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DIVIDED DIFFERENCE OPERATORS A N D 
CLASSICAL ORTHOGONAL POLYNOMIALS 

RICHARD ASKEY 

ABSTRACT. In an earlier paper J. Wilson and I introduced 
a divided difference operator that plays the same role for 
the 4^3 orthogonal polynomials that the derivative does for 
Jacobi polynomials. Here this operator is used to give a new 
derivation of the connection coefficient result of L.J. Rogers. 

1. Introduction. L.J. Rogers introduced a very attractive set of 
polynomials in [10]. To define them take q fixed with 0 < |g| < 1. Set 

fc=0 

and 

(1-2) (a; q)n = (a; q)oo/(aqn; q)oo-

Then, following Rogers (but using a slightly different notation), con
sider the generating function 

M o\ (ßreie'iq)00(ßre-i9;q)00 ^ n 

( L 3 ) (re^Mre--;,)«, = E^Mdr • 

The (7-binomial theorem is 

(! 4 \ (ar; q)oo _ y * fa Q)n rn 

(r;q)oo ~(ç;ç)n 
Using this in (1.3) gives 

cn(cos0;/%)=J2 (f:;in~^f:^fc e^-2*>* 
(1.5) 

~ (vq)n-k{q;q)k 

E (ß;q)n-k(ß;q)k , 0 , N Û 
-7 ; 7- cos(n - 2k)0. 

k=o (q'^)n-k(q;q)k 
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34 DIVIDED DIFFERENCE OPERATORS 

The second identity in (1.5) follows from the first, because both sides 
of (1.5) must be real when ß and q are real. 

It is easy to see that (1.3) and the following recurrence relation imply 
each other: 

2(l-ßqn)xCn(x;ß\q) 

(1-6) =(l-qn+1)Cn+1(x;ß\q) 

+ (l-ß2qn-l)Cn-1(x;ß\q). 

L.J. Rogers claimed that 

Cn{xmn\q) 

(1-7) _ ^ k{1ß^-q)k(r,q)n-,{l-ßq-
2k)r ( , 

- y, & ~( VTâ \ T\ ä\ ^n-2k{x,ß\q), 
f^0 {q;q)k(ßq;q)n-k ( i - / 3 ) 

and then used (1.6) to prove (1.7) by induction. A second proof of (1.7) 
was given in [1]. Here the orthogonality of {Cn(x;ß\q)} was used, as 
well as a sum of a very well poised 6^5- It would be nice to have a direct 
derivation of (1.7) that does not assume the form at the beginning, as 
Rogers did, or use complicated results as in [1]. Such a derivation 
will be given in the next section. It uses a divided difference operator 
introduced by Wilson and the author in [2]. A second very interesting 
application of this operator is given by Kalnins and Miller [6]. 

2. A divided difference operator and the connection coeffi
cient problem. The operator that plays the role played by the deriva
tive for ultraspherical polynomials can be defined as follows. Take a 
function of e?ö, say f(el°). Define two shift operators by 

(2.1) 

Then define 

(2.2) 

and 

(2.3) 

EÏf(e») = f(q±1<2ei°). 

6qf(e'0) = (E+-E-)f(ew 

A,/(x) = ^ i£ ) , 
0qX 
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where x = (e'e + e~'ö)/2. Applying A9 to (1.3) gives 

(2.4) 

<1 

e. 
A (i3re'";q)^3re-",:q) 

q (rei0\q)^(re-ie;q)^ 

(1-3) (3rqll2el9,q)^(3rqxl2e-'e,q), 
= 2r 

(l-q)(rq-^e'«;q)x(rq-^e-i0:q)^ 

Expanding both sides of (2.4) in a power series in r gives 

(2.5) A„C„ (*;,%) = 2-^^q^-")l2Cn.l{x^q\q). 

This is an extension of 

d 
(2-6) - C ^ ) = 2ÀCn

Aî}(x), 

where 

oc 

(2.7) (1 - 2xr + r2)~X = Y, C» (x)r"-
71=0 

Apply Aq to both sides of the second form of (1.5). The result is (1.7) 
when 7 is q^,n is replaced by n - 1, and 0 in (1.7) is now q. Then, 
to derive (1.7), it is sufficient to apply A^ successively. The result is 
equivalent to (1.7) when 0 = qK\ k = 1,2,.. . . That is sufficient to 
prove (1.7), for both sides are analytic in 0 for \0\ < 1 and they agree 
for infinitely many values of 0 = qk, k — 1,2, 

For applications of (1.7) see [3, 9, 10]. 

3. Comments and open problems. The operator Aq was 
introduced in [2], but was not used there except to derive some formulas 
which extend known formulas for the Jacobi, Laguerre and Hermite 
polynomials. These polynomials satisfy many properties, and some of 
these properties only hold for these polynomials, either as polynomials, 
or as orthogonal polynomials. Here are three such facts. 

(3A) If a set of polynomials {pn(x)} is orthogonal with respect to 
a positive measure on the real line, if qn{x) = ^ p n + i ( x ) , and if 
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{qn(x)} is also orthogonal, then {pn(x)} is orthogonal with respect 
to the beta, gamma or normal distributions, and the polynomials are 
Jacobi, Laguerre or Hermite polynomials. 

(3B) If {pn(x)} satisfies the differential equations 

a{x)y" + b{x)y + Xny = 0, y = pn(x), 

where a(x) and b(x) are independent of n and An is independent of x, 
and if {p7i(x)} are orthogonal polynomials, then {pn{x)} are as in (3A). 

(3C) If there are functions w(x) and l(x) so that 

w{x)pn(x) = — \w(x)[l{x)) J, 

where pn{x) is a polynomial of degree rz, then {pn(x)} are as in (3A) 
or else are a class of polynomials known as Bessel polynomials. Bessel 
polynomials are not orthogonal with respect to a positive measure on 
the real line, but are orthogonal with respect to some signed measures. 

See [4, Chapter 10] for statements of these theorems and for refer
ences. Hahn [5] found similar theorems for the operator 

D f{x = f(x) - f(qx) 

One can ask if there are similar results for Aq. There is a set of 
polynomials which satisfies identities like those in (3A,B,C), see [2]. 
Leonard [7] has proven a theorem that essentially shows that, if an 
identity like (3B) holds for A9, then the polynomials are those in [2] or 
limiting cases of them. It is natural to see if something similar is true for 
(3A) and (3C) with the derivative being replaced by a divided difference 
operator. The first question to ask is to find all such operators that have 
the property that a polynomial of degree n is taken to a polynomial of 
degree ( n - 1 ) for n = 1,2, Magnus [8] has solved this problem, and 
the operators are divided difference operators like (2.3). They have a 
bit more freedom, but that is almost illusory. Now one has an inherent 
structural reason for considering (2.3), so it is natural to look for the 
analogues of the uniqueness part of (3A) and (3C) for divided difference 
operators like A^. 
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