REAL VS. COMPLEX RATIONAL CHEBYSHEV APPROXIMATION ON AN INTERVAL

ARDEN RUTTAN AND RICHARD S. VARGA ${ }^{1}$

Dedicated to Professor A. Sharma on his
retirement from the University of Alberta

1. Introduction. Let π_{m}^{r} and π_{m}^{c} be respectively the sets of polynomials of degree at most m, with real and complex coefficients. For any pair (m, n) of nonnegative integers, $\pi_{m . n}^{r}$ and $\pi_{m . n}^{c}$, then respectively denote the sets of rational functions of the form $p(x) / q(x)$, where $p \in \pi_{m}^{r}\left(\pi_{m}^{c}\right)$ and where $q \in \pi_{n}^{r}\left(\pi_{n}^{c}\right)$. Let I denote the real interval $[-1,+1]$ and let $\|\cdot\|_{I}$ denote the supremum norm on I, i.e., $\|f\|_{I}:=\sup _{x \in I}|f(x)|$. If $C^{r}(I)$ denotes the set of all continuous realvalued functions on I, then for $f \in C^{r}(I)$, we set

$$
\begin{align*}
& E_{m . n}^{r}(f):=\inf \left\{\|f-g\|_{I}: g \in \pi_{m . n}^{r}\right\} \tag{1.1}\\
& E_{m, n}^{c}(f):=\inf \left\{\|f-g\|_{I}: g \in \pi_{m, n}^{c}\right\}
\end{align*}
$$

For $f \in C^{r}(I)$, it is known (cf. Meinardus [3, p. 161]) that there is a unique $g \in \pi_{m . n}^{r}$ such that $E_{m . n}^{r}(f)=\|f-g\|_{I}$, while in the complex case, there is also a $g \in \pi_{m . n}^{c}$ for which $E_{m . n}^{c}(f)=\|f-g\|_{I}$, but g is in general not unique (cf. Lungu [2], Saff and Varga [4], and [6].)

Since $\pi_{m, n}^{r} \subset \pi_{m, n}^{c}$, then evidently $E_{m, n}^{c}(f) \leq E_{m, n}^{r}(f)$ for any $f \in C^{r}(I)$, and it was shown in [4] that, for each (m, n) with $n \geq 1$, there is an $f \in C^{r}(I)$ for which

$$
\begin{equation*}
E_{m, n}^{c}(f) / E_{m, n}^{r}(f)<1 \tag{1.2}
\end{equation*}
$$

Thus, on setting

$$
\begin{equation*}
\gamma_{m, n}:=\inf \left\{E_{m, n}^{c}(f) / E_{m, n}^{r}(f): f \in C^{r}(I) / \pi_{m, n}^{r}\right\} \tag{1.3}
\end{equation*}
$$

[^0]Saff and Varga [4] asked in essence how small the ratios of (1.2) could be for each pair (m, n) of nonnegative integers with $n \geq 1$.

Recently, two major results on the precise determination of $\gamma_{m . n}$ have appeared. First, Trefethen and Gutknecht [5] established, by means of a direction construction, the surprising result that

$$
\begin{align*}
& \gamma_{m . n}=0, \text { for each pair }(m, n) \text { of nonnegative integers } \tag{1.4}\\
& \text { with } n \geq m+3
\end{align*}
$$

Then, Levin [1] established the complementary result that

$$
\begin{align*}
& \gamma_{m, n}=\frac{1}{2}, \text { for each pair }(m, n) \text { of nonnegative integers } \tag{1.5}\\
& \text { with } m+1 \geq n \geq 1
\end{align*}
$$

Levin's proof of (1.5) consisted of a direction construction to show that $\gamma_{m, n} \leq 1 / 2$, and an algebraic method to show that $\gamma_{m, n}<1 / 2$ was impossible when $m+1 \geq n \geq 1$.

Thus, to complete the precise determination of all $\gamma_{m, n}(m \geq 0, n \geq$ 1), it remains only to determine the $\gamma_{m . n}$'s on the "missing diagonal", i.e., $\gamma_{m . m+2}(m \geq 0)$. It turns out that Levin's direct construction applies also in this case, so that

$$
\begin{equation*}
\gamma_{m, m+2} \leq \frac{1}{2}, \text { for each integer } m \geq 0 \tag{1.6}
\end{equation*}
$$

(We remark that some mathematicians have privately speculated that $\gamma_{m . m+2}=0$ for each $m \geq 0$.)

Our object here is to show that

$$
\begin{equation*}
\gamma_{m, m+2} \leq \frac{1}{3}, \text { for each integer } m \geq 0 \tag{1.7}
\end{equation*}
$$

which improves (1.6). What may be of independent interest is that our direct construction to establish (1.7) is quite different from the direction constructions of Trefethen and Gutknecht [5] and Levin [1].
2. Main result. We have the

Theorem. For each nonnegative integer m,

$$
\begin{equation*}
\gamma_{m, m+2} \leq \frac{1}{3} \tag{2.1}
\end{equation*}
$$

Proof. First, suppose that m is an arbitrary (but fixed) even nonnegative integer, and suppose that ε is any number satisfying $0<\varepsilon<1 /(m+1)$. For any complex number z, set

$$
\begin{equation*}
\ell_{j}(z)=\ell_{j}(z ; \varepsilon, m):=\frac{\frac{-2 \varepsilon i}{3}(-1)^{j}}{z-1+\frac{2 j}{m+1}-\varepsilon i}, \quad j=0,1, \ldots, m+1 \tag{2.2}
\end{equation*}
$$

It is evident from (2.2) that

$$
\begin{equation*}
\ell_{j}\left(1-\frac{2 j}{m+1}\right)=\frac{2}{3}(-1)^{j}, \text { and } \ell_{j}\left(1-\frac{2 j}{m+1} \pm \varepsilon\right)=\frac{(1 \mp i)(-1)^{j}}{3} \tag{2.3}
\end{equation*}
$$

for $j=0,1, \ldots, m+1$.
Since $\ell_{j}(z)$ is a linear fractional transformation, it maps the real axis $-\infty<x<+\infty$ onto some (generalized) circle in the complex plane. As $\ell_{j}(\infty)=0$, this (generalized) circle necessarily passes through the origin. Moreover, as the pole of $\ell_{j}(z)$, namely $1-\frac{2 j}{m+1}+\varepsilon i$, when reflected in the real axis, is the point $w_{j}:=1-\frac{2 j}{m+1}-\varepsilon i$, then from (2.2),

$$
\ell_{j}\left(w_{j}\right)=\frac{1}{3}(-1)^{j}, \quad j=0,1, \ldots, m+1
$$

Thus, the image of the real axis under $\ell_{j}(z)$ is the circle with center $\frac{1}{3}(-1)^{j}$ and radius $1 / 3$ (since this circle passes through the origin). It is then geometrically clear that

$$
\begin{align*}
\left\|\ell_{j}\right\|_{(-x .+\infty)}= & \frac{2}{3}, \text { and }\left\|\operatorname{Im} \ell_{j}\right\|_{(-x .+x)}=\frac{1}{3} \tag{2.4}\\
& j=0,1, \ldots, m+1
\end{align*}
$$

where, for any subset K of the infinite interval $(-\infty,+\infty)$, we use the notation $\|f\|_{K}:=\sup _{x \in K}|f(x)|$.
To extend the statements of (2.4), consider the real intervals $I_{k}(m)$, defined by

$$
\begin{equation*}
I_{k}(m):=\left[1-\frac{2 k+1}{m+1}, 1-\frac{2 k-1}{m+1}\right] \cap I, \quad k=0,1, \ldots, m+1 \tag{2.5}
\end{equation*}
$$

so that these intervals cover $I:=[-1,+1]$; that is,

$$
\cup_{k=1}^{m+1} I_{k}(m)=I .
$$

From the definitions of $\ell_{j}(x)$ and $I_{k}(m)$, it follows (as m is fixed) that

$$
\begin{equation*}
\left\|\ell_{j}\right\|_{I_{k}(m)}=O(\varepsilon), \text { as } \varepsilon \rightarrow 0 \quad\left(k \frac{1}{\tau} j\right), \tag{2.6}
\end{equation*}
$$

and from (2.3) that

$$
\begin{equation*}
\left\|\ell_{j}\right\|_{I_{j}(m)}=\frac{2}{3}, \text { and }\left\|\operatorname{Im} \ell_{j}\right\|_{I_{j}(m)}=\frac{1}{3}, \quad j=0,1, \ldots, m+1 . \tag{2.7}
\end{equation*}
$$

Next, consider the complex rational function $g(x)$ defined by

$$
\begin{equation*}
g(x)=g(x ; \varepsilon, m):=\sum_{j=0}^{m+1} \ell_{j}(x) . \tag{2.8}
\end{equation*}
$$

On rationalizing $g(x)$,

$$
\begin{equation*}
g(x)=\frac{\frac{-2 \varepsilon i}{3} \sum_{j=0}^{m+1}(-1)^{j} \prod_{\substack{k=0 \\ k \neq j}}^{m+1}\left\{x-1+\frac{2 k}{m+1}-\varepsilon i\right\}}{\prod_{k=0}^{m+1}\left\{x-1+\frac{2 k}{m+1}-\varepsilon i\right\}} \tag{2.9}
\end{equation*}
$$

so that g is at least an element of $\pi_{m+1, m+2}^{c}$. However, the numerator of $g(x)$ of (2.9) is

$$
\frac{-2 \varepsilon i}{3}\left\{x^{m+1} \sum_{j=0}^{m+1}(-1)^{j}+\text { lower terms in } x^{s}(0 \leq s \leq m)\right\} .
$$

But, since m is assumed even, it follows that $\sum_{j=0}^{m+1}(-1)^{j}=0$, which shows that $g(x)$ is an element in $\pi_{m, m+2}^{c}$. More precisely, it can be verified from the above definition that the coefficient of X^{m} in the numerator of $g(x)$ is

$$
\frac{2(m+2) \varepsilon i}{3(m+1)} \neq 0
$$

so that $g(x)$ is not an element of $\pi_{s, m+2}$ for any $s<m$. (We remark that the representation of $g(x)$ in (2.8) is just the partial fraction decomposition of $g(x)$.)

Consider now the real continuous function $s(u)$ on $(-\infty,+\infty)$ defined by

$$
s(u):= \begin{cases}\frac{1-u^{2}}{1+u^{2}}, & -1 \leq u \leq+1, \tag{2.10}\\ 0, & \text { otherwise },\end{cases}
$$

so that $s(0)=1, s(\pm 1)=0$, and $0<s(u)<1$ for $0<|u|<1$. Recalling that $0<\varepsilon<1 /(m+1)$, set

$$
\begin{equation*}
S(x):=\frac{1}{3} \sum_{j=0}^{m+1}(-1)^{j} s\left(\frac{x-1+\frac{2 j}{m+1}}{\varepsilon}\right), \quad-\infty<x<\infty . \tag{2.11}
\end{equation*}
$$

It follows from (2.11) that $S(x)$ is a real continuous function on $(-\infty,+\infty)$, with

$$
\begin{align*}
S\left(1-\frac{2 j}{m+1}\right)= & \frac{1}{3}(-1)^{j} \text { and } S\left(1-\frac{2 j}{m+1} \pm \varepsilon\right)=0, \tag{2.1.1}\\
& j=0,1, \ldots, m+1
\end{align*}
$$

Geometrically, we note that $S(x)$ has $m+2$ alternating spikes on $I:=[-1,+1]$.
With the above definition of $S(x)$ and $g(x)$, set

$$
\begin{equation*}
f(x)=f(x ; \varepsilon, m):=S(x)+\operatorname{Re} g(x) \quad(x \in I), \tag{2.13}
\end{equation*}
$$

so that $f(x) \in C^{r}(I)$. From (2.3), (2.6), (2.8), and (2.12),

$$
\begin{equation*}
f\left(1-\frac{2 j}{m+1}\right)=(-1)^{j}+O(\varepsilon), \text { as } \varepsilon \rightarrow 0 \quad(j=0,1, \ldots, m+1) \tag{2.14}
\end{equation*}
$$

Now, for $\varepsilon>0$ small, (2.14) asserts that $f(x)$ has $m+2$ near "alternants" in the distinct points $\left\{1-\frac{2 j}{m+1}\right\}_{j=0}^{m+1}$ of I. On choosing the identically zero function in $\pi_{m, m+2}^{r}$, an application of the de la Vallée-Poussin Theorem (cf. Meinardus [3, p. 161]) gives us that

$$
\begin{equation*}
E_{m, m+2}^{r}(f)=1+O(\varepsilon), \text { as } \varepsilon \rightarrow 0 . \tag{2.15}
\end{equation*}
$$

To determine an upper bound for $E_{m, m+2}^{c}(f)$, note from (2.13) that

$$
\begin{equation*}
f(x)-g(x)=S(x)-i \operatorname{Im} g(x) \quad(x \in I) . \tag{2.16}
\end{equation*}
$$

On considering the particular interval $I_{k}(m)$, it follows from (2.6)-(2.7) that

$$
\begin{equation*}
S(x)-i \operatorname{Im} g(x)=S(x)-i \operatorname{Im} \ell_{k}(x)+O(\varepsilon), \quad x \in I_{k}(m) . \tag{2.17}
\end{equation*}
$$

Moreover, a short calculation shows that

$$
\left\|S(x)-i \operatorname{Im} l_{k}(x)\right\|_{I_{k}(m)}=\frac{1}{3}+O(\varepsilon), \quad k=0,1, \ldots, m+1
$$

so that with (2.16) and (2.6),

$$
\begin{equation*}
\|f-g\|_{I}=\|S-i \operatorname{Im} g\|_{I}=\frac{1}{3}+O(\varepsilon) \tag{2.18}
\end{equation*}
$$

Then, since $g(x)$ is an element of $\pi_{m, m+2}^{c}$.

$$
\begin{equation*}
E_{m . m+2}^{c}(f) \leq\|f-g\|_{I}=\frac{1}{3}+O(\varepsilon), \text { as } \varepsilon \rightarrow 0, \tag{2.19}
\end{equation*}
$$

from (1.1) and (2.18). With (2.15), we see that $E_{m, m+2}^{c}(f) / E_{m, m+2}^{r}(f) \leq$ $1 / 3+O(\varepsilon)$. Letting $\varepsilon \rightarrow 0$ then gives

$$
\begin{equation*}
\gamma_{m, m+2} \leq \frac{1}{3}, \tag{2.20}
\end{equation*}
$$

which establishes the desired result of (2.7) when m is an even nonnegative integer.
For the case when m is an odd positive integer, the above discussion is easily modified. Set
$(2.21) \ell_{j}(z)=\ell_{j}(z, \varepsilon, m):=\frac{\frac{-2 \varepsilon i}{3} \mu_{j}(-1)^{j}}{z-1+\frac{2 j}{m+1}-\varepsilon \mu_{j} i}, j=0,1, \ldots, m+1$,
where $\left\{\mu_{j}\right\}_{j=0}^{m+1}$ are any $m+2$ fixed positive numbers satisfying $0 \leq$ $\mu_{j}<1$ and

$$
\begin{equation*}
\sum_{j=0}^{m+1}(-1)^{j} \mu_{j}=0, \text { and } \sum_{j=0}^{m+1} j(-1)_{\mu_{j}}^{j} \frac{1}{\tau} 0 . \tag{2.22}
\end{equation*}
$$

With (2.22), it follows that $\sum_{j=0}^{m+1} \ell_{j}(z)$ is an element of $\pi_{m . m+2}$, but not an element of $\pi_{s . m+2}$ for any $s<m$. Then exactly the same construction can be carried out to deduce the desired result that $\gamma_{m . m+2} \leq 1 / 3$ in the case when m is an odd positive integer.
To conclude, we conjecture that

$$
\begin{equation*}
\gamma_{m, m+2}=\frac{1}{3} \text { for each nonnegative integer } m, \tag{2.23}
\end{equation*}
$$

i.e., we conjecture that the upper bound of (2.1) is sharp for each nonnegative integer m. If this conjecture is true, then the "missing diagonal" $\gamma_{m, m+2}$ is, in fact, structurally different from the remaining cases treated in [5] and [1].

REFERENCES

1. A. Levin, On the degree of complex rational approximation to real functions, Const. Approx. 2 (1986), 213-219.
2. K.N. Lungu, Best approximation by rational functions, (Russian), Mat. Zametki 10 (1971), 11-15.
3. G. Meinardus, Approximation of Functions: Theory and Numerical Methods, Springer-Verlag, New York, 1967.
4. E.B. Saff and R.S. Varga, Nonuniqueness of best complex rational approximations to real functions on real intervals, J. Approximation Theory 23 (1978), 78-85.
5. L.N. Trefethen and M.H. Gutknecht, Real vs. complex rational Chebyshev approximation on an interval, Trans. Amer. Math. Soc. 280 (1983), 555-561.
6. R.S. Varga, Topics in Polynomial and Rational Interpolation and Approximation, University of Montréal Press, Montréal, 1982.

Institute for Computational Mathematics Kent State University Kent. OH 44242

[^0]: Recieved by the editor on October 8, 1986.
 1 Research supported by the Air Force Office of Scientific Research.

