JACKSON TYPE THEOREMS IN APPROXIMATION BY RECIPROCALS OF POLYNOMIALS

A.L. LEVIN ${ }^{1}$ AND E.B. SAFF ${ }^{2}$

Abstract

It was previously shown by the authors that Jackson type theorems hold for the case of approximating a continuous real-valued function f on a real interval by the reciprocals of complex polynomials. In this paper we extend these results to the general case when f is complex-valued.

1. Statement of results. Let $C^{*}[-\pi, \pi]$ denote the set of 2π periodic continuous complex-valued functions and let $C[-1,1]$ denote the set of continuous complex-valued functions on $[-1,1]$. For any $f \in C^{*}[-\pi, \pi]$ (resp. $f \in C[-1,1]$) we denote by $E_{0 n}^{*}(f)$ (resp. by $\left.E_{0 n}(f)\right)$ the error in best uniform approximation of f on $[-\pi, \pi]$ (resp. on $[-1,1]$) by reciprocals of trigonometric (resp. algebraic) polynomials of degree $\leq n$ with complex coefficients.
Our goal is to prove the following Jackson type theorems.

Theorem 1. There exists a constant M such that for any $f \in$ $C^{*}[-\pi, \pi]$,

$$
E_{0 n}^{*}(f) \leq M \omega\left(f ; n^{-1}\right), \quad n=1,2,3, \ldots,
$$

where $\omega(f ; \delta)$ denotes the modulus of continuity of f on $[-\pi, \pi]$.

Theorem 2. There exists a constant M such that, for any $f \in$ $C[-1,1]$,

$$
E_{0 n}(f) \leq M \omega\left(f ; n^{-1}\right), \quad n=1,2,3, \ldots,
$$

where $\omega(f ; \delta)$ denotes the modulus of continuity of f on $[-1,1]$.

[^0]For the case of real-valued f, these theorems (with slightly different notation) were proved in our paper [1]. Although the idea of the proof remains the same, the passage to a complex-valued f is not straightforward (in contrast with polynomial approximation). It requires a preliminary construction (see Lemma 1 below) that is trivial in the case of real f but rather complicated in general.
2. Proofs. We first formulate two lemmas. In these results, \|•\| denotes the sup norm on $[-\pi, \pi]$ and ω is the modulus of continuity on $[-\pi, \pi]$.

Lemma 1. For any $f \in C^{*}[-\pi, \pi]$, for any positive integer n, and for any $A>0$, there exists a function $g \in C^{*}[-\pi, \pi]$ such that
(1) $\|f-g\| \leq 4 A \omega\left(f ; n^{-1}\right)$,
(2) $|g(x)| \geq \frac{1}{2} A \omega\left(f ; n^{-1}\right), \quad-\pi \leq x \leq \pi$, and
(3) $\omega\left(g ; n^{-1}\right) \leq(1+8 \pi) \omega\left(f ; n^{-1}\right)$.

Also, if f is even, then g may be chosen even as well.

LEMmA 2. There exist absolute constants $A_{0}>0, A_{1}>0$ such that, for any $g \in C^{*}[-\pi, \pi]$ that satisfies (2) with $A=A_{0}$ and (3), one can find a trigonometric polynomial P_{n} of degree $\leq n$ such that

$$
\left\|g-1 / P_{n}\right\| \leq A_{1} \omega\left(f ; n^{-1}\right)
$$

Also, if g is even, then P_{n} may be chosen even as well.

Theorem 1 is an immediate consequence of these lemmas. Indeed, applying Lemma 1 with $A=A_{0}$ and Lemma 2 we obtain that

$$
E_{0 n}^{*}(f) \leq\|f-g\|+\left\|g-1 / P_{n}\right\| \leq M \omega\left(f ; n^{-1}\right)
$$

where $M:=4 A_{0}+A_{1}$. Theorem 2 follows from Theorem 1 by a standard argument (notice the last assertions of the lemmas).

Proof of Lemma 1. Set

$$
\begin{equation*}
K_{1}:=\left\{x \in[-\pi, \pi]:|f(x)| \geq A \omega\left(f ; n^{-1}\right)\right\} \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
K_{2}:=\left\{x \in[-\pi, \pi]:|f(x)|<A \omega\left(f ; n^{-1}\right)\right\} . \tag{5}
\end{equation*}
$$

We assume first that $\pm \pi \in K_{1}$. In this case we can represent K_{2} as a union $\cup\left(a_{k}, b_{k}\right)$ of disjoint open intervals in $(-\pi, \pi)$ with

$$
\begin{equation*}
\left|f\left(a_{k}\right)\right|=\left|f\left(b_{k}\right)\right|=A \omega\left(f ; n^{-1}\right) . \tag{6}
\end{equation*}
$$

Further, we write K_{2} as a union $K_{2}^{\prime} \cup K_{2}^{\prime \prime}$, where

$$
\begin{equation*}
K_{2}^{\prime}:=\cup\left\{\left(a_{k}, b_{k}\right):|f(x)| \geq 1 / 2 A \omega\left(f ; n^{-1}\right), \text { all } x \in\left(a_{k}, b_{k}\right)\right\}, \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
K_{2}^{\prime \prime}:=\cup\left\{\left(a_{k}, b_{k}\right):|f(x)|<1 / 2 A \omega\left(f ; n^{-1}\right) \text { for some } x \in\left(a_{k}, b_{k}\right)\right\} . \tag{8}
\end{equation*}
$$

Then, for the length $\Delta_{k}:=b_{k}-a_{k}$ of any interval $\left(a_{k}, b_{k}\right)$ in $K_{2}^{\prime \prime}$, we have the estimate

$$
\begin{equation*}
\omega\left(f ; \Delta_{k}\right) \geq\left\|f\left(b_{k}\right)\left|-\min _{\left(a_{k}, b_{k}\right)}\right| f\right\| \geq \frac{1}{2} A \omega\left(f ; n^{-1}\right) \tag{9}
\end{equation*}
$$

by (6) and (8).
For every interval $\left(a_{k}, b_{k}\right)$ in $K_{2}^{\prime \prime}$, write (cf. (6)) $f\left(a_{k}\right)=$ $A \omega\left(f ; n^{-1}\right) \exp \left(i \alpha_{k}\right), f\left(b_{k}\right)=A \omega\left(f ; n^{-1}\right) \exp \left(i \beta_{k}\right)$, with $\left|\beta_{k}-\alpha_{k}\right| \leq \pi$ and let $L_{k}(x)$ be the linear function that satisfies

$$
L_{k}\left(a_{k}\right)=\alpha_{k}, \quad L_{k}\left(b_{k}\right)=\beta_{k} .
$$

Then, for any $h>0$,

$$
\begin{equation*}
\left|L_{k}(x+h)-L_{k}(x)\right| \leq \frac{\pi}{\Delta_{k}} h, \quad \text { where } \Delta_{k}:=b_{k}-a_{k} . \tag{10}
\end{equation*}
$$

Now define the function g on $[-\pi, \pi]$ by

$$
\begin{equation*}
g(x):=f(x), \quad x \in K_{1} \cup K_{2}^{\prime}, \tag{11}
\end{equation*}
$$

$$
\begin{equation*}
g(x):=A \omega\left(f ; n^{-1}\right) \exp \left(i L_{k}(x)\right), \quad x \in\left(a_{k}, b_{k}\right) \subset K_{2}^{\prime \prime} . \tag{12}
\end{equation*}
$$

From the construction of g it follows that $g \in C^{*}[-\pi, \pi]$ and satisfies

$$
\begin{gather*}
\|f-g\| \leq 2 A \omega\left(f ; n^{-1}\right), \tag{13}\\
|g(x)| \geq \frac{1}{2} A \omega\left(f ; n^{-1}\right), \quad-\pi \leq x \leq \pi \tag{14}
\end{gather*}
$$

To estimate the modulus of continuity of g we make use of the wellknown inequality

$$
\begin{equation*}
\frac{\omega(f ; h)}{h} \leq 2 \frac{\omega\left(f ; h^{\prime}\right)}{h^{\prime}}, \quad \text { for } h \geq h^{\prime}>0 . \tag{15}
\end{equation*}
$$

Let $x, x+h(h>0)$ be any two points in $[-\pi, \pi]$.
Case 1. $x, x+h \in K_{1} \cup K_{2}^{\prime}$. Then (cf. (11)) $|g(x+h)-g(x)| \leq \omega(f ; h)$.
Case 2. $x, x+h \in\left(a_{k}, b_{k}\right) \subset K_{2}^{\prime \prime}$. Since $|\exp (i t)-\exp (i s)| \leq|t-s|$, we obtain, from (12) and (10):

$$
\begin{aligned}
|g(x+h)-g(x)| & \leq A \omega\left(f ; n^{-1}\right) \frac{\pi}{\Delta_{k}} h \\
& \leq 2 \pi \frac{\omega\left(f ; \Delta_{k}\right)}{\Delta_{k}} h \quad(\text { by }(9)) \\
& \leq 4 \pi \frac{\omega(f ; h)}{h} h \quad\left(\text { by }(15), \text { since } \Delta_{k} \geq h\right) \\
& =4 \pi \omega(f ; h) .
\end{aligned}
$$

Case 3. $x \in\left(a_{k}, b_{k}\right) \subset K_{2}^{\prime \prime}, x+h \in K_{1} \cup K_{2}^{\prime}$. Write

$$
\begin{aligned}
|g(x+h)-g(x)| & \leq\left|g\left(b_{k}\right)-g(x)\right|+\left|g(x+h)-g\left(b_{k}\right)\right| \\
& =\left|g\left(b_{k}\right)-g(x)\right|+\left|f(x+h)-f\left(b_{k}\right)\right| \\
& \leq\left|g\left(b_{k}\right)-g(x)\right|+\omega(f ; h) .
\end{aligned}
$$

Since $\left|b_{k}-x\right|<\Delta_{k}$, we obtain as in Case 2, that

$$
\begin{align*}
\left|g\left(b_{k}\right)-g(x)\right| & \leq 2 \pi \frac{\omega\left(f ; \Delta_{k}\right)}{\Delta_{k}}\left|b_{k}-x\right| \\
& \leq 4 \pi \frac{\omega\left(f ;\left|b_{k}-x\right|\right)}{\left|b_{k}-x\right|} \cdot\left|b_{k}-x\right|, \quad(\text { by }(1) \tag{15}\\
& =4 \pi \omega\left(f ;\left|b_{k}-x\right|\right) \leq 4 \pi \omega(f ; h) .
\end{align*}
$$

Hence

$$
\begin{equation*}
|g(x+h)-g(x)| \leq(1+4 \pi) \omega(f ; h) \tag{16}
\end{equation*}
$$

Case 4. $x \in K_{1} \cup K_{2}^{\prime}, x+h \in K_{2}^{\prime \prime}$. Just as in Case 3 , it can be shown that inequality (16) holds.

Case 5.. $x \in\left(a_{k}, b_{k}\right) \subset K_{2}^{\prime \prime}, x+h \in\left(a_{l}, b_{l}\right) \subset K_{2}^{\prime \prime}$, with $k \neq l$. In this case we write (assume $b_{k} \leq a_{l}$)
$|g(x+h)-g(x)| \leq\left|g\left(b_{k}\right)-g(x)\right|+\left|g\left(a_{l}\right)-g\left(b_{k}\right)\right|+\left|g(x+h)-g\left(a_{l}\right)\right|$,
and proceeding as in Case 3 we conclude that

$$
|g(x+h)-g(x)| \leq(1+8 \pi) \omega(f ; h)
$$

Putting all the cases together we obtain

$$
\begin{equation*}
\omega(g ; h) \leq(1+8 \pi) \omega(f ; h), \quad h>0 \tag{17}
\end{equation*}
$$

The inequalities (13), (14) and (17) prove Lemma 1 for the case $\pm \pi \in K_{1}$. If $\pm \pi \in K_{2}$, that is if $|f(\pm \pi)|<A \omega\left(f ; n^{-1}\right)$, we replace f by $\tilde{f}:=f+2 A \omega\left(f ; n^{-1}\right)$ and apply the above argument to construct the function g that satisfies (13), (14), and (17) with \tilde{f} instead of f. Since $\omega(\tilde{f} ; h)=\omega(f ; h)$ and $\|f-\tilde{f}\| \leq 2 A \omega\left(f ; n^{-1}\right)$, the same function g will satisfy the requirements (1), (2), and (3) of Lemma 1.

Finally, if f is even, then each of the sets K_{1}, K_{2}^{\prime}, and $K_{2}^{\prime \prime}$ is symmetric with respect to the origin. From this and from the definition (11), (12) of g it follows easily that g is also even.

REMARK. If f is real, the function g can be constructed in a much simpler way, namely we can set $g(x):=f(x)+i A \omega\left(f ; n^{-1}\right)$.

Proof of Lemma 2. The proof is essentially contained in our paper [1]. For the reader's convenience we reproduce it briefly.

Let $K_{n}(t)$ be the Jackson kernel (cf. Lorentz [2, p. 55]). Then, for any $g \in C^{*}[-\pi, \pi]$,

$$
\begin{equation*}
\int_{-\pi}^{\pi}|g(x+t)-g(x)|^{j} K_{n}(t) d t \leq c\left[\omega\left(g ; n^{-1}\right)\right]^{j}, \quad j=1,2 \tag{18}
\end{equation*}
$$

where c is an absolute constant. Define

$$
\begin{equation*}
A_{0}:=4 c(1+8 \pi) \tag{19}
\end{equation*}
$$

and let g be the function from Lemma 1 with $A=A_{0}$. Further, define the trigonometric polynomial P_{n} of degree $\leq n$ by

$$
\begin{equation*}
P_{n}(x):=\int_{-\pi}^{\pi} \frac{1}{g(x+t)} K_{n}(t) d t \tag{20}
\end{equation*}
$$

Then

$$
\begin{aligned}
\left|1-P_{n}(x) g(x)\right| & =\left|\int_{-\pi}^{\pi} \frac{g(x+t)-g(x)}{g(x+t)} K_{n}(t) d t\right| \\
& \leq \frac{2}{A_{0} \omega\left(f ; n^{-1}\right)} \cdot c \omega\left(g ; n^{-1}\right), \quad(\text { by }(2),(18)) \\
& \leq \frac{2 c(1+8 \pi)}{A_{0}}=\frac{1}{2}, \quad(\text { by }(3),(19)) .
\end{aligned}
$$

Hence,

$$
\begin{equation*}
\left|P_{n}(x) g(x)\right| \geq 1 / 2, \quad-\pi \leq x \leq \pi \tag{21}
\end{equation*}
$$

Now,

$$
\begin{aligned}
\mid g(x) & -1 / P_{n}(x) \mid \\
& \leq \int_{-\pi}^{\pi}\left|\frac{g(x+t)-g(x)}{g(x) g(x+t)}\right| \cdot\left|\frac{g(x)}{P_{n}(x)}\right| \cdot K_{n}(t) d t \\
& \leq 2 \int_{-\pi}^{\pi}|g(x+t)-g(x)| \cdot\left|\frac{g(x)}{g(x+t)}\right| \cdot K_{n}(t) d t \quad(\text { by }(21)) \\
& \leq 2 \int_{-\pi}^{\pi}|g(x+t)-g(x)| K_{n}(t) d t+2 \int_{-\pi}^{\pi} \frac{|g(x+t)-g(x)|^{2}}{|g(x+t)|} K_{n}(t) d t \\
& \leq 2 c \omega\left(g ; n^{-1}\right)+4 c\left(\omega\left(g ; n^{-1}\right)\right)^{2} / A_{0} \omega\left(f ; n^{-1}\right) \quad(\text { by }(2),(18)) \\
& \left.\leq(2 c+1)(1+8 \pi) \omega\left(f ; n^{-1}\right)=: A_{1} \omega\left(f ; n^{-1}\right) \quad \text { (by }(2),(3), \text { and }(19)\right) .
\end{aligned}
$$

Finally, if $g \in C^{*}[-\pi, \pi]$ is even, then (cf. (20)) P_{n} is an even trigonometric polynomial.

REFERENCES

1. A.L. Levin and E.B. Saff, Degree of approximation of real functions by reciprocals of real and complex polynomials, SIAM J. Math. Anal. 19 (1988), 233-245.
2. G.G. Lorentz, Approximation of functions, Holt, Rinehart and Winston, New York, 1966.

Department of Mathematics, Everyman's University, 16 Klausner St., POB 39328, Tel-AViv 61392, Israel
Institute for Constructive Mathematics, Department of Mathematics, University of South Florida, Tampa, Fl 33620

[^0]: 1 The research of this author was conducted while visiting the Institute for Constructive Mathematics at the University of South Florida.

 2 The research of this author was supported, in part, by the National Science Foundation.

 AMS Subject Classification: 41A20, 41A17.
 Received by the editors on September 19, 1986.

