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THE STRONG FORM 
OF AHLFORS' LEMMA 

DAVID MINDA 

1. Introduction. Ahlfors [1] established an extension of Schwarz' 
lemma which plays an important role in geometric function theory. 
Ahlfors' lemma is valid for any hyperbolic Riemann surface; let us recall 
the result for the open unit disk D. If p(z)\dz\ is an ultrahyperbolic 
metric on D, then 

(!) P(z) < *D{Z) = j ^ p . 

Here AD(^)|d^| is the hyperbolic metric on D normalized to have cur
vature - 1 . (In some references the curvature is taken to be -4; we will 
translate all such results to the context of curvature -1 without further 
comment.) The proof of (1) is astonishingly elementary; it relies on 
the fact that the Laplacian of a real-valued function is nonpositive at 
any point where the function has a relative maximum. Ahlfors did not 
show that equality in (1) at a single point implied p = \D which would 
be the analog of the equality statement in Schwarz 's lemma. Heins 
[2] introduced the class of SK metrics, which includes ultrahyperbolic 
metrics, and verified that (1) remains valid for SK metrics. In addition, 
he showed that equality at a single point implied p = \D- However, 
his proof of the equality statement is not as elementary as the proof of 
Ahlfors' lemma since it relies on an integral representation for a solu
tion of the nonlinear partial differential equation Au = exp(2u). In this 
paper we shall present an elementary proof of the equality statement 
for Ahlfors' lemma for SK metrics. Our proof is in the spirit of Ahlfors' 
derivation of (1) and is a modification of a method introduced by Hopf 
[3] for linear partial differential equations. A related proof was given 
by J^rgensen [4] in the special case of metrics with constant curvature 
-1 . 

2. Maximum principle. We prove a strong maximum principle for 
upper semicontinuous functions which satisfy the differential inequality 
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Au > Ku in a generalized sense, where K is a positive constant. 

DEFINITION. Suppose fi is a region in C and u : fi —• [-00,+00) 
is upper semicontinuous. The generalized lower Laplacian of u at any 
point a where u(a) > -00 is 

Au(a) = l iminf^-f — / u(a + re%e)dO - u(a) ). 
~ r-+o r2 V27ry0 V 

If it is actually of class C 2 in a neighborhood of o, then it is straight
forward to show that Au(a) = Au(a), the usual Laplacian of u at a. 
Also, if u(a) > -00 and u has a local maximum at a, then Au(a) < 0. 

THEOREM l. Suppose fi ts a region ir\ C, u : fi —• [-00, H-00) is upper 
semicontinuous and there is a positive constant K such that Au(z) > 
Ku(z) at any point z G fi with u(z) > -00. / / lim supz_+^ u(z) < 0 for 
all £ G dQ, then either u(z) < 0 for all z G fi or else u{z) = 0 for all 
zefì. 

PROOF. We begin by showing that u(z) < 0 for all z € fi. Set 
M — sup{it(2) : z G fi}. We wish to show M < 0. There is a sequence 
{zn}%Lx in fi with u(zn) —• Af. There is no harm in assuming that 
zn —• a G cl(fi), the closure of fi relative to the Riemann sphere. If 
a G dfi, then 

M = lim u(zn) < lim sup u(z) < 0. 

Now, suppose a G fi. Then 

M = lim u(zn) < ìimsupu(z) < n(a), 
n—00 z _ a 

so that n(o) = M. If u(a) = -00, then M = -00. Otherwise, u(a) > -00 
and u has a maximum value at a, so 

0>Au{a) >Ku{a). 

Since K > 0, we obtain M = u(a) < 0. This proves that u(z) < 0 for 
all z G fi. 
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Next, we show that either u(z) < 0 for all z E Q or u(z) = 0 for all 
z E n . The set A = {z E Q : u(z) < 0} is open because u is upper 
semicontinuous. It suffices to show that A = Q if A ^ 0. For each 
a E A we will show that {z : \z — a\ < 6} C A, where 6 is the distance 
from a to <9f2. From this it readily follows that A = Q when A ^ 0. 
Note that Z = {z E Q : u(z) = 0} is a closed set in f2. If the distance 
from the point a to the set Z is at least <5, then we are done. Otherwise, 
there exists R E (0,6) such that u(z) < 0 for \z — a\ < R and there 
exists a point z0 E Z with |zo _ a | = Ä- Now, we construct an auxiliary 
function. Set 

v(z) = exp(-a|z - a\2) - exp(-afi2), 

where a > 0 is to be specified. Note that v(z) > 0 for \z - a\ < 
R, v(z) = 0 for \z - a\ = R and v(z) < 0 for \z-a\> R. Now, 

Av(z) = (4a2\z - a\2 - 4a) exp(-a\z - a\2) 

so that 

Av{z) - Kv(z) > (4a2\z - a\2 - 4a - K) exp(-a|2 - a\2). 

For fi/2 < \z - a\ < R we have 

Av{z) - Kv{z) > (a2R2 -4a-K) exp(-a|2 - a}2). 

We take a > 0 large enough to insure that 

(2) a2R2 -4a-K>0. 

Set w = u + ev, where e > 0 is to be determined. Because u(z) < 0 
in ft and v(z) = 0 on \z — a\ = R, we obtain limsup^_^ w(z) < 0 for 
all ^ with |f — a| = R. Since the upper semicontinuous function u is 
negative on the compact set {z : \z — a\ = fi/2}, it attains a negative 
maximum on this set. Thus, we can take e > 0 so small that w(z) < 0 
on \z — a\ = fi/2. From the fact that v is of class C2 , we obtain 

Aw{z) = Au(z) + eAv(z) 

>Ku(z)+eKv{z)=Kw{z) 

at any point z with w(z) > -oo. The first part of the proof yields 
w{z) < 0 for fi/2 < \z - a\ < R. Because u(z) < 0 in Vt and v(z) < 0 
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in \z — a\ > R, we conclude that w(z) < 0 in a full neighborhood of 
any point on the circle \z — a\ — R which lies in fi. In particular, this 
holds at zo so w attains a local maximum at ZQ. Thus, 

Aw(20) + eAv(z0) = Aw(zo) < 0, 

so 

Ku{z0) < Au(^o) < -£&v{z0) = —e{4a2R2 - 4a) exp(-afi2). 

Since (2) implies 4a2R2 —4a > 0, we obtain U{ZQ) < 0, a contradiction. 
Consequently, we must have u(z) < 0 for \z — a\ < 6 and the proof is 
complete. 

3. The Strong Form of Ahlfors' Lemma. Heins [2] introduced 
the notion of an SK metric. A conformai metric p(z)\dz\ on a region fi is 
called an SK metric provided p : fi —• [0, +oo) is upper semicontinuous 
and Alogp(a) > p2{a) at each point a G fi such that p(a) > 0. Recall 
that if p is of class C2 in a neighborhood of a and p(a) > 0, then 

^p) = —p^äT 
is the (Gaussian) curvature of p(z)\dz\ at a. Thus, an SK metric is a 
conformai metric with generalized curvature at most -1 at each point 
where it does not vanish. A region Q is hyperbolic if C\fi contains at 
least two points. The hyperbolic metric Àn(^)|rf^| on fi is the unique 
metric on fi such that Xo{z)\dz\ = An(/(^)) | / ' (^) | , where / : D —• fi is 
any holomorphic universal covering projection. The hyperbolic metric 
has constant curvature - 1 . 

THEOREM 2. Let fi be a hyperbolic region in C and \n(z)\dz\ the 
hyperbolic metric on fi. If p(z)\dz\ is an SK metric on fi, then either 
p(z) < XQ(Z) for all z G fi or else p(z) = \Q(Z) for all z G fi. 

PROOF. Ahlfors' lemma, as refined by Heins [2], gives p(z) < XQ(Z) 
for all z G fi. Because fi is connected, it is sufficient to show that each 
point of fi has an open neighborhood such that either p(z) = AQ(^) in 
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this neighborhood or p(z) < \Q{Z) in this neighborhood. Fix aeQ and 
take r > 0 such that {z : \z - a\ < r} C fi. Set B = {z : \z - a\ < r}. 
There exists M > 0 such that p(z) < XQ(Z) < M for all z e B. Now, 
u = log(p/An) is upper semicontinuous on B,u(z) < 0 for z G B and 
at any point z e B where ti(^) > -oo; that is, where p(z) > 0, we have 

Au(z) = A log p(z) - A log An (z) 

>p\z)-Xl{z) 
>2M(p(z)-\Q(z)). 

Here we have used the facts that p(z) - An(z) < 0 and p(z) -h An(^) < 
2M îor z e B. For 0 < s < t < M we have the elementary 
inequality Mlog(f) > ^ - s. Thus M l o g ^ i > XQ(z) - p(z), and 
so Au(z) > 2M2u(z) for z E B and u{z) > -oc. Theorem 1 implies 
that either p(z) < XQ(z) for z E B or else p{z) = XQ(z) for z e B. 

Added in proof. Recently, H.L Royden [The Ahlfors-Schwarz lemma: 
the case of equality, J. Analyse Math. 46 (1986), 261-2701] established 
the sharp form of Ahlfors' lemma by a different method. 
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