

for the described set of $\lambda_{i}$ 's. Hence $I_{q}$ is strictly positive on $\mathbf{P}_{2 k-1}$ if and only if

$$
T=\left(I_{q}\left(p_{i} p_{j}\right)\right)_{i . j=0.1 \ldots . . k-1}
$$

is positive definite. So we have to compute the entries $t_{i j}$ of the $k \times k$ matrix $T$ (depending on the $\gamma_{i}$ 's) and study the positive definiteness of $T$. For the computation we use the following

Lemma. Let $p_{i}, p_{j}, 0 \leq i, j \leq k-1$ be given. Then $t_{i j}=I_{q}\left(p_{i} p_{j}\right)=$ $I\left(p_{i} p_{j}-r_{i j} q\right)$, where $r_{i j}$ is arbitrarily chosen in $\mathbf{P}_{k-s}$ such that

$$
\begin{equation*}
g_{i j}=p_{i} p_{j}-r_{i j} q \in \mathbf{P}_{2 k-s} \tag{6}
\end{equation*}
$$

Proof. Since $I_{q}(f)=I(f)$ for all $f \in \mathbf{P}_{2 k-s}$ we get, for $g_{i j}$ satisfying (6), the relation

$$
I\left(g_{i j}\right)=I\left(p_{i} p_{j}-r_{i j} q\right)=I_{q}\left(p_{i} p_{j}-r_{i j} q\right)=I_{q}\left(p_{i} p_{j}\right)=t_{i j}
$$

Let $G$ be a $k \times k$ matrix with entries as defined in (6). If $0 \leq i+j \leq$ $2 k-s$ we can choose $r_{i j}=0$, hence $g_{i j}=p_{i} p_{j}$. So the first row and column of $G$ are known. If row $i-1$ of $G$ has already been determined, we define, in addition,

$$
g_{i-1 . k}=-\sum_{j=1}^{s-1} \gamma_{s-j} g_{i-1, k-j} \in \mathbf{P}_{2 k-s}
$$

This polynomial satisfies (6) since it can be written as $g_{i-1 . k}=$ $p_{i-1} p_{k}-q r_{i-1, k}$, where

$$
r_{i-1, k}=p_{i-1}-\sum_{j=1}^{s-1} \gamma_{s-j} r_{i-1 . k-j}
$$

To compute the element of the $i$-th row of $G$ we insert the recursion (1) for $p_{i}$ and $p_{j+1}$ obtaining

$$
p_{i} p_{j}=p_{i-1} p_{j+1}+\left(\Gamma_{j}-\Gamma_{i-1}\right) p_{i-1} p_{j}+\Lambda_{j} p_{i-1} p_{j-1}-\Lambda_{i-1} p_{i-2} p_{j} .
$$

This implies

$$
\begin{aligned}
g_{i j} & =g_{i-1 . j+1}+\left(\Gamma_{j}-\Gamma_{i-1}\right) g_{i-1 . j}+\Lambda_{j} g_{i-1 . j-1}-\Lambda_{i-1} g_{i-2 . j} \\
& =p_{i} p_{j}-r_{i j} q, j=0,1, \ldots, k-1,
\end{aligned}
$$

where $r_{i j}=r_{i-1 . j+1}+\left(\Gamma_{j}-\Gamma_{i-1}\right) r_{i-1 . j}+\Lambda_{j} r_{i-1, j-1}-\Lambda_{i-1} r_{i-2 . j}$. Since the recursions for $g_{i j}$ are linear we directly obtain the following recursions for the entries of $T$ :
(7) $t_{i-1 . k}=-\sum_{j=1}^{s-1} \gamma_{s-j} t_{i-1, k-j}, i=k-s+1, k-s+2, \ldots, k-1$,

$$
\begin{gathered}
t_{i-1 . k}=t_{i-1 . j+1}+\left(\Gamma_{j}-\Gamma_{i-1}\right) t_{i-1, j}+\Lambda_{j} t_{i-1 . j-1}-\Lambda_{i-1} t_{i-2 . j} \\
i, j=k-s+2, k-s+3, \ldots, k-1
\end{gathered}
$$

Hence $T$ can be written as

$$
T=\left(\begin{array}{cc}
D & 0 \\
0 & S
\end{array}\right)
$$

where $D=\operatorname{diag}\left\{G_{0}, G_{1}, \ldots, G_{k-s+1}\right\}$ and

$$
S=\left(\begin{array}{ccccccc}
G_{k-s+2} & 0 & 0 & \ldots & 0 & 0 & -\gamma_{1} G_{k-s+1} \\
0 & G_{k-s+3} & 0 & \ldots & 0 & * & * \\
0 & 0 & G_{k-s+4} & \ldots & * & * & * \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & * & \ldots & * & * & * \\
0 & * & * & \ldots & * & * & * \\
-\lambda_{1} G_{k-s+1} & * & * & \ldots & * & * & *
\end{array}\right)
$$

$T$ is positive definite if and only if the $(s-2) \times(s-2)$ submatrix $S$ is positive definite. Let us denote the elements of $S$ by $\sigma_{i j}$. The first row
and column of $S$ are known. The remaining entries are computed from the recursion (7) as

$$
\begin{align*}
& \sigma_{i j}=\sigma_{i-1 . j+1}+\left(\Gamma_{j}-\Gamma_{i-1}\right) \sigma_{i-1 . j}+\Lambda_{j} \sigma_{i-1 . j-1}-\Lambda_{i-1} \sigma_{i-2 . j}  \tag{8}\\
& \sigma_{k-s+1 . j}=0, i, j=k-s+3, k-s+4, \ldots, k-1
\end{align*}
$$

The elements of $\sigma_{i, k}, i=k-s+3, k-s+4, \ldots, k-2$, are computed successively from

$$
\left(\begin{array}{c}
\sigma_{k-s+2 . k}  \tag{9}\\
\sigma_{k-s+3 . k} \\
\vdots \\
\sigma_{k-1, k}
\end{array}\right)=-S\left(\begin{array}{c}
\gamma_{2} \\
\gamma_{3} \\
\vdots \\
\gamma_{s-1}
\end{array}\right)
$$

The symmetry of $S$ is useful for the calculation. For $s=2$ we obtain

$$
T=\operatorname{diag}\left\{G_{0}, G_{1}, \ldots, G_{k-1}\right\}
$$

which is obviously positive definite. For $s=3$ we obtain

$$
S+\left(G_{k-1}-\gamma_{1} G_{k-2}\right)
$$

finally, for $s=4$ we get
$S=\left(\begin{array}{ll}G_{k-2} & -\gamma_{1} G_{k-3} \\ -\gamma_{1} G_{k-3} G_{k-1}-G_{k-2 \gamma_{2}}+G_{k-3 \gamma_{1} \gamma_{3}}- & \left(\Gamma_{k-1}-\Gamma_{k-2}\right) G_{k-3 \gamma_{1}}\end{array}\right)$.
The computation becomes loathsome with increasing $s$. The positive definiteness of $S$ restricts the $\gamma_{i} s$ such that the corresponding $q$ generates a positive quadrature rule for $I$ with real nodes. This is the one-dimensional case of the characterization given in [6] being equivalent to the conditions derived in [7].

To control the distribution of the nodes we use the polynomials $q_{i}$ which are orthogonal with respect to $I_{q}$. Let us assume

$$
q_{i}=p_{i}+\sum_{j=0}^{i-1} \delta_{j} p_{j}, \delta_{j} \in \mathbf{R}, i=0,1, \ldots, k-1
$$

Then $I_{q}\left(q_{i} p_{j}\right)=0$ for $j=0,1, \ldots, i-1$ is equivalent to

$$
S\left(\begin{array}{c}
\delta_{k-s+2} \\
\vdots \\
\delta_{i-1} \\
1 \\
0 \\
\vdots \\
0
\end{array}\right)=0, i=k-[s / 2]+1, k-[s / 2]+2, \ldots, k-1
$$

Since $I_{q}$ is strictly positive on $\mathbf{P}_{2 k-1}, q$ has $k$ pairwise distinct real roots and the $q_{i}$ 's form a Sturm-sequence. By Sturm's Theorem $q$ has its real roots in $[\alpha, \beta]$ if and only if

$$
\begin{align*}
& q(\beta) \geq 0,(-1)^{k} q(\alpha) \geq 0, q_{i}(\beta)>0,(-1)^{i} q_{i}(\beta)>0  \tag{10}\\
& \quad i=0,1, \ldots, k-1
\end{align*}
$$

4. Examples. Let us characterize the first simple cases of positive quadrature rules of type $(2 k-s, k)$ with nodes in $[a, b]$. For $s=2,3,4$ we have computed above the $(s-2) \times(s-2)$ matrices $S$ using (8) and (9). The positive definiteness of these matrices and (10) lead to the following results.
Rules of type $(2 k-2, k)$ are generated by $q=p_{k}+\gamma_{1} p_{k-1}$, where $q(b) \geq 0,(-1)^{k} q(a) \geq 0$. Rules of type $(2 k-3, k)$ are generated by $q=p_{k}+\gamma_{2} p_{k-1}+\gamma_{1} p_{k-2}$, where

$$
\gamma_{1}<\Lambda_{k-1}, \quad q(b) \geq 0, \quad(-1)^{k} q(a) \geq 0
$$

Rules of type $(2 k-4, k)$ are generated by $q=p_{k}+\gamma_{3} p_{k-1}+\gamma_{2} p_{k-2}+$ $\gamma_{1} p_{k-3}$, where

$$
\Lambda_{k-2}^{2}\left(\Lambda_{k-1}-\gamma_{2}\right)+\Lambda_{k-2} \gamma_{1} \gamma_{3}+\left(\Gamma_{k-1}-\Gamma_{k-2}\right) \Lambda_{k-2} \gamma_{1}-\gamma_{1}^{2}>0
$$

and

$$
q(b) \geq 0, \quad(-1)^{k} q(a) \geq 0, \quad q_{k-1}(b)>0, \quad(-1)^{k-1} q_{k-1}(a)>0
$$

with

$$
q_{k-1}=p_{k-1}+\frac{\gamma_{1}}{\Lambda_{k-2}} p_{k-2}
$$

These are the cases which are easy to derive. The amount of computational work increases rapidly with $s$. Further computation in this general set-up should be done using a computer-algebra system.
If a special form of the generating polynomial $q$ is of interest our approach seems to be easier to apply. We shall illustrate this by the following example.
The polynomial

$$
\begin{equation*}
q=p_{k}+\gamma_{1} p_{k-s+1}, \gamma_{1} \neq 0, \tag{11}
\end{equation*}
$$

generates a positive quadrature rule of type $(2 k-s, k)$ if $\left|\gamma_{1}\right|$ is sufficiently small. Exact bounds can be determined easily in special cases, e.g., if $I$ is chosen such that

$$
\Lambda_{i}=\Lambda, \Gamma_{i}=\Gamma, i=k-s+2, k-s+3, \ldots, k-1 .
$$

The Chebyshev-polynomials of the first and second kind ( $\Lambda_{1}$ is $1 / 2$ or $1 / 4$, respectively) satisfy (1) with $\Gamma_{i}=0, \Lambda_{2}=\Lambda_{3}=\cdots=1 / 4$. So they belong to a functional of the appropriate class of $s \leq k$. For such a functional $I$ and a polynomial $q$ of type (11) the recursion (8) is reduced to

$$
\begin{aligned}
\sigma_{i j} & =\sigma_{i-1 . j+1}+\Lambda\left(\sigma_{i-1 . j-1}-\sigma_{i-2 . j}\right), \\
\sigma_{i k} & =0, \sigma_{k-s+1 . j}=0, i, j=k-s+3, k-s+4, \ldots, k-1 .
\end{aligned}
$$

For $4 \leq s \leq k$ the matrix $S$ is up to a positive factor of the form

$$
S=\left(\begin{array}{ccccc}
\Lambda & 0 & \ldots & 0 & -\gamma_{1} \\
0 & \Lambda^{2} & \ldots & -\gamma_{1} & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
-\gamma_{1} & 0 & \ldots & 0 & \Lambda^{s-2}
\end{array}\right),
$$

hence it is positive definite if and only if $\gamma_{1}^{2}<\Lambda^{s-1}$. The orthogonal polynomials with respect to $I_{q}$ are of the form

$$
q_{k-1}=p_{k-i}+\frac{\gamma_{1}}{\Lambda^{i}} p_{k-s+i+1}, i=0,1, \ldots,[s / 2]-1,
$$

so the condition (10) can be checked quite easily. If we select the Chebyshev-polynomials of the first and second kind, respectively, the roots of $q$ are in $(-1,1)$ if $\gamma_{1}^{2}<\Lambda^{s-1}$.

## REFERENCES

1. Féjer, Mechanische Quadraturen mit positiven Coteaschen Zahlen, Mathematische Zeitschrift 37 (1933), 287-309.
2. C.A. Micchelli and T.J. Rivlin, Numerical integration rules near Gaussian formulas, Israel J. Math. 16 (1973), 287-299.
3. F. Peherstorfer, Characterization of positive quadrature formulas, SIAM J. Math. Anal. 12 (1981), 935-942.
4.     - Characterization of quadrature formula II, SIAM J. Math. Anal. 15 (1984), 1021-1030.
5. G. Renner, Darstellungen von strikt quadratpositiven linearen Funktionalen auf endlichdimensionalen Polynomräumen, Dissertation, Univ. Erlangen-Nürnberg (1986), 1-93.
6. H.J. Schmid, Interpolatorische Kubaturformeln, Diss. Math. CCXX (1983), 1-122.
7. G. Sottas and G. Wanner, The number of positive weights of a quadrature formula, BIT 22 (1982), 339-352.
8. W.J. Thron, Quadrature formulae and moment problems, In: Lecture Notes in Math. 1105 Springer, Berlin - Heidelberg - New York - Tokyo, 1984, 477-488.

Mathematisches Institut. Universität Erlangen-Nürnberg Bismarckstrasse 1-1/2. D-8520 Erlangen Federal Republic of Germany

