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R E A R R A N G E M E N T INVARIANT SUBSPACES OF 
LORENTZ FUNCTION SPACES II 

N.L. CAROTHERS 

A B S T R A C T . For 1 < q < p < oo and p > 2, it is shown that 
the only subspaces of the Lorentz function space Lp,q[0,1] 
which are isomorphic to r.i. function spaces on [0,1] are 
Z/2[0,1] and £p,g[0,1], up to equivalent renormings. If p < 2 
or if 1 < p < q < oo, then Lp,q[0,1] has an r.i. subspace which 
is not isomorphic to either L2[0,1] or LP)<?[0,1]. 

1. Introduction. This note is an addendum to a previous paper 
by the author [5] in which it is shown that for 2 < q < p < oc 
the only rearrangement invariant function spaces on [0,1] that embed 
isomorphically into the Lorentz function space LPiQ = LPiq[0,1] are, up 
to equivalent renormings, £2 and LPiQ. In the present note we consider 
the remaining values of p and q. Now the case p = q (i.e., Lp) is 
treated in the Memoir of Johnson, Maurey, Schechtman and Tzafriri 
[11]; and since the non-separable, non-reflexive space LPiOQ contains a 
sublattice isomorphic to l^ (hence Loo)> we will be concerned primarily 
with p ^ q < 00. 

In §2 we show that the main result of [5], stated above, also holds for 
l < < 7 < 2 < p < o o . This is an unexpected extension of the results in 
[11], since LPfQ is not 2-convex when q < 2 < p. 

In §3 we give examples to show that in either of the cases p < 2 or 
1 < p < q < 00 there are r.i. subspaces of LPiQ that are not isomorphic 
to either L2 or LPiQ. This is also surprising, as LPiQ is 2-convex and 
c o n c a v e when 2 < p < q < 00. 

For the sake of brevity we will not repeat the arguments from [5] in 
their entirety, but rather simply indicate the necessary additions and 
alterations. The reader is referred to [5] and its references (especially 
[11] and [13]) for any unexplained terminology. 

For 1 < p < 00 and 1 < q < 00 the Lorentz function space 
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LPìQ = Lp,ç[0,1] is the Banach space (of equivalence classes) of all 
measurable functions / on [0,1] for which | | / | | = | | / | |p,g < oo, where 

a) \\f\\ = (f*r{t)gd{t">))1/\ 

and where /* is the decreasing rearrangement of | / | . It is well-known 
that for 1 < q < p < oo, (1) defines a norm on LPiQ under which it is a 
separable r.i. space on [0,1]. Of course LPiP = Lp for any p. Notice also 
that LPA is of the form LWiQ treated in [5] exactly when 1 < q < p < oo 
(see also [13, p. 142]). Now when 1 < p < ç < oo we could use the 
duality LPtQ = {Lp>,q,)\ (±) + (± ) = 1 = (J) + (± ) , to define the norm 
on LPA\ but for simplicity we will instead observe that (1) defines a 
quasi-norm on LPiQ which is known to be equivalent to the norm, say 
HI • HI, obtained via this duality (see O'Neil [15] for a detailed proof). 
In particular, we will use the fact that for 1 < p < q < oo there is a 
constant C, depending only on p and q, such that 

(2) C-i\\f\\< m/m <C||/||. 

for all / G Lp,q. Throughout we will simply refer to the expression 
in (1) as the "norm" on LPìQì and we will use C (or C\,C<i, etc.) as 
a generic symbol representing a positive, finite constant that depends 
only on p and q. 

Now the critical step in any of our attempts to classify the r.i. 
subspaces of LPiQ will be an application of the Classification Theorem 
of Johnson, Maurey, Schechtman and Tzafriri [11, Theorem 6.1] (cf. 
also [13, Theorem 2.e.l3]). In order to take full advantage of this deep 
theorem we will need to catalogue several properties of the LPjQ-spaces 

THEOREM 1. Let 1 < p < oo and 1 < q < oo. Then: 
(i) the Haar system is an unconditional basis for LPiQ; 

(ii) LPiQ satisfies an upper r-estimate and a lower s-estimate for 
disjoint elements where r = min(p, q) and s = max(p,q); 

(iii) if (fn) is a disjointly supported sequence of norm-one elements 
in LPiQ, then there is a subsequence of (/n) which is equivalent to the 
unit vector basis of lq. 

PROOF, (i). follows from [13, Theorem 2.C.6] and the fact that the 
Boyd indices for X = LPA satisfy px = qx — P [3, 4], (ii). is due 
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to J. Creekmore [8]; in the case q < p both of the constants involved 
may be taken to be 1. (iii). is due to Figiel, Johnson and Tzafriri [9, 
Theorem 5.1] in the case q < p. The case p < q is very similar; because 
the actual details will be needed later, we include a proof. First notice 
that because tq^p~1 is increasing we may re-write (1) as: 

(3) 11/11 = irf(/W(0)IM* , /p))1A '. 

where the infimum is taken over all measure-preserving automorphisms 
T from [0,1] onto [0,1]. Thus if r is any automorphism of [0,1], then 
we always have: 

Jo 
2>n/n(r(*))W /p) 

n 

= £ l«»l" r \fn(r(t))Mt"/p) > E M 

and so: 

Ill>n/n||>(£la«l?) 
1/9 

To prove the other inequality, let e > o be given and let \A\ denote 
the Lebesgue measure of a measurable set A C [0,1]. For each n set 
An = sup p / n , and choose an automorphism rn : [0, |;4n|] —• An such 
that: 

/ " U l " l | / n ( r n W ) l g ^ g / p ) < ( l + ^ ) g -
./o 

Now for each n there exists 0 < en < \An\ such that | | / „ X B | | < e-T*1^' 
whenever \B\ < en. By passing to a subsequence if necessary we may 
suppose that | j4n+i| < en for all n. Let r be any automorphism of 
[0,1] such that r = rn on [|An+i|, |i4n|] for every n. Then setting 
En = r([0, \An^\]) and Fn = r([|A„+i|, |An|]) we have (using (2)): 

|lEan/n||<c(^|an|||/nXEn|| + l l E a ^ ^ l l ) 
n n n 

<c{ej2 K\ • 2-»/«' + ( E ia«i' /IAnl VniTnitwdit'/n)1'9} 

<C(l + 2e)-(£iK\q)1/q)-
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Let 1 < p < oo, 1 < ç < oo and suppose that X is an r.i. function 
space on [0,1], that X ^ L2 even up to an equivalent norm, and that 
X is isomorphic to a subspace of Lp,q. Then by Theorem l(i). and 
[13, Corollary 2.C.11] the Haar system is an unconditional basis for X. 
Further, Theorem l(iii). implies that the Haar basis in X cannot be 
equivalent to a disjointly supported sequence in LPA. For q ^ 2 this is 
immediate, since LPiQ cannot contain a disjointly supported sequence 
equivalent to the unit vector basis of £2- When q — 2 ^ p we need only 
repeat the argument given in [5, Lemma 1] (slightly modified when 
p < q). That is, if the Haar basis {hn,i)^Lo^li in X is equivalent to 
a disjointly supported sequence in LPi2, then there is an infinite subset 
M C N such that 

(4) 11E E*»,<A«n!( E nE«n^n,iix)1/2, 
for any scalars (an,t). From (4) it would then follow that X = L2 up 
to an equivalent norm. We omit the details. 

Finally, these observations and Theorem 6.12 of [11] yield 

COROLLARY 1. Let 1 < p, q < 00 and let X be an r.i. function space 
on [0,1] that is isomorphic to a complemented subspace of LPiQ. Then 
eigher X = L2 or X = LPjQ, up to an equivalent norm. 

2. The case l < q < 2 < p < o o . An examination of the ingredients 
in the proof of Theorem 1 of [5] reveals that only Lemma 5 of [5] 
appears to require 2-convexity. In fact, as we shall see, the only real 
use of 2-convexity in [5] occurs in an appeal to Corollary 7.3 of [11]. 
However, at least in the case of LPiQ, 1 < q < 2 < p < 00, it is possible 
to modify the argument given in Lemma 5 of [5] and to circumvent this 
apparent need for 2-convexity. We begin by giving a modified version 
of Corollary 7.3 of [11]. We will use df to denote the distribution 
function of | / | (i.e., the right-inverse of / * ) . Also recall that a sequence 
(/t)?=i is called symmetrically exchangeable if for any permutation n of 
{ 1 , . . . , n} and any signs Si = ± 1 , i = 1 , . . . , n, the sequence (£1/^(1) )£=! 
has the same (probability) distribution as (/t)^=1 Note is particular that 
in this case the /i 's all have the same distribution. 

LEMMA 1. Let 1 < q < p < 00 and p > 2. There is a constant 
C, depending only on p and q, such that «/ (î/t)^=i w 0 symmetrically 
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exchangeable sequence in LPiQ, and if (î/i)"=i *s a disjointly supported 
sequence in LPiQ(0, oo) with dVi = dg,., 2 = 1 , . . . , n, then 

(s) iif>ii<<?ii£>ii. 
i = l i = l 

PROOF. Recall from Theorem l(ii). that LVA satisfies a lower 
p-estimate (since q < p). For p > 2 it then follows from a result 
of Maurey [14] that LPiQ is cotype p; i.e., there is a constant C such 
that 

w Z"1 iiX r̂.-coAiiA > c -^èn / . i r ) 1 ^ 
Jo i = i t = i 

for any (/i)*=1 in LPjq, where (r^)?^ is the sequence of Rademacher 
functions on [0,1]. 

Now, since (yi)"=1 is symmetrically exchangeable, we get from (6) 
that 

llf>ll = l\\JZ^t)y%\\dt>(Tln^\\yi\\. 
1=1 J0 1=1 

But, as in the proof of Lemma 2 of [5], we also have 

iQ/P r°° / . _ \ Q/P 

n5>ii«=/ (Edv,w) w 
i = i Jo t = i 

= n̂ /P f°°(dyi(t))
q/pd(tq) = n*'*\\yi\\* 

Thus 

llËAlNn^lltfill^CH^wll-
i = i t = i 

Now we may repeat the proof of [5, Lemma 5] in this special case. 
As in [5] we write zn^ for the indicator function of the interval 
[ ( » ' - l ) / n , i / n ) . 

LEMMA 2. Let I < q < p < oo and p > 2. There is a constant 
C, depending only on p and q, such that if {yi)?=1 is a symmetrically 
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exchangeable sequence in LPiq, then 

n n n 

i=\ i = l i = l 

for every choice of scalar s (ai)J*=1. 

PROOF. Let {yi)™=1 be a disjointly supported sequence in LPiQ(0, oo) 
with dyi = dyi,i = 1 , . . . , n. Then, by Lemma 2 of [5] and Lemma 1 
we have 

n n n 

t = l i = l 

< Ciliègi •||èajzB,<||. 

1 = 1 1 = 1 1 = 1 

n n 

i = l z = l 

Now, just as in [5, Lemma 5], we want to apply the left-hand side of 
the Classification Formula [11 Theorem 2.1]; and by [11; Remark 1, 
p. 63] this half of the inequality is valid in any Banach lattice which is 
s-concave for some s < oo. Thus there is a constant G<i such that 

n 

| l E a ^ l l ^ C 2 m a x { | | m ^ n | a i 2 / t | | | , | | ^ y i | | - ( ^ | a i | 2 / n ) 1 / 2 } 
i = l 1 = 1 1=1 

<c2m^{\\J2^yi\\A\T,y,\\-(J2M2/n)1/2} 
i = l i = l i = l 

n n n 

^ C i ^ l l ^ ^ l l m a j c l l l ^ a i Z n ^ l l J l ^ a ^ n ^ l l L j . 
t = i i = i i = i 

But U/H > ll/IU, for / e Lp<q. Indeed, | | / | | > \\f\\Lp when 
1 < 9 < P < oo, and so | | / | | > | | / | | L 2 when p > 2 (see [10] or [13, 
Proposition 2.b.9]). Thus, 

llî>ifcll<CiC2||£>IHlX>*„,i||. 
i = l i = l t = l 

Finally, by incorporating these observations into the proof of theorem 
1 of [5] we have 
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THEOREM 2. Let 1 < q < p < oo and p > 2. Let X be an r.i. 
function space on [0,1] that is isomorphic to a subspace of LPiQ. Then, 
up to an equivalent norm, X = L2 or X — LPiQ. 

REMARK. It is known that L2,q is not of cotype 2 for 1 < q < 2, and 
so our proof of Lemma 2 fails in this case. In fact, even the conclusion 
of Lemma 1 cannot hold in this case (this follows from an example due 
to Pisier [13, Example l.f.19], [8]; but see also [6]). We have been 
unable to determine whether the conclusion of Theorem 2 holds in this 
remaining case. 

3. The cases p < 2 and 1 < p < q < 00. We first remark that the 
conclusion of Theorem 2 cannot hold for p < 2, since it is known not 
to hold even L p ,p < 2. The easiest way to see this is via Proposition 
8.9 of [11] which states that if for some 1 < r < 2 an r.i. function 
space X on [0,1] contains the function g(t) = r 1 / r , 0 < t < 1, then Lr 

embeds isometrically into X (cf. [13, Theorem 2.f.4]). Consequently, 
given 1 < p < r < 2 and 1 < q < oc, LPìQ contains an isometric copy 
ofL r . 

Now the technique employed in proving [11, Proposition 8.9] supplies 
a general method for constructing sublattices of an r.i. function space 
which are themselves isometric to r.i. function spaces on [0,1]. Given 
an r.i. function space X on [0,1] and a positive, decreasing, norm-one 
g e X we define the space Xg to be the completion of the simple, 
integrable functions on [0,1] under the norm 

(?) l l / l lx f = ||/®ffllx([o,i]a)i 

where {f ® g){s,t) = f(s)g(t). Since the square [0, l ] 2 is measure-
equivalent to the interval [0,1], it is easy to see that Xg is isometric 
and lattice-isomorphic to a sublattice of X, and further, that (7) defines 
an r.i. norm on Xg. Henceforth we will identify X with X([0, l]2) and 
simply write \\f\\Xg = |l/®ffllx-

It is easy to see that if X = LPA, 1 < q < p < 00, then each of the 
spaces Xg must be isomorphic to Lp,q. In fact, in this case we have 

(8) ||/||||ff||Lp<||/®ffll<ll/IIIWI. 

for any / , g e LPtQ. To see this, fix / G LPA and suppose that g is a step 
function g = X^ = i Q>iZn,i. Write /n , i = / ® znj for each n = 1,2,... 
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and i — 1 , . . . , n. Then f<8>g = J2?=i aifn,i, where the /n , i 's are disjoint 
and all have the same distribution. Thus | | / n , i | | = n_1^pll/IL and so, 
by Theorem l(ii), 

11/«Ml = ll£>/n,<|| * H/n.lll • (El a ' |P ) 1 / P 

t = l 1=1 

= n- 1 / p | | /H-(èk|p ) 1 / P = U/H \\g\\Lp. 
1 = 1 

The other inequality is given in [5, Lemma 2] (also [15, Theorem 7.4]). 
When 1 < p < q < oo, the inequalities in (8) are reversed and we reach 
a much different conclusion: 

PROPOSITION 1. Let 1 < p < q < oo. Then there exists g inX = LPA 

such that Xg is not isomorphic to either Li or LPiQ. 

PROOF. We use an example given in [15]: let f(t) = t~~l/p(l -
log £)~a/p, 0 < t < 1, where a is chosen to satisfy 2a — 1 < p/q < a < 1. 
Then / e LPA, but, as shown in [15, Theorem 7.7], f<8)f& LPiQ. That 
is, if g = / /U/H, then g & Xg. Thus, by Corollary 1, Xg cannot be 
isomorphic to Lp?g (for otherwise, Xg = LPiQ). Finally, Xg cannot be 
isomorphic to L2. For q ^ 2 this follows from Theorem l(iii). For 
p < 2 = q we need only observe that for each n the 1-unconditional 
basic sequence (*n,i)?=i in Xg satisfies || YJl=\ Zn,i\\xg = r i1 / p | |2n , i | |x s , 
and so 

(g-iji«..<ife.) ia
 nl/2_1A, 

ll£?=l*n,t||x, 
which cannot be bounded from below independent of n. 

Finally, it should be pointed-out that a subspace Xg of X = LP)Q 

is isomorphic to LPiQ precisely when it is complemented in LPiQ. This 
follows from Corollary 1 and the following observation (suggested by 
a similar result due to Casazza and Lin [7] for spaces with symmetric 
basis): 

PROPOSITION 2. Let X be a separable r.i. function space on [0,1] 
which has unique r.i. structure on [0,1], and which is q-concave for 
some q < 00. If Xg is isomorphic to X, then Xg is complemented in 
X. 
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PROOF. The assumption of unique r.i. structure implies that Xg = X, 
up to an equivalent norm; in particular, there is a constant M < oo 
such that \\f\\Xg < M\\f\\x for all feX. 

Now, in order to fix Xgj let a : [0,1] —• [0, l ] 2 be a measure 
equivalence. For each n = 1,2,... and i = l , . . . , n , let gHii = 
{znti®g)°<ri let Anii = sup pgn,i, and let xn^ be the indicator function 
of Anti. Then Xg is isometric to [0n,t]2Li, i=i in X, and for any n and 
any scalars {di)n

=1 we have 

n n n 

II X ^ i t f r M | | x = l l X ^ n , i | | x , < M | | ^ a t Z n , t | | x 
t = l i = l t = l 

n 

= A f | | ^ a t - x n i i | | x . 
i = i 

Next, we show that for each n, [0n,t]?=i i s complemented by a projection 
of norm at most M/ | | ^ | | L l . To see this, define Pn : X —• X by 

n /. 

n̂/ = |MlZl-E(n/^'0^-
i = l y 

Then P n is a projection onto [^n,t]?=i s i n c e IMUi = rc|l0n,i||z,i for any 
* = 1 , . . . , n (recall that g is positive), and for / G X we have 

WPnfWx = \\g\\l\- H E (n [fxnJgnti\\x 
t = i y 

< A/||g||IÎ • \\J2(nf fxn,t)xnìl\\x < M\\g\\l\ • | | / | | x , 
i = i 

since conditional expectation is a contradiction on X. 
Finally, since X is g-concave, X is a projection band in X** and a 

standard argument finishes the proof. Let J : X -* X** be the canon
ical inclusion, and let Q : X** -+ X be the canonical projection. Then, 
if fi is a limit point for (P**) in the ^ '-operator topology, P = QfiJ 
is a projection onto Xg of norm at most M | | ^ | | ^ . 
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