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S U D D E N SYMMETRY 
IN SIMULTANEOUS APPROXIMATION 

M.G. DE BRUIN 

ABSTRACT. In the theory of simultaneous approxima­
tion to a set of n formal power series and using n ratio­
nal functions with a common denominator along the lines 
of simultaneous Padé approximation of type II use the set 
f(z),f(wz),f(w2z),--- , f(wn~1z) where w is a primitive n-
th root of unity and / belongs to one of three specific classes of 
hypergeometric functions. In the case that the approximants 
are calculated with the aid of the same number of coefficients 
from each of the series, the invariance of the n-tuple of func­
tions under rotation over 2ir/n is transferred to the denomina­
tor polynomial, which therefore turns out to be a polynomial 
in zn. 

1. Introduction. Let n be an arbitrary natural number, n > 2, and 
consider an n-tuple of formal power series over C given by 

m > 0 

For any (n + l)-tuple of non-negative integers ( r 0 , r i , • • • , r n ) , s = 
ro + H + • + 7*715 we pose the approximation problem of finding 
polynomials PQ{Z),P\{Z), • • • , Pn(z) over C satisfying 

m j deg Pj(z) < s-rj (j = 0,1,- • • ,n) 
U J I Po(z)fj(z) - Pjiz) = 0(zs+l) asz-+0 (j = 1,2,- • • ,n) 

It is well known that there exist several classes of functions such 
that this approximation problem - the polynomials usually are called 
the type II or German polynomials for the functions 1, / i , • • • , fn - has 
a unique solution (Pl(z)/P0(z)1P2(z)/P0(z),-- • ,Pn(z)/P0(z)) if only 
the condition PQ(0) = 1 is added; cf. [3], [5], [6], [8] and for n = 1 cf. 

M-
As the inverted denominators of the approximants, i.e., zs~r°Po(l/z), 

can be identified as orthogonal polynomials in the setting of indefinite 
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innerproduct spaces (a matter outside the scope of this paper) the 
location of the zeros of these polynomials is important. Symmetry 
in certain plots for the zeros in the case of approximation of the pair 
e2, e~z and the explicit form for the denominators at the points (p, k, k) 
being even polynomials, started the investigation of the following 
situation. Consider a nice function f(z) and let w be a primitive nth 
root of unity (wn = 1, w-7 y=- 1 for j = 1,2, • • • , n — 1) and define the 
n-tuple of functions by 

fJ(z) = f(wi-1z) for j = l , 2 , . . - , n . 

Try to solve the approximation problem for the choice r0 = p,rj = k, 
j = 1,2, ••• ,72 where p and k are non-negative integers, subject 
to the normalization Po(0) = 1 (so the same amount of infor­
mation is used from each of the functions, i.e., the coefficients of 
zP+(n-i)fc+i^ _ ^ zp+nky p o r £n e exponential function system exp(wi~1z), 

j = 1,2, ••• ,n, the explicit formulae (cf. [5], [6], [7]) show that 
the denominator polynomials Po(z) are polynomials in zn. From 
the explicit formulae for the system of hypergeometric functions 
\Fi(l;c;w^~lz) , j = 1,2, ••• ,n, in [1] it follows that the same hap­
pens in this case (of course c £ (0, —1, —2, • • • ); for c = 1 we recover 
the previous result). 

That this property is not restricted to a set of i F\ 's will follow from 
the results in §2, the proofs will be given in §3. 

2. Main results. First a determinantal condition will be given 
which ensures the symmetry property, and after that three classes of 
functions will be given that satisfy the condition. 

THEOREM 1. Let n be a natural number, n > 2, and let f(z) — 
Ylm>o cmZrn be a formal power series with 

Cq C 9 + n q+2n '" C q + ( f e _ 1 ) n 

, x
 C<?+1 c ç + n + l Cg+2n+l ••• C q + ( f c _ 1 ) n + 1 

(2) . . . . # 0 

\Cq+k-l Cg+n+fc+i C9+2n+fc-l ••• C 9 + ( f c _ 1 ) n + j t _ 1 | 
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for allq > 0, k > 1. Then the entry (Px(z) / P0{z), • • • , Pn{z) / P0{z)) 
from the Padé-n-table for the functions f(z), f{wz), f(w2z), • • •, 
f(wn~1z) at points (p,k,-- ,*;) G (Nu{0}) n + 1 withp> ifc-l, where w 
is a primitive nth root of unity (wn = 1, tu-7' ^ 1 for j = 1,2, • • • , n — 1), 
following from 
(3) 

P j (*)€C[2] , j = 0 , l , " - , n , 
d e g P 0 ( s ) < n * ; d e g P j ( z ) < P + ( « - ! ) * , j = 1,2,--- ,n, 
P o ( z ) / ( ^ - ^ ) - P,(z) = 0(2" fc+P+1) for z -> 0, j = 1,2,- • • ,n, 

has denominator polynomial satisfying 

(4) P0(z) = £ 4 ( / ) r a u»«Ä do = l,dfc ^ 0. 
0<m<fc 

THEOREM 2. J/ / is the power series expansion of a function from 
one of the classes given below, the conditions (2) are satisfied. The 
classes are 

A.f(z) = lFl(l;c;z); c £ { 0 , - 1 , - 2 , . . . }. 

B. f(z) = 2Fi(a,l;c;z); a,c,a - c, £ {0, - 1 , - 2 , • • • }. 

C /(*) = 2F0(a, 1; z); a £ {0, - 1 , - 2 , • • }. 

REMARK. Of course, if it is known that the approximation problem 
(3) has a unique solution up to a multiplicative constant, the result 
(4) follows from the simple observation that replacing z by wz leads 
to a permutation of the n-tuple of functions. The conditions (3) then 
show that the polynomial Po(z) has to be invariant under rotation over 
27r/n, thus it must be a polynomial in zn. If we do not know about 
uniqueness, the situation is not that simple. 

3. Proof of the main result. For the proof we use the reformu­
lation of (3) in terms of a system of linear equations for the unknown 
coefficients of the polynomials Pj (cf. [2]) and some results on the ex­
plicit calculations of determinants given in the following lemmas. 

LEMMA 1. Let the elements of the N x N determinant \er,s\ satisfy 
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the relations 

(4) er,s+i = (yr - x s)e r , s , 1 < r < TV, 1 < s < N - 1, 

where x\,X2,' - ,#N-I>2/I>2/2? ' • • ,yjv «re complex numbers. Then 

(5) |er?s| = J | er,i • JJ (j/r - ys). 
\<r<N l<s<r<N 

P R O O F . See [4]. D 

LEMMA 2. Let |e r , s | be as in Lemma 1, satisfying (4) and moreover 
let Ps(y) be a polynomial of degree < N — s, 1 < s < N;xjv arbitrary. 
Then 

(6) \er,sPs(yr)\ = \er,s\pi{xi)P2{x2) - -PN(XN). 

P R O O F . See [4]. o 

PROOF OF THEOREM 1. Put P0{z) = Eo<m<nkbrnZm, Pj(z) = 

Eo<m<(n-i)fc+ip
aJ,m^m, j = l , 2 , - - - , n , and f{wi-lz) = fj(z) = 

Z^m>QC3,mZ (j' = 1, 2 , • • • , U). 

The solution of (3) can then be found in two steps: 

1. Put ò0 = 1 and try to solve 

/ c j , (n- l)fc+p Cjy(n_i)k+p+i '" Cj i P + i_fc ^ 
c j , (n- l ) fc+p+l Cj^n_i)k+p ••• Cj,p+2-k 

\ cj,nk+p-l cj,nk+p—2 

( ~Cj,(n-l)k+p+l\ 

-Cj,(n-l)fc+p+2 

\ ~cj ,nfc+p / 

C3,P / 

(j = l , 2 , . . . , n ) 

/ 6 i \ 

\bnk/ 

(n systems of k linear equations each for the nk unknowns 6m, 1 < m < 
nk) 
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2. If the ò's are known, we can calculate the ay,m from 

nfc&nfc 

0 < m < (n — l)k -f p; j = 1,2, • • • , n, 

(here the convention Cj,m = 0 for m < 0 is used). 

In the sequel we frequently need 
(j-Dt _ ( 0 if t ^ Omodn (7) -i)t = f 

n if t = 0 mod n. 
l<j<n 

We start with the equations for the ò's: n blocks of k equations each. 
Row # i of fc-block # j is, after division by the coefficient of cp+;_fc 
being W(P+*-*0O-I) 7 j u s t 

1 < * < fc; 1 < j < W, r = (n - l)fc -f p - 1 

Insert r and write the equation for sake of simplicity as 
[^(nfc-S)(j-l)Cp+._fc+nfc_sj < s < n fc ; - C p + t _ f c + n f c ] . 

Add this row # i of fc-block # j for j = 1,2, • • • , n — 1 to row # 2 of 
fc-block # n and use (7). The last mentioned row will then contain a 
lot of zeros and, after division by n, just the c r+i+i_ s for those s that 
satisfy nfc — s = 0 mod n; thus for s = nv with v = 1,2, • • • , fc it takes 
the form 
(8) 
(0 • • • 0cp+j_fc+n(fc_!)0 • • • 0cp+j_fc+n(fc_2) • • • 0 • • • 0cp+j_fc| - Cp+i_fc+nfc) 

in which each c before the vertical bar is preceded by a string of n — 1 
zeros. 

As the procedure can be used for each i with 1 < i < fc, we find that 
fc-block # n has turned into a system of fc linear equations in the fc 
unknowns bnv(l < v < fc) of the form 

/cp+l-fc+n(fc-l) Cp+l-fc+n(fc-2) ' • • Cp+i_fc ^ / ^n \ 
cp+2-fc+n(k-l) Cp_|_2_fc+n(Â:-2) " ' cp+2-fc £>2n 

(9) 
\Cp+n-fc+n(fc-l) cp+n-fc+n(/c-2) • " Cp+n-k ) \^kn ' 

/ -Cp_|_i_fc-|-nfc \ 

-Cp+2-fc+nfc 

V - Cp+n—k+nk Ì 



108 M.G. DE BRUIN 

The condition (2) with q = p + 1 — k ensures that (9) has a unique 
solution in which bkn r1 0 while Cramer's rule shows that (—l)kbkn is 
the quotient of two determinants of the form (2): the numerator with 
q — p-\-l — k + n and the denominator with q = p + 1 — k. Having found 
the b's with index divisible by n, we turn to the problem of finding the 
others. 

Subtract row # i of fc-block # n (i.e. (8)) from row # i of fc-block # j 
for j = 1,2, • , n - 1. Then 

(i) All right hand sides become zero: the equations are homogeneous 

(ii) The coefficients in row # i of fc-block # j become 

f w(nk-s)(j-i) _ o for s =É 0 modn 
\ w(nk-s)(j-i) _ i = o for s = 0 modn (as wn = 1). 

Thus we have (n - l)k homogeneous linear equations for the (n - l)fc 
unknowns 6 m , l < m < nk — 1, m not divisible by n. The final 
stage of the proof consists of showing that this system has a nonzero 
determinant, leading to òm = 0 for m not divisible by n. 

Let s reduced modulo n be denoted by s (is, s = nv -I- s with 0 < s < 
n - 1), then row # i , 1 < i < fc, of fc-block # j , 1 < j < n — 1, has the 
following form if the zero coefficients in the columns corresponding to 
the bnvi 1 < v < k, have been omitted: 

(10) (w~ s 0 _ 1 )Cr+i+i- s ; l < * < n - l , n + l < * < 2 n - l , - . . , 
( f c - l ) n + l < s<kn-l\0). 

Instead of viewing the system as n — 1 blocks of k equations each, we 
view it as k blocks of n — 1 equations each by putting rows # i from fc-
block # j , l < j < n - l , together as an (n -1 ) block # i. Consider now 
(n — l)-block # i for a certain fixed i and introduce the new unknowns 
ftm(l < rn < nk - l , ra not divisible by n) by 6m = c r + i +i_ m 6 m . The 
structure of the matrix of the (n — l)-block becomes rather simple now: 
k copies next to one another of the (n - 1) x (n — 1) matrix A given by 

A = (« ; - ü - 1 ) t ) i< i f t<»- i . 

As det A = V(w'\ w~2, • • • , w'^-V) is the (n - 1) x (n - 1) Vander-
monde determinant on w - 1 , w~2, • • • ,t^~^n_1^ and these numbers are 
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pairwise distinct, we find detA ^ 0. Thus there is a method of reduc­
tion of the system of equations to change A into the (n — 1) x (n — 1) 
unit matrix / manipulating on rows. As the rows of the (n — l)-block # 
i consist of k copies of A, we have at the final stage of the reduction k 
copies of / next to one another. The proof is now obvious: rewrite the 
system with the original ò's as unknowns and reassemble the equations 
in the form of n — 1 fc-blocks. The Ar-block # j , 1 < j < n — 1, then 
has as row # i (1 < i < k) 

(0 • - - 0 Cr+i+ i - jO • • • 0 0 • • • 0 C r + i + l - i - n O • - • 0 

0 . - - 0 c r + i + 1 _ i - ( f c _ 1 ) n 0 . . - 0 | 0 ) , 

where the k strings of n — 1 numbers consist of zeros with c r + i + i _ j _ v n 

at the j - th place, 0 < v < k— 1. Thus k-block # j actually represents a 
system of A: homogeneous linear equations in the k unknowns bj+vn, 0 < 
v < k — l, with a determinant given by (2) with q = r + i + 1 — j(k — l)n 
(rows in descending order here), which leads to bj+vn = 0 , 0 < v < 
k - 1, for j = 1,2, • • • , n - 1. 

PROOF OF THEOREM 2. This is a matter of explicitly calculating 
the determinants (2) for the classes of functions given; the condition 
p > k — l arises in a natural way while the convention cm = 0 for m < 0 
would lead to disaster otherwise. The determinant can be written as 

Cq+k-\ Cq+fc-2 '" Cq I 

Cq+n+k-1 Cq+n+k-2 '" Cq+n 

c 9+(fc- l )n+fc- l C<H_(fc_l)n+fc-2 ' " cg+(fc- l)n ' 

The elements in the k x k determinant (11) are 
(icy\ er,s — Cq+(r-l)n+k-l-(s-l) ~ cq-n+k+rn-si 

' 1 < r < fc, 1 < s < k. 

In the sequel we use, for complex numbers c, the notation 

(c)o = l; ( c ) n = c ( c + l ) - - - ( c + n - l ) forn = l ,2 ,--- . 

(11) ( - l ) ^ " 1 ) / 2 
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For class A formula (12) reduces to 

(13) er,s = l / (c)q_ n + j k +m- s , l < r < f c , 1 < s < fc. 

This leads to e r , s+i/e r , s = c + q — n + k + rn-s — 1 and application 
of Lemma 1, as in [8], with 

(14) N = k;yr = c + q - n + k + rn - 1, 1 < r < k, 

xs — s, 1 < s < fc — 1 

shows that the determinant (11) is different from zero, using the 
condition on c. 

Next, for class B, we have 

/.rx cq-n+k+rn-s = (üjq-n+k+rn-s / \c)q-n+k+rn-s 

= (a)q-.n+rn(a + q-n + rn)k-s/{c)q-n+k+rn-s' 

Pull out a factor (a)q-n+rn from row # r, 1 < r < k; these factors are 
different from zero. Then apply Lemma 2 with er,s as for class A, (13) 
and (14), and moreover 

(16) ps(y)= [ J (y + û - c - f c + j ) , 1 < * < * - 1 ; Pfc(y) = l. 

The conditions on a, c imply that the determinant is different from zero. 

Finally, for class C, we reverse the order of the columns in (11) again, 
leading to 

(17) | (o ) , + ( r 

Pull out a factor (a)g +( r_1)n + f c_1 from row # r, (1 < r < fc; different 
from zero because of the condition on a, and we are left over with a 
determinant |e r ? s | on which Lemma 1 can be applied with 

(18) N = fc; 2/r = a + q + ( r - l )n( l < r < fc); 

xs = —s + 1(1 < s < fc- 1). 

Again the condition on the parameter, here a, implies that the deter­
minant is different from zero. 
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